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ABSTRACT

Phishing presents an ongoing and dynamic threat to Internet users, targeting personal and con-

fidential information. Existing anti-phishing solutions encounter challenges in keeping up with

the ever-changing nature of these attacks, leading to performance degradation over time. This

study aims to develop an autonomous anti-phishing solution that effectively counters evolving

phishing threats through continuous knowledge updates. To address the challenge of detecting

the latest phishing attacks, SmartiPhish, an autonomous anti-phishing solution with continu-

ous learning support, is proposed. Utilizing a quantitative research approach, data is collected

from trusted third parties at multiple time points to create a valid dataset. The primary out-

come is a reinforcement learning solution that leverages a novel deep learning model alongside

Alexa rank and community decisions. The innovative use of Graph Neural Networks in the

anti-phishing domain, combined with Long-term Recurrent Convolutional Networks, enables

SmartiPhish to estimate a website’s phishing probability using URL and HTML content fea-

tures. Additionally, the study addresses a crucial research gap by developing a reliable method

named PhishRepo for collecting and precisely labelling the latest phishing data. SmartiPhish

exhibits positive results, achieving a detection accuracy of 96.40%, an f1-score of 96.42%, and

an exceptionally low False Negative Rate (FNR) of 0.029. In real-world web environments,

the solution outperforms similar solutions and demonstrates enhanced effectiveness against

zero-day phishing attacks. Notably, the integration of continuous learning support facilitates

a significant 6% improvement in detection accuracy after six weeks. SmartiPhish’s adaptive

approach integrates a systematic knowledge acquisition process, enabling dynamic updates of

phishing detection features to counter the ever-evolving landscape of phishing attacks. The

findings highlight its potential in strengthening cybersecurity measures and provide practical

insights for dealing with phishing threats in today’s digital world. Continuously updating its

knowledge base, SmartiPhish stands as a strong defence, promising improved protection for

Internet users.

Keywords: Cyberattack, Deep learning, Graph neural networks, Internet security, Rein-
forcement learning
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1 INTRODUCTION

1.1 Prolegomena

With the significant growth of Internet usage in the 21st century, people tend to rely

more on Internet-based services. They make relationships through social networks,

make payments through online banks, buy their needs and wants through online shops

and share trade secrets through cloud techniques. However, the Internet is a double-

edged sword where lawbreakers could also optimise its benefits to perpetrate their

illegal activities online effectively. One of such illicit activities is phishing, a fraud-

ulent attempt, usually made through email, to steal Internet users’ digital assets (i.e.,

personal and confidential information) (Alkhalil et al., 2021). Phishing is a cyber at-

tack that has relied on the Internet since 1996 (Alkhalil et al., 2021) and has gained a

top rank in the cyber threat landscape (ENISA, 2021). Phishing is known as ‘identity

theft’ since it impersonates one’s identity in cyberspace while illegally using digital

assets (Yu et al., 2008; Alkhalil et al., 2021). Therefore, many solutions (Khonji et

al., 2013; Jain & Gupta, 2017; Sahoo et al., 2017; Dou et al., 2017; Opara, Chen, &

Wei, 2020; Feng et al., 2020) were adopted over the years to minimise the impact of

phishing threat on Internet users and protect the Internet credibility.

However, there is a dearth of research regarding how the changing nature of phish-

ing should be adapted to phishing detection solutions when phishing detection features

and spoofing methods are rapidly and continuously evolving - for example, the intro-

duction of new Artificial Intelligence(AI)-based phishing kits. Therefore, this research

aims to develop an autonomous anti-phishing solution that can update the existing

phishing detection knowledge via a systematic knowledge acquisition process to re-

duce the impact of phishing attacks on Internet users. As a result, a solution named

SmartiPhish was proposed in the latter part of this study to achieve the study’s aim.
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This SmartiPhish is a novel phishing detection approach that recorded a 96.40% detec-

tion accuracy with a 0.029 FNR. It is more effective against zero-day phishing attacks

and recorded 16.65 seconds mean detection time during actual execution. SmartiPhish

used the systematic knowledge acquisition process effectively to increase its perfor-

mance by 6% within six weeks.

At the beginning of this dissertation, this chapter introduces the study by first dis-

cussing the background and context, followed by the research problem, aims, objec-

tives and questions, study’s scope, significance and limitations.

1.2 Background to the study

Phishing is a social engineering crime that leads a victim to a fake website to steal per-

sonal or confidential information (H. Huang et al., 2009; Alkhalil et al., 2021; APWG,

2021b). In simple terms, a phishing attack could be a website login page (i.e., Gmail

or PayPal Login) that is designed identical to the original website login page, directed

through an email link that appears to be trusted, where a victim is likely to enter his

valuables such as username, and password. Figure 1.1 shows two recent phishing at-

tacks that target famous businesses, PayPal and Wells Fargo.

