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Abstract: As the building sector is a major contributor to global energy consumption and greenhouse gas emissions, there is a 
growing focus on achieving significant reductions in energy consumption and greenhouse gas emissions in the building sector. 
Energy consumption in buildings can be classified into embodied energy and operational energy. Studies have indicated that 
operational energy contributes to 80%–90% of the total life cycle energy in buildings while embodied energy only contributes to 
10%–20%.  Though several strategies have been implemented to reduce OE, there has not been enough attention on reducing 
embodied energy in buildings. Therefore, it is vital to conduct a study on reducing embodied energy in buildings. A comprehensive 
literature review was conducted by referring to books, reports, theses, journals, magazines, and conference proceedings to identify 
several practices for reducing embodied energy in buildings as well as barriers to moving towards low embodied energy in 
buildings. In conclusion, the study showed that reducing embodied energy in buildings is an essential step towards achieving 
significant reductions in energy consumption and greenhouse gas emissions in the building sector, and a concerted effort is needed 
to overcome the identified barriers and implement the identified practices.  
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1. Introduction  
 
Despite adding value to society, the construction industry has significant negative effects on the environment (Cabeza 
et al., 2014). It contributes a larger share of global carbon dioxide emissions and consumes substantial amounts of 
natural and energy resources (AlSanad, 2015). The building sector is one of the major consumers of energy in many 
nations (Devi and Palaniappan, 2014). About 40% of the energy supply in the world is used for the construction, 
operation, and maintenance of buildings (Kolokotsa et al., 2011). Therefore, the effective management and 
minimization of the energy usage of buildings is a global focus (Li et al., 2022). According to Mariano-Hernández et 
al. (2021), energy effacement strategies are necessary to address the increasing energy demand in buildings. 
Analyzing the overall energy consumption of buildings throughout their life cycle is desirable to identify stages with 
high energy consumption and develop ways to reduce them (Ramesh, Prakash and Shukla, 2010). 
 

The concept of ‘Life Cycle Energy’ (LCE) encompasses all energy requirements associated with a building 
throughout its life cycle, from the first stage of production to demolition (Karimpour et al., 2014). The total LCE of a 
building is constituted of Embodied Energy (EE) and Operational Energy (OE) (Ramesh, Prakash and Shukla, 2010; 
Dixit et al., 2012). EE in buildings refers to the amount of energy needed for processes related to building completion 
(Dissanayake, Jayasinghe and Jayasinghe, 2017), including raw material extraction, production, transportation, 
construction, and end-of-life procedures (Cabeza et al., 2014). On the other hand, OE refers to the energy used to 
operate different building appliances such as lighting, space conditioning and ventilation, heating, and cooling (Dixit, 
2017). 

 
Ramesh et al. (2010) identified that, while OE contributes 80%–90% of the LCE in buildings and EE contributes 

only 10%–20% of the LCE in buildings. As OE owns a larger share of the total usage of LCE in buildings (Dixit et al., 
2010), many research studies have focused on reducing OE during the past decades (Marzouk and Elshaboury, 2022). 
However, with the adoption of energy-efficient equipment and appliances, and modern effective insulation materials, 
the demand for OE has decreased relatively (Sartori and Hestnes, 2007). With a significant reduction in OE, EE has 
become a significant factor in minimizing LCE (Gustavsson and Joelsson, 2010). Further, as stated by Zeng and Chini 
(2017), over the next 50 years, the effect of EE is expected to increase even more.  

 
Although  EE  accounts  for  a  smaller  share  of  total  LCE  than  OE,  the  possibility  of reducing EE should not be  
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neglected (Kua & Wong, 2012). Therefore, it is crucial to address EE in order to achieve significant future reductions 
in energy consumption within the building sector (Skillington et al., 2022). Further, according to the World Green 
Building Council (2019), the attention of the entire world is now being shifted toward the quantification and 
reduction of the EE impacts of the building sector.  
 

