STRUCTURAL BEHAVIOR OF DOUBLY CURVED SHELL STRUCTURE CONSTRUCTED WITH MUD-CONCRETE

Rohantha Rukshan Jayasinghe

198135N

Thesis submitted in partial fulfillment of the requirements for the degree Master of Science

Department of Civil Engineering

University of Moratuwa Sri Lanka

February 2022

DECLARATION

I declare that this is my own work and this thesis does not incorporate without acknowledgement any material previously submitted for a degree or Diploma in any other University or institute of higher learning and to the best of my knowledge and belief it does not contain any material previously published or written by another person except where the acknowledgement is made in the text.

Also, I hereby grant to University of Moratuwa the non-exclusive right to reproduce and distribute my thesis/dissertation, in whole or in part in print, electronic or other medium. I retain the right to use this content in whole or part in future works (such as articles or books).

Signature:

Date:

Date:

Date:

The above candidate has carried out research for the Masters under my supervision.

Name of the Supervisor: Prof. R.U.Halwatura

Signature of the supervisor:

Name of the Supervisor: Eng. K.I.U.Nanayakkara

Signature of the supervisor:

Name of the Supervisor: Dr. Rizna Arooz

Signature of the supervisor: UOM Verified Signature D.

UOM Verified Signature

Date: 22/02/2022

Abstract

Embodied carbon emissions have been overlooked in the past few decades. As such, today, the building sector is responsible for 38% of all carbon emissions in the world greenhouse gas emissions. To overcome the climate crisis, sustainable construction practices, reducing reliance on carbon insensitive raw materials usage and net-zero carbon standards are being implemented across the globe. Building with earthen materials becomes a focal point in sustainable building design practices since its an environmentally friendly construction practice. Although there are several earth-based modern construction techniques for walling available in Sri Lanka (such as rammed earth, mud-concrete), no reliable technique is developed or adopted as a slab system. Most of the recent earthen constructions are either single-storied or use concrete as their slab system. Thus, the earthen slab system would be a huge step towards a structure entirely made of earthen materials.

Here, it is attempted to identify the structural behavior of the doubly curved shell structure using Finite Element Analysis (FEA) and the possibility of constructing an earthen slab system using Mud-concrete. It was identified that nearly 50% of cost reduction can be expected when compared with the reinforced concrete slab systems. A 1m x1m prototype Mud-concrete slab was constructed to check the potential for modular construction practice with a square footprint. The masonry mould method was used as the formwork system by considering the ease of the construction. Shell thickness of 50mm is the primary structural component, while the non-structural filling of 50mm from apex was used with the Mud-concrete mixture used as a flat floor surface.

Key words: Doubly curved shells, Mud-concrete, Sustainable, Vault structures

DEDICATION

This dissertation is dedicated to my loving parents.

For their endless love, support and encouragement

ACKNOWLEDGEMENTS

My work towards a Master of Science Degree and this thesis would not have been successful if not for the guidance and support from many individuals who devoted their time and resources towards the success of this project.

I am very much thankful to my research supervisors, Prof. Rangika Halwatura, Eng. Isuru Nanayakkara and Dr. Rizna Arooz for their continues guidance and support throughout the research project. If not for their guidance and motivations this research project would not have gotten so far.

The research work included an extensive literature survey and study of historical earthen structures. I owe much to the long list of researchers who shared their work in various ways, including on ResearchGate® platform. The assistance provided by Dr. Will Hawkins in sharing his research results and providing clarifications is specially appreciated.

Prof. Kumari Gamage and Dr. Kasun Nandapala of the progress review committee and the fellow research assistants at Pro-Green Laboratory, Department of Civil Engineering of University of Moratuwa are acknowledged for their critical comments which were useful in refining and guiding the work towards a successful outcome.

The research work was partially funded by a short-term grant (SRC/ST/2020/21) from the Senate Research Committee of the University of Moratuwa.

Finally, I owe a huge debt of gratitude to my parents for believing in my work and supporting me in various ways, including financial assistance when needed.

