VOLTAGE CONTROL IN A TRANSMISSION SYSTEM AREA WITH HIGH RENEWABLE ENERGY PENETRATION CASE STUDY: CHUNNAKAM GRID SUBSTATION

Miyanakolathenna Hewage Priyankasiri Wijepala

(198660T)

Degree of Master of Science

Department of Electrical Engineering

University of Moratuwa Sri Lanka

February 2023

Voltage Control in a Transmission System Area with High Renewable Energy Penetration Case Study: Chunnakam Grid Substation

Miyanakolathenna Hewage Priyankasiri Wijepala

(198660T)

Dissertation submitted in partial fulfillment of the requirements for the Degree Master of Science

Department of Electrical Engineering

University of Moratuwa Sri Lanka

February 2023

DECLARATION PAGE OF THE CANDIDATE & SUPERVISOR

I declare that this is my own work and this thesis does not incorporate without acknowledgement any material previously submitted for a Degree or Diploma in any other University or institute of higher learning and to the best of my knowledge and belief it does not contain any material previously published or written by another person except where the acknowledgement is made in the text.

Also, I hereby grant to University of Moratuwa the non-exclusive right to reproduce and distribute my dissertation, in whole or in part in print, electronic or other medium. I retain the right to use this content in whole or part in future works (such as articles or books).

Signature:

Date:

The above candidate has carried out research for the Masters dissertation under my supervision.

Prof. Lidula N. Widanagama Arachchige

Date

ABSTRACT

The northern part of Sri Lanka has higher wind and solar penetration. Chunnakam and Kilinochchi grid substations are operating in that area, and they are connected to the national grid via a 132 kV double-circuit transmission line from New Anuradhapura to Chunnakam. The Ceylon Electricity Board (CEB) owned thermal power plant (Chunnakam thermal power plant – 8 MW×3) and several private wind plants are operating in the northern area, and those generation plants are connected to 33 kV distribution feeders of either Chunnakam or Kilinochchi grid substation.

Synchronous generators have been the main source of dynamic reactive power control in conventional power systems. However, the replacement of conventional power plants by inverter-based generation resources, such as wind power plants, has resulted in diminished dynamic reactive power reserve at the system level.

According to the CEB standards, acceptable high voltage variation under normal operating condition is, 5% from the rated voltage. During the peak period high voltage levels of the Chunnakam grid substation go below the acceptable limits due to the high demand and low wind power generation. To supply power at the required voltage, thermal power plants connected to the Chunnakam grid substation are operated during peak time. However, when demand increases, these thermal power plants are not sufficient to control the voltage levels.

On the other hand, during off-peak times, high voltage levels of the Chunnakam and Kilinochchi grid substations go over the acceptable limits due to the Ferranti effect. The current solution being practiced by the utility is to isolate one of the double-circuit transmission lines from New Anuradhapura to Chunnakam, and control the voltage levels by increasing transmission line losses. This is an inefficient voltage control mechanism.

In this research, a case study is carried out to develop a voltage control method for Chunnakam, Kilinochchi, and Vavuniya grid substations, and a voltage control scenario is developed based on the ten years forecasted demand and renewable distributed generation in those areas. Reactive power compensation by shunt capacitor and battery energy storage systems were the two main voltage control techniques that are considered for the study and the best solution for selected area transmission network was selected through a tech-economic evaluation

ACKNOWLEDGEMENT

I humbly express my gratitude to my supervisor Prof. (Ms.) Lidula N. Widanagama Arachchige for the guidance and encouragement throughout the research. I thank the academic staff of the department of Electrical Engineering, Faculty of Engineering, University of Moratuwa for their comments and support given to me during the presentations.

I am grateful to CEB management for allowing me to use the data of Northern transmission area. I would like to thank to Eng. Lakshitha Weerasinghe- DGM (Tra. Planning), Eng. Charith Kannangara – CE (System control Centre), Eng. Lathika Attanayaka - EE (Tra. Planning), Eng. Channa Kulasekara - EE (System Control Centre), for the support rendered by facilitating the technical data. Further, I would like to mention my M.Sc. colleagues for the support they have provided.

Finally, I would like to thank my wife, Thilini Sadamali, kids, Thisun, Chamath and parents for easing me from my family commitments to do the research and for the continuous encouragement.