When focusing on the Sri Lankan context, as reported by the Sri Lanka Sustainable Energy Authority (2017), rapid 
expansion in the Sri Lankan building sector is responsible for about 35% of national energy consumption while 
resulting in significant carbon emissions. Sri Lanka has already identified the need to focus on the building sector in 
identifying energy reduction strategies (Kumanayake, Luo and Paulusz, 2018). Further, Fernando and Jayasena 
(2008) emphasized that even though measures for OE reduction are practiced to a certain extent in the Sri Lankan 
context, EE has received almost no consideration in terms of building design. This emphasizes the need for increasing 
the focus on reducing EE in the local context. Considering the lack of comprehensive studies on proposing suitable 
strategies to reduce EE in buildings in Sri Lanka, the aim of this study is to reduce embodied energy in buildings. To 
achieve the aim of this study, three (03) objectives have been set up: identify practices for reducing embodied energy 
in buildings, identify barriers towards the reduction of embodied energy, propose suitable measures to overcome 
those barriers in buildings, and develop a conceptual framework to reduce embodied energy. 

 

2. Research Methodology 
 
A comprehensive literature detailing the history of the subject and important sources of the literature showing the 
main issues and improving the meaning of the study (Saunders, 2014). Further elaborating, Mahajan (2018) stated 
that a comprehensive literature synthesis helps to establish the theoretical roots of the study. Therefore, this paper 
is based on the findings of a literature analysis conducted to gain a comprehensive understanding of the field of EE.  
 

Accordingly, the literature was critically evaluated to synthesize the findings. A comprehensive literature review 
was conducted by referring to books, reports, theses, journals, magazines, and conference proceedings to identify the 
concept of EE, practices to reduce EE, and barriers that occurred when implementing those practices. By using the 
available search engines of ‘Scopus’, ‘Google Scholar’, ‘Emerald’, and ‘Science Direct’, the keywords such as ‘Embodied 
Energy’, and ‘Practices and Barriers to reducing Embodied Energy’ were filtered to gather a comprehensive literature 
synthesis. Finally, based on the findings from the literature, a conceptual framework was developed to facilitate the 
empirical investigation in the next step. 

 

3. Results & Findings 
 
3.1. LIFE CYCLE STAGES OF BUILDINGS 
Different perceptions regarding the building life cycle stages can be identified. According to Pomponi and Moncaster 
(2016), the building life cycle has been categorized into four (04) stages product stage, construction stage, operational 
stage, and end life stage, while Ramesh et al. (2010) have categorized it differently as the manufacturing phase, use 
phase and demolition phase. Further Watson (2003) has identified six (06) stages of the life cycle of buildings as 
initiation, production, construction, operation, maintenance, and demolition/disposal. However, it is identifiable that 
most research studies relating to LCE have used BS EN 15978:2011 standards to categorize the stages of the life cycle 
of buildings (Giesekam et al., 2016). According to BS EN 15978:2011 standards, the building life cycle has been 
categorized into four (04) main stages including the product stage, use stage, operational stage, and end life stage 
(Achenbach et al., 2018). An additional stage is identified as ‘beyond the system boundary’ which includes sub-stages 
of reuse, recovery, and recycling. Figure 1. shows the building life cycle stages as per BS EN 15978:2011 including 
main stages and sub-stages. 
 

 
 

Figure 1, Building life cycle stages as per BS EN 15978:2011 Source: (Achenbach et al., 2018) 
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Though there is a widely accepted standardized categorization for building life cycle stages, it is challenging to 
identify research studies relating to LCE analysis that have focused on all of the specified life cycle stages because the 
majority of research studies have only concentrated on a selected few stage (Oregi et al., 2015). 

 
3.2. THE CONCEPT OF EMBODIED ENERGY 
According to Chang et al. (2012), still there is no standardized definition for the term EE. As identified through 
literature, different researchers have given different interpretations and definitions for EE. Table 1 contains various 
definitions for EE.  
 