(a) Fake PayPal web page (b) Fake Wells Fargo web page

Figure 1.1: Examples of recent phishing attacks
The first phishing attack (a) was captured on October 03, 2021, when accessing the https://
secure03login.com/Service/ web address. It tried to impersonate PayPal’s official sign-in web
page. The next, (b) impersonated the popular Wells Fargo website. It was captured on October 06,
2021, when accessing the https://cbahospitalar.com.br/002WG/well-fargo-RD528-detail/
web address.

According to the literature, the first phishing attack was reported in 1996, when it

stole the confidential information of America Online (AOL) account holders (Alkhalil
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et al., 2021; Gupta et al., 2016; Khonji et al., 2013). Since then, it has led to billions

of financial losses for Internet users, and it has become one of the most frequent types

of fraud activity on today’s Internet (Alkhalil et al., 2021; ENISA, 2020). Phishing

attacks are primarily motivated by financial benefits (Yu et al., 2008). However, fame

and notary are also considered interesting psychological motives behind phishing (Yu

et al., 2008).

Generally, the phishing process starts with a spoofed email (H. Huang et al., 2009;

Alkhalil et al., 2021), and the attacker tries different tactics to get the users into their

fake website. Figure 1.2 shows the typical phishing process, and those steps are further

described in the following:

1. The phisher finds a target and constructs a phishing website similar to the target.

2. The phisher finds a relevant audience and distributes the phishing Uniform Re-

source Locator (URL) through numerous spoofed emails.

3. The victim visits the available website URL in the email and enters his sensitive

information like username, password, and credit card number.

4. The victim’s collected information transmits to the phisher’s end.

5. The phisher uses the victim’s information on the target and gets some illegal

financial benefits.

Although phishing attacks have a typical information flow, the phishers constantly

absorb new technologies into their attacks. Therefore, the attacking methods or tech-

niques are continuously changing (Alkhalil et al., 2021). However, these phishing

techniques could be mainly categorised as deceptive phishing and technical subterfuge

(Alkhalil et al., 2021). Deceptive phishing is a social engineering-based approach

and mainly works in the human layer (Alkhalil et al., 2021). In contrast, technical

subterfuge-type attacks are in the technical layer and are always exploited through

technical vulnerabilities in victims’ environments (Khonji et al., 2013; Alkhalil et al.,

2021).
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Figure 1.2: Information flow of the typical phishing attack

Phishers generally start by identifying a target website. They then send a link to this website via email.
When the user clicks on the link, they are redirected to a fake or phishing website. The user unknowingly
enters their personal or confidential details on the fake website, and the phishers exploit this information
for malicious purposes.

Furthermore, deceptive phishing uses human psychological weaknesses, while tech-

nical subterfuge uses technological inadequacies. However, the more prominent one

is deceptive phishing, and it has different attacking techniques such as spoofed web-

site attacks, email-based attacks, phone-based attacks and social media-based attacks

(Alkhalil et al., 2021). Similarly, technical subterfuge also has different techniques

such as malware-based, Domain Name System (DNS)-based, content injection-based,

man-in-the-middle attacks, search engine-based, and URL and HyperText Markup

Language (HTML) obfuscation attacks (Alkhalil et al., 2021). These main techniques

also have different forms in the current phishing nature. For example, the malware-

based technique includes loggers (e.g., keyloggers), viruses, worms, spyware, adware,

ransomware, rootkits, session hijackers, web trojans, and data theft (Alkhalil et al.,

2021).

The number of phishing website attacks was at 150,000 limits per month in 2020

(APWG, 2021a, 2021b), whereas it was 1,609 in 2004 (Li et al., 2019). This shows

that the numbers are rising day by day. Recent studies have identified that the present

Coronavirus (COVID-19) pandemic worsened it by doubling the number of unique

phishing website attacks in 2020 compared to previous years, and the trend is continu-
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ing in 2021 as well (ENISA, 2020; APWG, 2021a, 2021b). This indicates that strong

countermeasures against phishing are more essential today than in the past to decline

the phishing threat to a controllable level.

However, during the past two and half decades, numerous efforts have been carried

out by academia and industry to minimise this prevalent Internet threat through detec-

tors (Khonji et al., 2013; Alkhalil et al., 2021). This results in various anti-phishing

solutions in the current phishing context. These solutions could be categorised mainly

under human education and software-based solutions (Khonji et al., 2013). Out of

these, software-based solutions seem to be effective since human education is con-

sidered a costly and impractical approach in the rapidly changing nature of phishing

(Khonji et al., 2013; Alkhalil et al., 2021).

Further, these software-based solutions are divided into four main categories based

on the approach. Those are list-based, rule-based, visual similarity, and machine learn-

ing (Khonji et al., 2013). List-based solutions are more popular and are the techniques

used by many modern browsers (e.g., Google Chrome and Firefox) today (Bell &

Komisarczuk, 2020). Although list-based solutions are fast and straightforward, they

would not be practical in today’s context since maintaining lists are not simple in an

environment that records more than 100,000 unique attacks per month.

