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Abstract

Financial transactions have become a prominent part of the economy in the world. Over 1
billion transactions are being processed daily around the world and a considerable portion of
those transactions accounts for various fraudulent activities that take place around the world.
Terrorist Financing, Money Laundering are popular examples that generate fraudulent
transactions. Financial institutions are obligated to have the capability to detect such
transactions and perform necessary measures to mitigate and report the parties involved with
such fraudulent transactions. Several implementations exist that map the financial
transactions in the form linked/graph data and detect any anomalies using the structural
features of the graph such as PageRank, Degree Distribution, etc. However, these
implementations require the transactions to be executed in a single graph database and this
limits the capability to scale horizontally when the number of transactions increases. This
research proposes an extension to a C/C++ based distributed graph database server called
JasmineGraph that is capable of handling large amounts of graph data and performing
anomaly detection algorithms in a distributed manner. We generate Degree Distribution and
PageRank scores for the graph network in a distributed manner and use these graph structural
features to train a machine learning model for anomaly detection. Our distributed anomaly
detection approach has been able to predict anomalous transactions with an F1-score up to
0.98 and was able to reduce the execution time by 79.5% in comparison to the non
distributed approach when detecting anomalies. For large datasets (PaySim-2M), the non
distributed approach failed to process due to lack of memory but was successful after using
the distributed approach making it more efficient to use our distributed anomaly detection for
large financial transaction networks. As future work, we plan to expand our anomaly
detection approach on streaming graphs for real time anomaly detection.

Keywords: Graph Databases, Fraud Detection, Anti Money Laundering, Scalability,
System Performance
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