Table 1, Definitions for Embodied Energy 
 

Definition Source of Reference 
“The total energy required in the creation of a building, including the direct energy use in the 
construction and assembly process, and the indirect energy, that is required to manufacture 
the materials and components of the buildings” 

(Crowther, 1999) 

“Energy required to provide a product through all processes upstream in both direct and 
indirect ways” 

(Treloar et al., 2001) 

“Energy to extract, transport and refine the raw materials and then to manufacture 
components and assemble the product” 

(Fay, Treloar and Iyer-Raniga, 
2012) 

“Energy used to extract and refine raw materials, manufacture materials assemble 
components, conduct on-site construction, complete end-of-life processes, and carry out any 
transportation required between any of these steps” 

(Karimpour et al., 2014) 

“The total primary energy that has to be sequestered from stock within the earth to produce 
a specific good or service” 

(BRE, 2015) 

“The total amount of non-renewable primary energy required for all direct and indirect 
processes related to the creation of the building, its maintenance, and end-of-life” 

(IEA, 2016) 

“Energy utilized in manufacture and transport of materials, construction, repair and 
maintenance demolition and end-of-life management of demolished materials” 

(Chastas, Theodosiou and 
Bikas, 2016) 

 
It depicts that there are significant differences in how different studies interpret the definitions of EE, mainly 

based on the different life cycle stages that they considered. Recent definitions given by Chastas et al. (2016), IEA 
(2016), and Karimpour et al. (2014)) provide a comprehensive overview of EE by considering the whole building life 
cycle during all processes of production, on-site construction, and final demolition and disposal.  

 
3.3. SIGNIFICANCE OF EMBODIED ENERGY 
According to Ramesh et al. (2010), OE accounts for 80% to 90% of the total LCE of a building. This indicates that OE 
consumes a significant portion of LCE throughout the long lifespan of buildings (Li et al., 2020). However, the EE 
component of LCE has often been overlooked, with most focus given to reducing OE due to its larger proportion 
(Chang, Rias and Lei, 2012; Azari and Abbasabadi, 2018).  
 

Efforts to minimize OE have involved the implementation of policy-driven initiatives in various countries to 
promote the construction of energy-efficient buildings (Omrany et al., 2020). Additionally, advancements in 
construction materials, technologies, and practices have led to the emergence of zero-energy buildings, as highlighted 
by Zeng and Chini (2017). The enhancement of building energy efficiency has been achieved through effective OE 
practices, such as optimizing building design and utilizing energy-efficient appliances and technologies (Praseeda, 
Reddy and Mani, 2015; Marzouk and Elshaboury, 2022). 

 
While OE dominates in countries with adverse weather conditions (Mandley, Harmsen and Worrell, 2015), 

buildings in tropical climates often have low OE due to their ability to operate without excessive energy requirements 
(Hashemi, Cruickshank and Cheshmehzangi, 2015). In such cases, EE can become more prominent, as noted by 
Praseeda et al. (2014). Although OE typically outweighs EE in buildings under normal circumstances, the proportion 
of EE in the total LCE can range up to 60% depending on the composition of the building (Leoto and Lizarralde, 2019). 
According to Li et al. (2021), the share of the EE in the LCE of a residential building has increased significantly from 
9%–35% to 66%–71% in new residential buildings constructed after 2011. Further, EE accounts for 4%–52% of the 
LCE in conventional buildings, 9%–50% in retrofit buildings, 19%–60% in low-energy use buildings, and 18%–77% 
in passive buildings (Dilsiz et al., 2019). Zeng and Chini (2017)predict that the influence of EE will continue to grow 
over the next 50 years. 

 
Omrany et al. (2020) argue that EE be given priority as, unlike OE, EE cannot be reversed once implemented. 

Therefore, additional consideration is needed for EE in buildings (Anderson et al., 2022). There is a significant 
demand to optimize the building performance in terms of EE to reduce energy consumption (Utama and Gheewala, 
2009). Therefore, in recent years, there has been an increase in research investigating EE using approaches with 
numerous detailed case studies of individual buildings developed by researchers (Omrany et al., 2020). 

