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ABSTRACT

An accurate and reliable arrival time prediction of buses to the next bus stops is a valu-
able tool for both passengers and operators. Existing studies have some limitations in
bus travel time prediction. They focus little on three aspects such as heterogeneous
traffic flow conditions, dwell time prediction and interpretation of explanatory vari-
ables. Consequently, we break down the prediction problem into sub-models for run-
ning times and dwell time prediction and incorporate a feature engineering framework
that generates features related to the running bus, the prediction day, and immediate
and long historical time variations to capture heterogeneous traffic conditions. We pro-
pose a multi-model stacked generalisation ensemble model by leveraging the advan-
tages of best-performing models in homogeneous conditions such as Extreme Gradient
Boosting (XGBoost) and convolutional long short-term memory (ConvLSTM) mod-
els. It outperformed the state-of-the-art models by 11% in mean absolute error (MAE)
on average. It can predict extreme conditions in bus journeys more accurately.

Nevertheless, the input data for the machine learning model should be the histor-
ical travel times of the route. We proposed two simple novel algorithms to extract
bus trips and match bus stop sequences towards extracting dwell times and running
times from the raw crude GPS data generated at a medium sampling frequency of 15
seconds. Those algorithms incorporate various challenges like non-uniformity, poor
network coverage, discontinuities in streaming and skipping of bus stops. In addition,
we attempted to interpret the feature importance of the generated features. We found
insights like driver behaviour and the immediately preceding dwell time influence the
stopping pattern and the prediction model, which pave the way for strategic manage-
ment by authorities.

Keywords: Bus travel time prediction, Machine learning, Multi-model ensemble, Ensemble

Learning, GPS data processing, Heterogeneous traffic
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