ASSESSMENT OF ENVIRONMENTAL PERFORMANCE OF MILLING MACHINING

K.P.M.Priyankara

188043V

Degree of Master of Science

Department of Mechanical Engineering

University of Moratuwa Sri Lanka

August 2022

ASSESSMENT OF ENVIRONMENTAL PERFORMANCE OF MILLING MACHINING

Kurukulasuriya Peter Manoj Priyankara

188043V

Thesis submitted in partial fulfillment of the requirements for the Degree Master of Science in Mechanical Engineering

Department of Mechanical Engineering

University of Moratuwa

Sri Lanka

August 2022

DECLARATION

I declare that this is my own work and this thesis does not incorporate without acknowledgment any material previously submitted for a Degree or Diploma in any other University or institute of higher learning and to the best of my knowledge and belief it does not contain any material previously published or written by another person except where the acknowledgment is made in the text.

Also, I hereby grant to University of Moratuwa the non-exclusive right to reproduce and distribute my thesis/dissertation, in whole or in part in print, electronic or other medium. I retain the right to use this content in whole or part in future works (such as articles or books).

Signature:

Date:

The above candidate has carried out research for the master's thesis under my supervision.

Name of the supervisor: Dr. J. R. Gamage

Signature of the supervisor:

Date:

ABSTRACT

The manufacturing industry largely contributes to the economy of a country. Thus, manufacturing by material removal processes leaves a significant environmental footprint. This is caused by the influence of process energy, resources, and releases. Due to that, increased attention on sustainable means of machining operations can be seen today. Thus, environmental sustainability assessments and preventive measures are being researched for promoting green manufacturing. In conventional machining, milling is a widely used machining method in the production and manufacturing industries. Thus, the purpose of this study is to assess the environmental performance of milling machining in an industrial setup.

A literature review is conducted to understand the requirement of empirical assessment on sustainable milling and to identify the factors contributing to environmental damage while identifying sustainable machining practices. To conduct the empirical assessments, an industrial milling operation is monitored. At the experiment stage, different consumables and releases are identified and monitored such as power consumption, workpiece material usage, tool material, and coolant while controlling the machining parameters and the tool path. Design of Experiments were used to efficiently manage the controllable machining parameters relevant to environmental performance. The contribution to the environmental damage is analysed and quantified according to the ReCiPe endpoint impact assessment method using SimaPro® (Version 8) life cycle assessment (LCA) software following the guidelines of ISO 14044.

The review revealed several factors that are significantly contributing to the environmental impact. Further, a number of operational level improvements were identified to improve the environmental performance. The results identified the electrical energy consumption and workpiece material usage as the most influencing contributing factors to the adverse environmental impact. Further, an operator's guide was also developed to harness the operational level savings to ensure the better environmental performance of milling.

Keywords: Sustainable machining; Environmental performance; Milling machining

ACKNOWLEDGEMENT

First of all, I would like to thank my supervisor, senior lecturer, Dr. J.R.Gamage for giving the necessary guidance and support to conduct this research. Also, I would like to be grateful for his kind dedication and encouragement over all the circumstances throughout the project.

I would like acknowledge the Senate Research grant to Committee (SRC/CAP/2018/04) for providing me with funds to purchase the data logger, and the SimaPro life cycle analysis software, and cover up my stipend. I would further like to express my gratitude to Mr. K. H. J. Mangala, the Director of Die & Mold Facilitation and Development Centre, University of Moratuwa for allowing me to use the facility for data collection. Moreover, I would like to especially thank Mr. I. M. J. Priyankara and the staff of the Die & Mold Facilitation and Development Centre for welcoming me and facilitating the use of required machinery with data collection setups.

Finally, I would like to extend my gratitude to my family, all the others who gave me support to complete my study, and the people of Sri Lanka for supporting the free education system.

LIST OF PUBLICATIONS

• Sustainable machining: Assessment of environmental performance of milling - 17th Global Conference on Sustainable Manufacturing (GCSM2019), Shanghai, China Published at *Elsevier*

(M. Kurukulasuriya, J. Gamage, and J. Mangala, "Sustainable machining: Assessment of environmental performance of milling," Procedia Manuf., vol. 43, pp. 455–462, 2020, [Online]. Available: https://www.sciencedirect.com/science/article/pii/S2351978920307745)

• A review on the impact of process energy on the environmental performance of milling –International conference of production and operational management society (POMS-2018), Kandy, Sri Lanka. Published at *IEEE Xplore*