 
3.4. PRACTICES TO REDUCE THE IMPACT OF EMBODIED ENERGY 
According to Treloar and Faniran (2001), the field of EE attracts global attention due to its focus on key aspects of 
green building design and energy management in construction. This knowledge of EE can inspire the development of 
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products with low embodied energy content, by reducing quantities of serves as inspiration for developing products 
with lower embodied energy, reducing energy consumption and greenhouse gas emissions during the operational 
phase (Ding, 2004). By considering that designers, builders, and building materials manufacturers strive to optimize 
production techniques to minimize energy usage by fully determining the type and level of EE intensity (Azari and 
Abbasabadi, 2018). 
 

In recent years, research has increasingly concentrated on reducing the environmental impact of building 
materials throughout their lifecycle, with a specific emphasis on EE. This includes studies conducted by  Huberman 
and Pearlmutter (2008), Venkatarama Reddy (2009), and Ng and Chau (2015). As part of Annex57 (Evaluation of 
Embodied Energy and CO2eq for Building Construction), a range of case studies has been conducted with the aim of 
identifying practices to reduce the EE and GHG of buildings (IEA, 2016). The practices have been classified into four 
categories: substitution of material, reduction of resource use, reduction of construction stage impacts, and designing 
for the end-of-life stage. The practices identified through literature for reducing the impact of EE are summarized in 
Table 2. 

 
Table 2, Practices to Reduce the Impact of Embodied Energy 

 
No. Practices References 

 Substitution of materials  
1 Use natural materials [01] 
2 Use recycled and reused materials and components [01],[02],[03],[04],[05],[06],[07],[08] 
3 Use innovative materials [01],[04],[07] 
4 Use bio-based materials derived from sustainably managed 

sources 
[04] 

5 Use alternative materials [07] 
6 Use renewable materials [06],[08] 
 Reduction of resource use  

7 Reuse of building structures [01],[03],[04],[07] 
8 Use Light-weight constructions [01],[04] 
9 Design for low maintenance [01],[04] 

10 Design for service life extension in mind [01],[04] 
11 Optimization of the building form and design of the layout 

plan  
[01],[04] 

12 Design for flexibility and adaptability [01],[04] 
 Reduction of construction impacts  

13 Use locally available materials [02],[04],[06] 
14 Avoid the complexity of the manufacturing process [02] 
15 Minimize the quantity of materials used for the construction 

process 
[05],[06] 

 Design for end-of-life stage  
16 Design for disassembly [01],[04] 
17 Design for recyclability [01],[04] 

Source: [01]-(International Energy Agency, 2016), [02]-(Chastas et al., 2017), [03]-(Milne and Reardon, 2008), 
[04]-(Lupíšek et al., 2017), [05]-(Zhao and Haojia, 2015), [06]-(Sattary and Thorpe, 2012), [07]-(Kumanayake and 
Luo, 2018), [08]- (Venkatarama Reddy, 2009) 

 
According to Table 2, substitution of material, reduction of resource use, reduction of construction stage impacts, 

and designing for the end-of-life stage were identified as practices to reduce the impact of EE in buildings. Under the 
category of ‘substitution of materials’, practices of the use of natural materials, use recycled and reused materials and 
components, use of innovative materials, use of bio-based materials derived from sustainably managed sources, and 
use of renewable materials were identified as alternatives to conventional construction materials. Then the ‘reduction 
of resource use’ category was focused on minimizing resource consumption and optimizing the design process. 
Practices include reusing building structures, using lightweight constructions, designing for low maintenance, 
designing for service life extension in mind, optimizing building form and design of layout plan, and designing for 
flexibility and adaptability. Then the ‘reduction of construction impacts’ category highlights practices that aim to 
minimize the environmental footprint during the construction phase. These include using locally available materials, 
avoiding complex manufacturing processes, and minimizing the quantity of materials used for the construction 
process. Lastly, the ‘design for end-of-life stage’ category is focused on designing buildings with consideration for 
their eventual disassembly and recyclability. Practices involve designing for disassembly and ensuring the 
recyclability of building components. The references support the importance of incorporating these principles into 
the design process. 