TABLE OF CONTENT

Abstract	ii
Dedication	iii
Acknowledgements	iv
Table of content	v
List of figures	viii
List of tables	xi
List of abbreviations	xi
List of appendices	xi
1 Introduction	1
1.1 Aims and objectives	1
1.2 Dissertation structure	2
2 Literature review	3
2.1 Impact of the construction sector to the climate change	3
2.2 Earthen constructions as a sustainable design	3
2.3 Development in earthen materials	4
2.4 Challenges for modern earthen construction	7
2.5 Possibility of constructing a slab system using earthen material	s 8
2.6 Approach to shell structures	10
2.6.1 Gaussian curvature of a shell structure	10
2.7 Form finding methods	11
2.7.1 Line of thrust	12
2.7.2 Hanging chain method	12
2.7.3 Graphic Static Method	14
2.7.4 Finite Element Method (FEM)	14
2.7.5 Thrust Network Analysis	15

2.7.6	Grid patterns	15
2.8 M	aterials for the construction of shells and vaults	16
2.8.1	Reinforced Concrete	17
2.8.2	Textile Reinforced Concrete (TRC)	18
2.8.3	Thin tiles	18
2.8.4	Mud-Concrete (MC)	20
2.9 Su	immary for the literature review	22
3 Devel	opment of the thin shell slab system	23
3.1 In	troduction	23
3.2 Fo	orm and form development	23
3.2.1	Requirement of reinforcement	24
3.2.2	Floor leveling	24
3.3 St	ructural analysis	24
3.3.1	Structural requirement	25
3.3.2	Form finding- generating coordinate system for funicular shell	25
3.3.3	Materials characterization	25
3.3.4	Parameter 1- define grid pattern and grid spacing	27
3.3.5	Parameter 2- selecting shell thickness	28
3.3.6	Analysis for load cases	29
3.3.7	Analysis for concentrated live loading	32
3.3.8	Lateral thrust distribution at the supports	35
3.4 Co	onstruction	39
3.4.1	Preliminaries (wall/beam setup)	39
3.4.2	Formwork design and construction	40
3.4.3	Material preparation	41

3.4.4	Required soil proportions for the construction	42
3.4.5	Summary of the construction process	43
3.4.6	Curing & decentring of formwork	44
3.5 M	aterial testing - tensile strength of Mud-Concrete	45
3.5.1	Sample preparation	45
3.5.2	Sample testing	46
3.6 St	rength evaluation of the slab system with physical load test	47
3.6.1	Load arrangement for physical load test	47
3.6.2	Load intensity for the physical load testing	48
3.6.3	Loading procedure	48
3.6.4	Results	49
3.6.5	Discussion of results	49
3.7 Su	mmary, findings and conclusions	49
4 Enviro	nmental and economic performance	51
4.1 Ba	asis for calculation (small scale to actual scale cost prediction)	51
4.2 Co	ost summary for proposed method	51
4.3 Er	nbodied energy calculation for the proposed method	52
4.4 Su	mmary, findings and conclusions	53
5 Conclu	usions & recomandations	54
References		56
Appendix A	λ	60
Appendix E	3	63
Appendix C		64

LIST OF FIGURES

Figure 2-1: Distribution of earthen construction throughout the world	5
Figure 2-2: Vaults of Ramasseum, in Egypt- build in 1300 BC	5
Figure 2-3: Tabo Monastery made of adobes in Spiti valley, India – built in 99	96 AD 6
Figure 2-4: Ksar of Aït-Ben-Haddou made of clay bricks in Morocco- build in	n 1100
BC	6
Figure 2-5: Central Market in Koudougou in Burkina Faso	7
Figure 2-6: SUDU housing prototype in Ethiopia	8
Figure 2-7: "Brick-o-Topia", The Thin-Tile Vaulted Pavilion	8
Figure 2-8: Structural efficiency increases through the arching effect	9
Figure 2-9: Catalan vault inspired earthen slab system	9
Figure 2-10: Sydney opera house in Australia	10
Figure 2-11: Dalian shell museum in China	10
Figure 2-12: Types of gaussian curvatures	11
Figure 2-13: Minimum and maximum thrust in arch section	12
Figure 2-14: Heinz Isler's hanging cloths method	13
Figure 2-15: Hanging chain with weights applied to the chain and its inverted	form
and with thrust line through the curve	13
Figure 2-16: Graphic static method	14
Figure 2-17: (i) Possible collapse due to the tension forces and (ii) possible sa	fe
thrust network analysis	15
Figure 2-18: Grid patterns; (a) Geometrical grid patterns and (b) Topology pa	tterns16
Figure 2-19: Highway service area Deitingen south, triangle concrete cupola r	oofs,
Switzerland, 1968- Heinz Isler	17
Figure 2-20: Los Manantiales Restaurant, Xochimilco, Mexico, 1958-Félix Ca	andela
	17
Figure 2-21: Close view of the Textile Reinforced Concrete (TRC)	18
Figure 2-22: Experimental CSEB Catalan vault with clay mortar	19
Figure 2-23: Mapungubwe national park centre in South Africa	20
Figure 2-24: Difference between Concrete and Mud-Concrete mixture	20