(M. Kurukulasuriya, J. Gamage, and J. Mangala, "A review on the impact of process energy on the environmental performance of milling," 2018 Int. Conf. Prod. Oper. Manag. Soc. POMS 2018, pp. 1–6, 2019, [Online]. Available: https://ieeexplore.ieee.org/abstract/document/8629490)

TABLE OF CONTENTS

	Page
DECLARATION	i
ABSTRACT	ii
ACKNOWLEDGEMENT	iii
LIST OF PUBLICATIONS	iv
TABLE OF CONTENTS	V
LIST OF FIGURES	vii
LIST OF TABLES	viii
LIST OF ABBREVIATIONS	ix
LIST OF APPENDICES	Х
1. INTRODUCTION	1
1.1 Research aim and objectives	2
1.2 Thesis structure	2
1.3 Study preface	3
2. LITERATURE REVIEW	4
2.1 Background	4
2.2 Factors affecting the environmental impact	5
2.3 Environmental impact of manufacturing	6
2.4 Environmental impact of modern metal cutting techniques	7
2.5 Environmental impact of milling machining	9
2.6 Conclusion of the literature and research gap	14
3. METHODOLOGY	16
3.1 Research design	16
3.2 Review method	18
3.3 Design of experiments	19

	3.3.1	Experimentation process	19
	3.3.2	Control parameters and parameter levels	20
	3.3.3	Taguchi L9 orthogonal array	21
,	3.4	Data acquisition	21
4.	EXP	ERIMENTATION AND DATA ANALYSIS	23
2	4.1	Environmental performance analysis	23
	4.1.1	Goal and scope	23
	4.1.2	Life cycle inventory analysis	24
5.	RES	ULTS AND DISCUSSION	28
	5.1	Life cycle impact assessment	28
	5.1.1	Parameter setup with low environmental impact	32
	5.2	Operator's guide for eco-friendly CNC milling machining	33
6.	CON	ICLUSION	37
(5.1	Limitations	38
(5.2	Contribution to the knowledge and practice	38
(5.3	Further research areas	38
REFERENCES		40	
Ap	pendix	A: First experiment design	51
Appendix B: Sample of questionnaire feedback 5		56	
Ap	pendix	C: Training program _ GHG assertion	58
Ap	Appendix D: Calculations for final experiment design59		59
Ap	Appendix E: sample CNC program (considering the expt. number 5)63		63
Appendix F: Specifications for three phase current data logger7070			
Appendix G: Accepted abstract of 18 th Global Conference of Sustainable Manufacturing - 2022			ing 72
Ар	pendix	H: Patterns of power consumption during milling operations	73

LIST OF FIGURES

P	age
Figure 2.1: Global energy-related CO ₂ (Gigatons) emissions [5]	5
Figure 3.1: Research design	16
Figure 3.2: (a) Actual part to be machined; (b) Considered part features for the str	udy 19
Figure 4.1: Phases of an LCA	23
<i>Figure 4.2:</i> (a) Energy data logger connection; (b) Current probe looping at supply end	the 25
Figure 5.1: Comparison of the impact of nine experiments	29
<i>Figure 5.2:</i> Tree diagram showing the composition of environmental impact industrial parameter setup	for 30
Figure 5.3: Endpoint analysis Impact assessment of industrial parameter setup	31
Figure 5.4: Endpoint analysis Impact assessment of nine experiment setups	31

LIST OF TABLES

Page

Table 2.1. Energy models used in milling	10
Table 3.1: Parameter levels	20
Table 3.2: Experimental setup	21
Table 4.1: Electrical energy inputs	25
Table 4.2: Consumables and releases	27
Table 5.1: Damage assessment outputs for nine experiment setups	28
Table 5.2: Parameter setup with minimum environmental impact experiment setups	through 9 32

LIST OF ABBREVIATIONS

Abbreviation Description

LCA	Life Cycle Analysis
Rc	Rough Cut by End Milling
Fi	Finishing by End Milling
Dg	Drilling
Но	End Milling of a Hole
Re	Reaming
MQL	Minimum Quantity Lubrication
MQCL	Minimum Quantity Cooled Lubrication
Al_2O_3	Aluminium Oxide
Expt.	Experiment
wt%	Percentage by Weight

LIST OF APPENDICES

Appendix	Description	Page
Appendix A	First experiment design	52
Appendix B	Sample of questionnaire feedback	57
Appendix C	Training program _ GHG assertion	59
Appendix D	Calculations for final experiment design	60
Appendix E	Sample CNC program (considering the experiment number 05)	64
Appendix F	Specifications for three phase current data logger	71
Appendix G	Accepted abstract of 18th global conference of susta	inable
manufacturing	g - 2022	73
Appendix H	Patterns of power consumption during milling operations	74