TABLE OF CONTENTS

DECLAR	ATION PAGE OF THE CANDIDATE & SUPERVISOR	Ι
ABSTRA	CT	II
ACKNO	WLEDGEMENT	IV
LISTOF	FIGURES	VIII
LIST OF	TABLES	Х
ABBRIV	IATIONS	XII
CHAPTE	R 01	13
BACKG	ROUND	13
1.1.	Transmission network in northern part of Sri Lanka	13
1.2.	Present generation in northern part of Sri Lanka	14
1.3.	Future generation in Northern Province in Sri Lanka	16
1.4.	Problem Statement	16
1.5.	Objectives	17
1.6.	Scope	18
1.7.	Thesis Outline	18
CHAPTE	R 02	20
LITERA	ΓURE REVIEW	20
2.1.	Power system stability	20
2.1.1	. Voltage stability	21
2.1.2	. Examples of voltage instability	21
2.1.3	. Q-V analysis for voltage control	26
2.2.	Voltage regulation	27
2.2.1	. Operation mode of the inverters	28
Grid	feeding mode	28
Grid	following mode (grid supporting mode)	28
Grid	forming mode	28
CHAPTE	R 03	30
METHO	DOLOGY	30
3.1.	Step 01 - Identifying voltage problem	30

	3.2.	Step 02 -Literature survey on voltage control technique with h	igh
	distrib	uted generation	30
	3.3.	Step 03 –Data collection and analysis	30
	3.4.	Step 04 - Model the selected area network with PSSE and power fl	ow
	analys	is	31
	3.5.	Step 05 - Design a voltage control scenario	31
	3.6.	Step 06 - Size of the voltage control technique	31
	3.7.	Step 07 – Cost analysis	32
	3.8.	Step 08 – Techno-economic evaluation and conclusions.	32
CH	APTER	2 04	34
PO	WER F	LOW ANALYSIS OF THE SELECTED NETWORK	34
	4.1.	Modeling the selected network	34
	4.1.1.	Transmission lines	34
	4.1.2.	Grid Substations	35
	4.1.3.	Loads	36
	4.2.	Analysis	37
	4.2.1.	Validating the PSS/E power flow model	38
	4.2.2.	QV analysis	39
CH	APTER	2 05	42
OV	ER VO	LTAGE PROBLEM	42
	5.1.	Present practice	42
	5.2.	Transmission network development	43
	5.3.	Solution for over voltage problem	43
CH.	APTER	2 06	46
LO	W VOL	TAGE PROBLEM	46
	6.1.	Chunnakam and Kilinochchi grid low voltage	46
	6.2.	Transmission and generation development	48
	6.3.	Chunnakam thermal power as Synchronous condense	50
	6.4.	Inverter operation mode	51
	6.5.	Renewable generation at Pooneryn	52

C	CHAPTER	R 07	55
Ľ	DAY TIM	E VOLTAGE CONTROL	55
	7.1.	Day time low voltage problem.	55
	7.2. Day time voltage control with thermal power plant operate		
	7.3.	Day time voltage control with reactive power compensation	59
	7.4.	Day time voltage control with BESS	61
	7.5.	Voltage control with 2022–2031-day time forecasted demand	62
C	CHAPTER	R 08	65
Р	'EAK TIN	IE VOLTAGE CONTROL	65
	8.1.	Scenario 01: - Reactive power compensation with shunt capacitors	66
	8.1.1.	Reactive power requirement with forecasted demand	67
	8.1.2.	Thermal power plant operating cost	68
	8.2.	Scenario 02: - Thermal power plant operation with Reactive pow	ver
	compe	ensation	70
	8.2.1.	Reactive power requirements when the thermal power plant	is
	opera	tional	72
	8.2.2.	Time frame for thermal power plant operation with reactive pow	ver
	compe	ensation	73
	8.3.	Scenario 03: - Battery energy storage system (BESS) operation w	vith
	therm	al power plant.	75
	8.3.1.	Time frame for BESS operation with thermal power plant	78
	8.3.2.	BESS operation with Thermal power plant method benefit	79
C	CHAPTER	R 09	81
C	CONLUSI	ON	81
R	EFEREN	ICES	84

