TRANSFER LEARNING APPROCH FOR DETECTING COVID-19 USING CHEST X-RAY IMAGES

Muthunayakage Nimesha Asintha Muthunayake

209359G

M.Sc. in Computer Science

Department of Computer Science and Engineering Faculty of Engineering

> University of Moratuwa Sri Lanka

> > July 2022

TRANSFER LEARNING APPROCH FOR DETECTING COVID-19 USING CHEST X-RAY IMAGES

Muthunayakage Nimesha Asintha Muthunayake 209359G

Thesis/Dissertation submitted in partial fulfillment of the requirements for the degree of Master of Science in Computer Science

> Department of Computer Science and Engineering Faculty of Engineering

> > University of Moratuwa Sri Lanka

> > > July 2022

DECLARATION

I declare that this is my own work and this thesis does not incorporate without acknowledgement any material previously submitted for a Degree or Diploma in any other University or institute of higher learning and to the best of my knowledge and belief it does not contain any material previously published or written by another person except where the acknowledgement is made in the text. Also, I hereby grant to University of Moratuwa the non-exclusive right to reproduce and distribute my thesis, in whole or in part in print, electronic or other medium. I retain the right to use this content in whole or part in future works.

Signature:

Date:

The above candidate has carried out research for the Master's thesis under my supervision. I confirm that the declaration made above by the student is true and correct.

Name of the supervisor:

Signature of the supervisor:

Date:

ACKNOWLEDGEMENTS

I wish to express my sincere gratitude to my supervisor, Dr. Charith Chitraranjan, for his guidance and invaluable assistance in providing me with useful knowledge materials, advice, and supervision throughout this research work. His expertise and encouraging guidance enabled me to complete my work successfully.

I am indebted to my parents for their love and untired support throughout my life.

ABSTRACT

Due to the (COVOD-19 coronavirus, the entire world is undergoing a pandemic. Coronavirus 2 produces severe acute respiratory illness. This virus is discovered in December 2019 in China, Wuhan. As we are experiencing, the affected patients are expanding at a rapid rate. The World Health Organization (WHO) has recommended that testing be done as much as possible to recognize those who are affected and those who are carriers of this disease. However, the main issue here is the scarcity of COVID-19 testing kits and trained people to perform the testing in a pandemic situation. However, a lot of research was seeking workaround solutions for detecting the COVID-19. As a result of these projects, a few papers were polished for detecting the COVID-19 based on chest Xray scan images. However, most of the research has used vanilla CNN, which makes the test more reliable and convenient. But we have some practical issues in the application of traditional CNN. Basically, CNN is a supervised learning method, and it takes more time for the learning process. And in general, CNN works well for larger datasets. However, the chest X-ray images are limited in practice, we propose combining transfer learning and ensemble learning techniques to achieve excellent accuracy while spending the least amount of time possible on the entire learning process. This study mainly focuses on the CNN based pre-trained models such as DenseNet201, EfficientNetB7 and VGG16 for increasing the accuracy level of the model, which makes the test reliable and more trustworthy.

TABLE OF CONTENTS

DECLARATION	i
ACKNOWLEDGEMENTS	ii
ABSTRACT	iii
LIST OF FIGURES	vi
LIST OF TABLES	vii
LIST OF ABBREVIATIONS	viii
1. CHAPTER 1: INTRODUCTION	1
1.1 Background	1
1.2 How does the COVID-19 virus affect a person's lungs?	2
1.2.1 Acute Respiratory Distress Syndrome (ARDS)	3
1.2.2 Sepsis	5
1.3 Research Problem	7
1.4 Motivation	8
1.5 Research Objectives	9
1.6 Thesis Structure	
2. CHAPTER 2: LITERATURE REVIEW	10
2.1 Overview	10
2.2 Convolutional Neural Network	10
2.3 Transfer Learning	12
2.3.1 VGG16	
2.3.2 DenseNet201	
2.3.3 EfficientNetB7	15
2.4 Ensemble Learning	
3. CHAPTER3: METHODOLOGY AND IMPLEMENTATION	
3.1 Data Preprocessing	
3.1.1 Image Augmentation Techniques	
3.1.2 One-Hot-Encoding	
3.2 Model Training Procedure	
3.3 Label Smoothing	
3.4 Treating for Imbalanced Data	
3.5 Transfer Learning	

3.5.1 DenseNet201	22
3.5.2 EfficientNetB7	
3.5.3 VGG16	
3.5.4 Common System Architecture	28
3.6 Ensemble Learning	30
4. CHAPTER 4: EXPERIMENTAL ANALYSIS AND MODEL EVALUATION	31
4.1 Result and Analysis	31
4.1.1 Understanding Results through Class Activation Map (CAM)	
4.1.2 Understanding Results	32
5. CHAPTER 5: DISCUSSION AND CONCLUSION	
5.1 Discussion	39
5.2 Conclusion	40
5.3 Limitation	40
5.4 Future Works	41
REFERENCES	42