Figure 3-1: Surface typology; (i) flat surface, (ii) singly-curved surface, (iii)	
conically shaped surface, (iv) doubly-curved surface and (v) freeform	m
surface	23
Figure 3-2: Cross section of the proposed slab system illustrating shell and ballast	
loading	24
Figure 3-3: Parametric definition for the shell structure	25
Figure 3-4: Funicular shell with ballast loading	26
Figure 3-5: Rectangular shape grid of the shell	27
Figure 3-6: Shell terminology	29
Figure 3-7: Stress distribution across the 3m x 3m shell at the design loading for e	each
live loading patterns while live load of 2kN/m ² outlined in bold	30
Figure 3-8: Stress distribution across the 6m x 3m shell at the design loading for e	each
live loading patterns while live load of 2kN/m ² outlined in bold	31
Figure 3-9: Tensile stress distribution of 3m x 3m vault, when the concentrated po	oint
load of 2kN acting on each grid point	33
Figure 3-10: Compressive stress distribution of 3m x 3m vault, when the	
concentrated point load of 2kN acting on each grid point	33
Figure 3-11: Tensile stress distribution of 6m x 3m vault, when the concentrated	
point load of 2kN acting on each grid point	34
Figure 3-12: Compressive stress distribution of 6m x 3m vault, when the	
concentrated point load of 2kN acting on each grid point	34
Figure 3-13: Horizontal stress (thrust) distribution of 3m x 3m vault at the support	ts36
Figure 3-14: Vertical stress (thrust) distribution of 3m x 3m vault at the supports	36
Figure 3-15: Horizontal stress (thrust) distribution of 6m x 3m vault at the suppor	ts
(Long span)	37
Figure 3-16: Vertical stress (thrust) distribution of 6m x 3m vault at the supports	
(Long span)	37
Figure 3-17: Horizontal stress (thrust) distribution of 6m x 3m vault at the suppor	ts
(Short span)	38
Figure 3-18: Vertical stress (thrust) distribution of 6m x 3m vault at the supports	
(Short span)	38
Figure 3-19: Detailed drawing for the wall and beam setup	39

Figure 3-20: Setting out & construction of wall segments	40
Figure 3-21: (i) Waffle type steel formwork & (ii) Plywood formwork	40
Figure 3-22: Arch shaped segments fixed to the formwork to get the desired shape	41
Figure 3-23: Finished surface with cement mortar	41
Figure 3-24: Collected soil samples	41
Figure 3-25: Soil proportions for the mixture	42
Figure 3-26: Use of opposing wedges to tension the strut in position	43
Figure 3-27: Construction sequence for the doubly curved shell structure	44
Figure 3-28: (i) Completed earthen thin shell slab system & (ii) underside of the sla	ab
after erecting the formwork	45
Figure 3-29: Split tensile test shows (i) before the load applied to the specimen and	l
(ii) initial crack formation along the axis	46
Figure 3-30: Loading procedure for the prototype	48

LIST OF TABLES

Table 2-1: Mud-Concrete mix design for load bearing walls	21
Table 3-1: Suitable grid spacing for 3m x 3m shell structure	28
Table 3-2: Identifying suitable shell thicknesses for shell structures	28
Table 3-3: Load case analysis for 3m x 3m shell with ballast loading	32
Table 3-4: Load case analysis for 6m x 3m shell with ballast loading	32
Table 3-5: Observation and test results of the tensile splitting test	47
Table 4-1: Cost comparison for three different slab systems	51
Table 4-2: Embodied energy calculations for three different slab systems	52

LIST OF ABBREVIATIONS

Abbreviations	Description
AD	Anno Domini
BC	Before Christ
FEA	Finite Element Analysis
FEM	Finite Element Method
LC	Load Case
MC	Mud Concrete
TNA	Thrust Network Analysis
TRC	Textile Reinforced Concrete
SDG	Sustainable Development Goals

LIST OF APPENDICES

Appendix A	Complete analysis data for 1mx1m slab system	60
Appendix B	Sieve analysis for soil samples	63
Appendix C	Structural analysis data	64