Investigation of Effect of Human
Robot Interaction with Lower

Limb Exoskeletons

Marukku Devage Sanka Dileepa Chandrasiri

(178035N)

Thesis submitted in partial fulfillment of the requirements for the degree Master

of Science in Biomedical Engineering
Department of Mechanical Engineering

University of Moratuwa

Sri Lanka

November 2021



DECLARATION

I declare that this is my own work and this dissertation does not incorporate with-
out acknowledgement any material previously submitted for a Degree or Diploma
in any other University or institute of higher learning and to the best of my knowl-
edge and belief it does not contain any material previously published or written

by another person except where the acknowledgement is made in the text.

Also, I hereby grant to University of Moratuwa the non-exclusive right to repro-
duce and distribute my dissertation, in whole or in part in print, electronic or
other medium. I retain the right to use this content in whole or part in future

works (such as articles or books).

Signature: Date:

The above candidate has carried out research for the MSc thesis under my super-

vision.

Signature of the Supervisor(s): Date:

Prof. R.A.R.C Gopura
Professor,
Department of Mechanical Engineering,

University of Moratuwa, Sri Lanka.



Abstract

Continuous development of exoskeletons (wearable robots) is essential to enhance the
user experiences and performances of the wearable device. Therefore, it is necessary to
determine human ergonomics and the comfort levels of wearable robots. These aspects
can be analyzed by determining human-robot interaction (HRI). HRI is classified in
cognitive- HRI (cHRI) and physical-HRI (pHRI) in the literature. cHRI involves the
identification of complex human expression and physiological aspects. These pieces
of information can be observed using a human-robot cognitive interface. KElectroen-
cephalogram (EEG) and electromyography (EMG) are mainly used sensing methods
in cHRI. EEG is used to identify electrical activities of brain, while EMG is used to
identify electrical activities of muscles. Furthermore, pHRI involves evaluating phys-
ical quantities such as position, force, and pressure between humans and robots. In
order to identify pHRI with wearable robotic interfaces, a novel surface muscle pressure
(SMP) sensory system was developed. The SMP sensor was calibrated and evaluated
using surface electromyography (SEMG ) data for two separates experimental scenarios.
Hence the system was proposed to determine the pHRI of wearable robotics.

In order to determine HRI, a dummy lower limb exoskeleton was designed and man-
ufactured in compliance with human ergonomics and biomechanics. The exoskeleton
consists of 8 degrees of freedom (DoF) motions with variable limbs and weight attach-
ment locations. Furthermore, sEMG, motion analysis, and SMP sensory systems were
used to carry out the experiments. Moreover, a human lower limb model simulation
with ground force reaction prediction was developed to determine the inverse dynamics.
The experiments were carried out without exoskeleton, with the exoskeleton, and with
exoskeleton weight attachments with six healthy subjects for the walking motion. A
qualitative, comfortable level analysis was carried out simultaneously for each experi-
ment. Captured SMP, sEMG, inverse dynamics and qualitative results were processed
and feature extracted to evaluate HRI for different weight distributions and attach-
ment locations. The relationship between exoskeleton attachments and locations was
observed. The experiment results have provided an improved understanding of HRI for
developing practical and ergonomically comfortable lower limb exoskeleton devices.

Keywords-Lower-limb Exoskeletons, Human-Robot Interaction, Electromyo-
graphy, Inverse Dynamics
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