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Abstract 
 

The aim of this study is to understand the microscopic behavior of heat and momentum 

transfer in nanofluids. With nanofluids reporting enhanced thermal conductivities (𝜅) 

and viscosities (𝜂), a microscopic understanding is essential for engineering nanofluids 

to be practical in heat transfer applications. Therefore, to study the microscopic 

transport behavior, copper-argon nanofluids simulated by classical molecular 

dynamics are employed. The Applicability of the Green-Kubo (GK) method in 

nanofluid 𝜅 evaluation is questioned as the calculated thermal conductivities through 

the GK method are considerably higher than the direct method in Non-Equilibrium-

Molecular-Dynamics (NEMD). Green-Kubo calculations are found to be very 

sensitive to the ill-defined partial enthalpy computation, resulting in an overestimation 

of the 𝜅. However, the Green-Kubo and the direct method viscosity calculations 

demonstrate a reasonable agreement.   

Following the more reliable method, the NEMD direct approach, 𝜅 of the nanofluids 

consisting of spherical nanoparticles with different diameters are investigated. The 

computational results are compared with the classical effective medium theories and 

no anomalous 𝜅 enhancements are observed in the nanofluids having fully dispersed 

spherical particles. Various microscopic mechanisms such as liquid layering and 

micro-convection are found to be ineffective for 𝜅 enhancements in nanofluids. 

However, greatly enhanced 𝜅 are achieved, a maximum of 63% relative to pure argon, 

in nanofluids consisting of chain-like particle arrangements. This demonstrates the 

potential origin of anomalous 𝜅 enhancements in experimental measurements and the 

capability of nanofluids with extended nanostructures to deliver better 𝜅 

enhancements. 

Further investigating the capability of extended nanostructures in nanofluid thermal 

transport, 𝜅 enhancements of nanofluids consisting of nanowires with different lengths 

and diameters are evaluated. It is shown that the heat conduction in the parallelly 

arranged liquid and the nanowires exhibit a coupled thermal behavior owing to the 

interface thermal resistance (Rb). This contradicts with the predictions of the classical 



vii 
 

parallel heat conduction model and therefore, a novel model is proposed taking this 

coupled behavior into account. New heat transfer characteristics at the nanoscale are 

identified including the Rb-driven coupled heat conduction, the reduced 𝜅 of suspended 

nanowires, and the solid-like liquid layering. Using the new model, the importance of 

these microscopic thermal characteristics in accurately predicting the effective 𝜅 is 

shown. The sole contribution from the solid-like liquid layer to the 𝜅 enhancement is 

found to be in between 20-30% for the nanofluids considered. 

Extending the investigation of heat transfer phenomena in nanofluids based on 

spherical nanoparticles, 𝜂 of nanofluids with different nanoparticle sizes, 

concentrations, and arrangements are evaluated. Both the Green-Kubo and the direct 

methods are employed and unlike the 𝜅, both methods show a reasonable agreement 

with one another. Viscosity is observed to decrease as the particle diameter increases 

in fully dispersed nanofluids. The ratio 𝐶𝜂 𝐶𝜅⁄  shows a decreasing trend indicating 

better heat transfer performance in nanofluids with large particles. Nanofluid 𝜂 is 

observed to increase rapidly as the concentration increase. This makes 𝐶𝜂 𝐶𝜅⁄  to 

increase as well indicating the diminished heat transfer performance in nanofluids with 

high particle concentrations. As the particles in the nanofluid arrange into chain-like 

structures, 𝜂 remains unaffected. This makes 𝐶𝜂 𝐶𝜅⁄  to decrease rapidly indicating the 

greater heat transfer performance in nanofluids with chain-like nanoparticle 

arrangements or in general, extended nanostructures.  

 

Keywords: Nanofluids, Nanoparticles, Nanowires, Thermal conductivity, Viscosity, 

Molecular dynamics 
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