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ABSTRACT

Machine Translation (MT) is the automatic conversion of text in one language to

other languages. Neural Machine Translation (NMT) is the state-of-the-art MT

technique w builds an end-to-end neural model that generates an output sentence

in a target language given a sentence in the source language as the input.

NMT requires abundant parallel data to achieve good results. For low-resource

settings such as Sinhala-English where parallel data is scarce, NMT tends to give

sub-optimal results. This is severe when the translation is domain-specific. One

solution for the data scarcity problem is data augmentation. To augment the par-

allel data for low-resource language pairs, commonly available large monolingual

corpora can be used. A popular data augmentation technique is Back-Translation

(BT). Over the years, there have been many techniques to improve vanilla BT.

Prominent ones are Iterative BT, Filtering, Data Selection, and Tagged BT. Since

these techniques have been rarely used on an inordinately low-resource language

pair like Sinhala - English, we employ these techniques on this language pair

for domain-specific translations in pursuance of improving the performance of

Back-Translation. In particular, we move forward from previous research and

show that by combining these different techniques, an even better result can

be obtained. In addition to the aforementioned approaches, we also conducted

an empirical evaluation of sentence embedding techniques (LASER, LaBSE, and

FastText+VecMap) for the Sinhala-English language pair.

Our best model provided a +3.24 BLEU score gain over the Baseline NMT

model and a +2.17 BLEU score gain over the vanilla BT model for Sinhala →

English translation. Furthermore, a +1.26 BLEU score gain over the Baseline

NMT model and a +2.93 BLEU score gain over the vanilla BT model were ob-

served for the best model for English → Sinhala translation.

Keywords: Neural Machine Translation, Back-Translation, Data selection, Iterative

Back-Translation, Iterative filtering , Low-resource languages, Sinhala
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