LIST OF FIGURES

Figure	Description	Page
Figure 0.1 Figure 0.2	COVID -19 Pneumonia Progression General Steps (ARDS) is a Condition in Which the Body's Respiratory System, the Images	12
Figure 0.2	Shows the Damages Done by ARDS to the Human Lungs [15]	12
Figure 0.3	Bilateral Reticular Opacities, Normal Human Vascular Pedicle Width	12
Figure 1.4	(a, b) A 20-year-old Woman with Invasive Pulmonary Aspergillosis had Soft Tissue Nodules Covered by the Ground Glass Opacity of the Lung on an Axial and Coronal HRCT.1.2.3 Viral Pneumonia	13
Figure 1.5	Chest X-rays Taken on Admission in an Affected Human Lungs with Round Pneumonia.	14
Figure 1.6	Images of Normal and Pneumonia Affected Human Lungs Taken Via X-ray. A Healthy Lung and a Pneumonic Lung are the Two Types of Lungs. White Infiltrates are Indicated by the Red Arrows in (b) [20].	15
Figure 0.4	High-level Block Diagram of the General Flow of the Learning Process [12]	19
Figure 2.2	Overall System Architecture for Convolutional Neural Network	19
Figure 2.3	Common Cascade Network Model Diagram for Transfer Learning Process [20]	21
Figure 2.4	Pre-Trained VGG16 Classification Model High-level Architecture	22
Figure 2.5	The Common Bocks Representation EfficientNets Architecture	24
Figure 2.6	Supper Imposed Sample Images for all Three Classes	26
Figure 0.5	X-ray Image sample after Data Augmentation	28
Figure 3.2	X-ray Test Data Set Sample After Data Preparation	28
Figure 3.3	High-level Model Network Architecture for DenseNet-201 [51]	31
Figure 3.4	The Model's Scaling Structure for EfficientNetB7 Model	33
Figure 3.5	The Pre-Trained VGG16 High-level Model Architecture with Layers	35
Figure 3.6	High Level Block Diagram for the Pretrained Model Training Process	37
Figure 3.7	Common System Design for the Pre-trained Deep Learning Model	37
Figure 3.8	Averaging Ensemble Flow Diagram with Based Models	38
Figure 4.1	Class Activation Map Images for the COVID-19 Test Sample	39
Figure 4.2	Accuracy, Val- Accuracy and Val- Loss Summary for Each Deep Learning Model	41
Figure 4.3	Confusion Matrix for DenseNet-201 Model	41
Figure 4.4	Performance Summary for DenseNet-201 Model	42
Figure 4.5	Sample Test Result for DenseNet-201 Model	42
Figure 4.6	Confusion Matrix for EfficientNet-B7 Model	43
Figure 4.7	Performance Summary for EfficientNet-B7 Model	43
Figure 0.8	Sample Test Result for EfficientNet-B7 Model	43
Figure 0.9	Confusion Matrix for VGG16 Model	44
Figure 4.10	Performance Summary for VGG16 Model	44
Figure 0.11	Sample Test Result for VGG16 Model	44

LIST OF TABLES

Table	Description	Page
Table 2.1	Accuracy Matrix for EfficientNet Family [30]	23
Table 3.1	Data set Distribution Among the class	26
Table 2.2	Table of Training Data Distribution by Class	29
Table 3.3	EfficientNet-B0 Baseline Network Summary Details [44]	33
Table 3.4	All EfficientNet Versions Performance Results for ImageNet Dataset [53]	34
Table 4.1	1 Model Accuracy and High-level Performance Summary	
Table 4.2	COVID-19 Ease Detection Performance Summary of Previous Studies Using	46
	Deep Learning	
Table 4.3	Model Accuracy, Precision, Recall and F1 Score Summary for All Three	46
	Modes	

LIST OF ABBREVIATIONS

Abbreviation Description

RNA	Ribonucleic Acid
PCR	Polymerase Chain Reaction
СТ	Computerized Tomography
RT-PCR	Reverse Transcription Polymerase Chain Reaction
ARDS	Acute Respiratory Distress Syndrome
CO2	Carbon Dioxide
O2	Oxygen
VGG16	Visual Geometry Group
ANN	Artificial Neural Network
ReLU	Rectified Linear Unit
FC	Fully Connected Layer
RESNET	Residential Energy Services Network
ANOVA	Analysis of Variance
ML	Machine Learning
NLP	Natural Language Processing
CAM	Class Activation Map