
DEVELOPMENT OF A MATHEMATICAL MODEL
TO RELATE THE AGEING PARAMETERS TO
HARDNESS AND TENSILE STRENGTH OF AL

6063 ALLOY

Selvarathinam Sivanujan

218010G

Master of Science (Major Component of Research)

Department of Materials Science and Engineering
Faculty of Engineering

University of Moratuwa
Sri Lanka

August 2023



2



DEVELOPMENT OF A MATHEMATICAL MODEL
TO RELATE THE AGEING PARAMETERS TO
HARDNESS AND TENSILE STRENGTH OF AL

6063 ALLOY

Selvarathinam Sivanujan

218010G

Thesis submitted in partial fulfillment of the requirements for the degree
Master of Science (Major Component of Research)

Department of Materials Science and Engineering
Faculty of Engineering

University of Moratuwa
Sri Lanka

August 2023



DECLARATION

I declare that this is my own work and this Thesis does not incorporate without ac-
knowledgement any material previously submitted for a Degree or Diploma in any
other University or Institute of higher learning and to the best of my knowledge and
belief it does not contain any material previously published or written by another per-
son except where the acknowledgement is made in the text. I retain the right to use
this content in whole or part in future works (such as articles or books).

Signature: Date:

The above candidate has carried out research for the Master of Science (Major Com-
ponent of Research) Thesis under my supervision. I confirm that the declaration made
above by the student is true and correct.

Name of Supervisor: Dr. GIP De Silva

Signature of the Supervisor: Date:

i

30/08/2023

HP
Typewriter
30/08/2023 



ii



ACKNOWLEDGEMENT

This work is not achieved only by myself, there are support of individuals and groups,
even though a word was a strength towards full filling my research objectives. I wish
to acknowledge all of them who helped me in completing this work successfully. First
and foremost, I would like to express my heartiest gratitude with respect to my su-
pervisor Dr. G.I.P. De Silva. He provided me with a great opportunity to join with
this research project and has given all the direction, encouragement and guidance to
achieve the goal throughout the entire period to accomplish my objectives. His con-
structive feedback and advice from the start to end improved my research ability and
professional skills.

I would like to express my deepest gratitude to Dr. (Mrs.) S.C. Mathugama from
Institute of Technology University of Moratuwa for her guidance and support in the
objective of development of mathematical model. Also, I would like to thank Prof. M.
Narayana and Prof. A.S. Galhenage for their immense support and academic encour-
agements throughout the evaluation procedure. Next, I would like to thank SRC grant
committee for the funding assistance and Alumex for providing Al 6063 samples for
research works.

Further, I would like to thank Mr. V. Sivahar/ Head of Department, all academic
and nonacademic staff of department of materials science and engineering, University
of Moratuwa for supporting me to conduct my research works in a better academic
environment. Also, I would like to thank all of my fellow research assistants who were
always there with me providing me a friendly and smooth platform to carry out this
research project in a successful manner. Lastly, I convey my love and gratitude to my
parents for their constant support in the every moment of my life.

iii



iv



ABSTRACT

Deformations, failures, and the wearing-off effect are common in Al 6063 structures
due to their low strength and hardness, respectively. Industries have age-hardened
Al 6063 alloy to improve its properties to a specified level depending on the compo-
nents being produced. Industries do trials before production and check to see if the
product has achieved its required levels of properties. This trial-and-error method is
time-consuming, and further, it is not acceptable from an engineering perspective. For
this reason, industries are looking for a model that will provide an accurate prediction
of the hardness and tensile strength for the parameters associated with aging.

In this research, a mathematical model was developed to predict the most efficient
combination of aging parameters to achieve the required tensile strength and hardness
of Al 6063. The model was developed based on the experimental tensile strength and
hardness values for the 25 combinations obtained by varying aging time and temper-
ature at five levels. Tensile strength and hardness were measured using the universal
tensile testing machine and the Vickers hardness tester, respectively. Further, the model
was developed using the SPSS statistical software and validated with data sets obtained
from the literature. For the purpose of finding the most efficient combination of tensile
strength and hardness, the model was developed as a computer program based on the
Python programming language.

In addition to the development of the model, the influence of precipitate size distri-
bution on the tensile strength and hardness variation of Al 6063 alloy with aging tem-
perature and time was investigated. Micro-structures were observed, and precipitate
types were identified using a scanning electron microscope and an energy dispersive
spectrometer (SEM/EDS). The precipitate size distribution was determined based on
SEM images using MIPAR image analysis software. Beyond the peak age stage, a
significant increase in the percentage of precipitates larger than 1.5 µm and a decrease
in the percentage of precipitates smaller than 0.75 µm were accompanied by a decrease
in tensile strength and hardness.

Keywords: aluminum 6063, age hardening, hardness, tensile strength, precipitate size distri-

bution, mathematical modeling
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