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ABSTRACT

Phishing presents an ongoing and dynamic threat to Internet users, targeting personal and con-
fidential information. Existing anti-phishing solutions encounter challenges in keeping up with
the ever-changing nature of these attacks, leading to performance degradation over time. This
study aims to develop an autonomous anti-phishing solution that effectively counters evolving
phishing threats through continuous knowledge updates. To address the challenge of detecting
the latest phishing attacks, SmartiPhish, an autonomous anti-phishing solution with continu-
ous learning support, is proposed. Utilizing a quantitative research approach, data is collected
from trusted third parties at multiple time points to create a valid dataset. The primary out-
come is a reinforcement learning solution that leverages a novel deep learning model alongside
Alexa rank and community decisions. The innovative use of Graph Neural Networks in the
anti-phishing domain, combined with Long-term Recurrent Convolutional Networks, enables
SmartiPhish to estimate a website’s phishing probability using URL and HTML content fea-
tures. Additionally, the study addresses a crucial research gap by developing a reliable method
named PhishRepo for collecting and precisely labelling the latest phishing data. SmartiPhish
exhibits positive results, achieving a detection accuracy of 96.40%, an f1-score of 96.42%, and
an exceptionally low False Negative Rate (FNR) of 0.029. In real-world web environments,
the solution outperforms similar solutions and demonstrates enhanced effectiveness against
zero-day phishing attacks. Notably, the integration of continuous learning support facilitates
a significant 6% improvement in detection accuracy after six weeks. SmartiPhish’s adaptive
approach integrates a systematic knowledge acquisition process, enabling dynamic updates of
phishing detection features to counter the ever-evolving landscape of phishing attacks. The
findings highlight its potential in strengthening cybersecurity measures and provide practical
insights for dealing with phishing threats in today’s digital world. Continuously updating its
knowledge base, SmartiPhish stands as a strong defence, promising improved protection for

Internet users.

Keywords: Cyberattack, Deep learning, Graph neural networks, Internet security, Rein-
forcement learning
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