LISTOF FIGURES

Figure 1.1. Present transmission network in the northern area of Sri Lanka	13
Figure1.2Single line diagram of Chunnakam grid substation	14
Figure1.3Chunnakam grid feeder-11: wind generation variation	15
Figure 1.4Kilinochchi grid feeder-5: wind generation variation	15
	20
Figure 2.1Classification of power system stability	20
Figure 2.2Single line diagram of a two-bus system	21
Figure2.3Typical PV curve	25
Figure2.4Typical QV curve	27
Figure 3.1Seasonal and hourly energy production estimate in Pooneryn [1, Fig.7-6]	32
Figure4.1Northern part of Sri Lankan transmission network	34
Figure4.2PSS/E model of the selected network	37
Figure4.3Sample network data of buses	37
Figure4.4PSS/E model of the network by isolating one of the double circ	cuit
transmission lines	38
Figure4.5QV curve of Chunnakam bus	39
Figure 4.6 QV curves of the selected area 132 kV buses	41
Figure 5.1 Over voltage problem and present practice method.	42
Figure 5.2PSS/E model of the network at off peak demand	44
Figure 5.3 Voltages after simulation	45
Figure6. 1 PSS/E models of the network at the peak time demand	47
Figure 6. 2Power flow analysis result at the maximum wind generation level	47
Figure 6.3 Power flow analysis result at wind generation zero level	48
Figure6.4transmission network developments in northern area on 2030	49
Figure6.5Synchronous condenser capability curves	51
Figure6.6inverter reactive power capability curves	52
Figure6.7grid connected solar generation variation	53

Figure 6.8 grid connected wind generation variation over 24 hours54
Figure 7.1PSS/E model of the network and power flow results at minimum DG
condition at 2030 forecasted demand56
Figure7.2depicts PSS/E model of the network at day time demand and one thermal
plant operating condition 58
Figure 7.3PSS/E model - day time voltage control with reactive power compensation
by shunt capacitor 60
Figure 7.4 PSS/E model of the network transmission losses at 2030 demand conditions
61
Figure 7.5 model of the network with BESS on 2030-day time demand 62
Figure 8.1PSS/E model of the network at 2030 peak time demand condition 67
Figure8.2 PSS/E model - thermal power plant operated with reactive power
compensation 71
Figure8. 3time frames of thermal power plant operation with reactive power
compensation 74
Figure 8.4PSS/E model of the network with BESS operation with thermal power plant
76
Figure 8.5 Time frames for BESS operation with thermal power plant 78

LIST OF TABLES

Table1.1Base demand forecasted 2021 – 2032	18
Table4.1Existing transmission line parameters	35
Table4.2Kilinochchi – Pooneryn line parameters	35
Table4.3Grid substation transformer types and parameters	36
Table4.4Demand in Northern area grid substations	36
Table4.5Comparison of actual bus voltages with PSS/E simulated voltages	39
Table4.6 Reactive power injection vs. bus voltage	40
Table5.1 Transmission network development plan	43
Table6.1.Transmission and generation development	49
Table7.1forecasted day time demand	55
Table7.2power flow results at minimum DG condition for the forecasted deman	nd in
2030	56
Table7. 3 power flow results with and without operating thermal power plant	58
Table7. 4 Power flow results of 9.3 Mvar capacitor bank connected condition	60
Table7.5voltage control on 2022–2031-day time demand	63
Table8.1forecasted peak time demand	65
Table 8. 2Reactive power requirements and transmission losses with forecast der	nand
	67
Table 8.3thermal power plants operating cost in 2021 [12]	68
Table8.4 power flow results of the only thermal power plant operation and the the	ermal
power plant operation with a 4.4 Mvar capacitor bank	71
Table 8.5 Reactive power requirement and transmission losses on thermal power	plant
operation with reactive power compensation method	72
Table 8.6Peak time voltage control at the minimum DG condition by BESS oper	ation
with thermal power plant	77

Table9.	1Shunt capacit	or Vs. Batter	y energy stor	rage system	
---------	----------------	---------------	---------------	-------------	--

ABBRIVIATIONS

- CEB Ceylon Electricity Board
- BESS Battery Energy Storage System
- DG Distributed Generation
- MV Medium Voltage
- HV High Voltage
- LTGP Long Term Generation Plan
- SC Synchronous Condenser
- SVC Static VAR Compensator