 
3.5. BARRIERS TO THE REDUCTION OF EMBODIED ENERGY  
While Zhang and Wang (2013) identified legal barriers, administrative barriers, market barriers, financing barriers, 
social barriers, and other barriers, Addy et al. (2014) identified social and behavioural barriers, knowledge barriers, 
policy barriers, market and production barriers and financial barriers as barriers of building energy efficiency. By 
considering that, Table 3 summarizes barriers that occurred towards the reduction of EE in buildings. 
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Table 3, Barriers Towards the Reduction of Embodied Energy 

 
No Barriers References 

 Legal Barriers  
1 Lack of regulations and standard guidelines [01],[02],[04],[05],[09] 
2 Lack of government regulatory body [03],[05] 
3 Lack of subsidies [05] 
4 Political processes and priorities of government [03] 
 Knowledge Barriers  

5 Lack of Experts [05] 
6 Lack of client’s knowledge about the benefits [05],[08] 
7 Lack of a complete and standard Database on EE [01],[02],[04],[10] 
8 Information scarcity on EE intensities [02] 
 Financial Barriers  

9 Lack of access to financing sources [03],[05],[06],[08] 
10 High cost of alternative technologies [05],[07] 
11 Lack of access to information on funds [03] 

 Market Barriers  
12 Lack of energy-saving technical evaluation system [03] 
13 Lack of market of energy service systems  [03],[05] 
14 Lack of investors in energy-efficient products  [03],[05] 
15 Lack of appropriate production technologies [05] 
16 Lack of market transparency  [07] 

 Social Barriers  
17 Lack of public awareness [03],[05] 
18 Lifestyle, culture, and behavior of clients [03],[05] 
19 Less priority is given to energy efficiency in buildings [05] 
20 Not having interested in future costs [05] 

Source: [01]-(Marzouk and Elshaboury, 2022), [02]-(Wu et al., 2015), [03]-(Zhang and Wang, 2013), [04]-(Omrany 
et al., 2020), [05]-(Addy, Adinyira and Koranteng, 2014), [06]-(Painuly et al., 2003), [07]-(Qian, Wu and Chan, 
2006), [08]-(Yik and Lee, 2002), [09]-(Dixit, 2019), [10]- (Ding, 2004) 

 
3.6. MEASURES TO OVERCOME THE BARRIERS TO THE REDUCTION OF EMBODIED ENERGY  
As depicted in Table 3, the lack of a standard method, incomplete system boundaries, and lack of a standard database 
are highlighted by many researchers as barriers to analyzing EE which could directly affect for reduction of EE. 
Overcoming these barriers would involve developing a protocol, standard or correct method for EE calculations, and 
establishing a robust database (Pullen et al., 2006; Crawford, 2008; Langston and Langston, 2008; Ramesh, Prakash 
and Shukla, 2010; Dixit et al., 2012). 
 

As there is currently no standardized methodology for accurately and comprehensively determining EE in 
buildings (Ding, 2004; Stephan, Crawford and Myttenaere, 2012), it is crucial to develop a standardized approach to 
measuring EE (Ting, 2006). Further, Dixit et al. (2010) emphasized the importance of standardizing the EE 
measurement process in buildings. 

 
The lack of complete system boundaries is also identified as a barrier, emphasizing the need to standardize the 

definition of system boundaries for EE calculations (Marzouk and Elshaboury, 2022). Furthermore, the development 
of building energy standards, policies, and regulatory frameworks is seen as a significant step toward the 
advancement of energy-efficient measures in many developed countries (Bodach, Lang and Auer, 2016). 

 
Another barrier identified in the literature is the lack of available and reliable data sources, leading research 

studies to use databases from other countries to calculate EE (Omrany et al., 2020). For instance, Stephan and Stephan 
(2014) used an Australian database to calculate the EE of a residential building in Lebanon, while Devi and 
Palaniappan (2014) used a European database to calculate the EE of a residential building in India. Therefore, the 
data source is an important parameter, its reliability, certainty, and transparency must be considered when 
calculating EE (Lenzen, 2000). 

 
3.7. CONCEPTUAL FRAMEWORK TO LOWER EMBODIED ENERGY IN BUILDINGS 
Through the literature survey, it became apparent that there is a pressing need to minimize EE consumption in 
buildings to create designs that prioritize energy efficiency. To lower EE buildings, it is crucial to establish a 
comprehensive framework that outlines practices to reduce EE in buildings, barriers towards, and measures to 
overcome those barriers. Figure 2 illustrates the conceptual framework developed to lower EE in buildings.  
 

A pivotal component of this research involved the identification of specific practices to reduce EE in buildings. 
Therefore, through the review of the literature, four (04) distinct categories of practices were identified. These 
practices, which focus on mitigating the impact of EE, were subsequently integrated into the conceptual framework 
under the designation of ‘practices to reduce the impact of embodied energy’ in the conceptual framework. In addition 
to identifying effective practices, this study also revealed six (06) categories of barriers to the reduction of EE in 



 
 

FARU Proceedings 2023  

35 

buildings. These barriers were thoughtfully incorporated into the conceptual framework as ‘barriers towards the 
reduction of embodied energy’. By acknowledging and addressing these obstacles, the framework aims to provide 
comprehensive guidance for lowering EE buildings. Lastly, the research identified specific measures that can be 
employed to overcome the identified barriers. These measures, which have been recognized as effective solutions, 
were encompassed within the conceptual framework as ‘measures to overcome barriers’. By incorporating these 
measures, the framework seeks to facilitate the successful implementation of EE reduction strategies in building 
design. 

 
Overall, this study presents a comprehensive conceptual framework that not only identifies practices to reduce 

EE in buildings but also addresses the barriers associated with such reductions. By incorporating measures to 
overcome these barriers, the framework offers valuable insights and guidance to promote the design for lowering EE 
in buildings. 
 

 
 

Figure 2, Framework to Lowering Embodied Energy in Buildings 

4. Conclusion 
 
Accordingly, the literature analysis first discusses the practices to reduce EE in buildings. Then, the discussion points 
out the barriers to the reduction of EE in buildings and a few strategies to overcome those barriers. Finally, a 
framework was developed based on literature findings as a preliminary framework to design low EE buildings.  

This research study basically contributes to the knowledge in terms of the reduction of EE in buildings. Further, 
the following key contributions to knowledge are made through this research study. 

 
• A detailed literature review on the concepts of EE was presented by referring to previous research studies 

in a particular area. 
• Since there was no detailed discussion on practices to reduce EE in buildings, barriers towards reduction 

of EE, and suitable measures to overcome those barriers, the findings of this study contribute to 
knowledge in that area. 

• Since there was no framework developed based on the reduction of EE in buildings, this study contributes 
to that area of knowledge. 
 

The outcome of the research would be beneficial for industry practitioners to design energy-efficient buildings by 
reducing EE at the design stage. Considering that important outcome, the following recommendations can be made. 

 
• As was highlighted, prior concern should be given to the reduction of EE, as same as the reduction of OE, 

industry practitioners are encouraged to give more prominence to reduce the EE in the building design 
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stage. Further, they are required to convince clients about the importance of moving towards the low EE 
buildings. 

• Industry practitioners are encouraged to follow the framework developed as guidance for lowering EE 
buildings since it identifies the key aspects of lowering EE buildings. 

•  
This research provides a preliminary analysis of literature focusing on practices to reduce EE in buildings globally. 

The next step in this research would be to conduct a detailed survey to determine the practices to reduce EE in 
buildings in Sri Lanka. 
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