However, the machine learning-based solutions have shown some success during

the past few years in terms of accuracy and learning ability over the others (Dou et

al., 2017; Bahnsen et al., 2017; Opara, Chen, & Wei, 2020; Feng et al., 2020). There-

fore, many of the current phishing detection interests are toward machine learning, and

representation techniques like deep learning are more famous in such cases (Yang et

al., 2019; Jain & Gupta, 2016; Opara, Chen, & Wei, 2020; Feng et al., 2020). The

main reason behind this trend is that deep learning could automatically extract es-

sential features from raw data, removing the costly interaction of expert users in the

knowledge-building and updating process (LeCun et al., 2015; Opara, Wei, & Chen,

2020).

Further, it is a better approach in the anti-phishing domain since phishing detec-

tion features are changing rapidly (e.g. Hypertext Transfer Protocol Secure (HTTPS)
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features lose their priority since many of today’s phishing attacks are using HTTPS)

in phishing nature. Then, the abstract level feature extraction of deep learning tech-

niques can effectively support having more prioritised features in the detection process.

Although machine learning is a good technique in phishing detection, it needs more

phishing examples in the learning process since data is the key for machine learning-

based studies (Aassal et al., 2020). It is again considered a challenge in the machine

learning-based anti-phishing domain since such data collection structures are not well

established in the current anti-phishing context (Sahoo et al., 2017; Aassal et al., 2020).

Therefore, the machine learning category has yet to be solved challenges when dealing

with the rapidly changing nature of phishing attacks.

1.3 Research problem

Phishing attacks are among the most successful cybercrime attacks (Alkhalil et al.,

2021). When controlling the impact of these attacks, phishing mitigation has been

considered the most successful strategy against these attacks, which mainly depends

on a successful phishing detection (Khonji et al., 2013; Alabdan, 2020; Alkhalil et al.,

2021). Therefore, phishing detection is critically important to protect the digital assets

of Internet users to have the credibility of information on the Internet (Alkhalil et al.,

2021; Khonji et al., 2013). Numerous studies have been introducing different phishing

detection approaches to mitigate phishing threats over the years (Teraguchi & Mitchell,

2004; Sheng et al., 2007; Prakash et al., 2010; Baslyman & Chiasson, 2016; Jain &

Gupta, 2016; Bahnsen et al., 2017; Li et al., 2019; Opara, Chen, & Wei, 2020; Feng et

al., 2020).

However, these studies primarily focused on developing anti-phishing solutions,

and less attention was paid to incorporating the newer phishing detection features,

which are essential against constantly changing phishing attacks (Sahoo et al., 2017;

Aassal et al., 2020). As a result, the performance of these anti-phishing solutions

is declining over time, and it has become a significant problem in the current anti-

phishing domain (Aassal et al., 2020; Opara, Wei, & Chen, 2020; Opara, Chen, &

Wei, 2020; Sánchez-Paniagua et al., 2020).
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1.4 Research aim, objectives and questions

Given the lack of research regarding a systematic way of incorporating the latest phish-

ing detection features into anti-phishing solutions, this research aims to develop an au-

tonomous anti-phishing solution that can update the existing phishing detection knowl-

edge via a systematic knowledge acquisition process to reduce the impact of phishing

attacks on the Internet users.

While this research aim covers the high-level context of the study, the following re-

search objectives focus on the specific things the study plan to complete when achiev-

ing this aim.

• RO1 – To identify the phishing detection features and detection techniques utilised

by the anti-phishing domain in effective phishing detection

• RO2 – To implement an effective anti-phishing solution by overcoming the iden-

tified phishing detection challenges

• RO3 – To incorporate an autonomous knowledge acquisition process to update

the existing knowledge of the phishing detection features to minimise the per-

formance loss over time

While the research objectives mentioned above describe the actions and the specific

things the study plan to achieve when completing this research, the following research

questions highlight the specific things this study should answer to achieve the study’s

aim.

• RQ1 – How can an effective anti-phishing solution be implemented while over-

coming the identified challenges?

• RQ2 – How can existing knowledge of phishing detection features be automati-

cally updated to minimise performance loss over time?

In the research questions mentioned above, the RQ1 supports achieving the RO2,

and RQ2 supports the RO2’s success. However, the RO1 mentioned above is primarily

dependent on the literature. Therefore, this study achieves the RO1 via a comprehen-

sive literature analysis.
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1.5 Scope of the study

Phishing attacks are mainly categorised under deceptive phishing and technical sub-

terfuge (Alkhalil et al., 2021). However, those two are different phishing levels, and

the more prominent one is deceptive phishing (Alkhalil et al., 2021). Therefore, this

study’s scope is limited to deceptive phishing types. Under deceptive phishing also,

there are different phishing techniques. These are spoofed website attacks, email-

based attacks, phone-based attacks, and social media attacks (Alkhalil et al., 2021).

However, this study scope is more toward spoofed website attacks since that is the

dominant technique in the current deceptive phishing context. Therefore, the study’s

primary focus is on developing an autonomous anti-phishing solution to detect spoofed

website attacks by considering spoofed website attacking characteristics, detection ap-

proaches, and challenges.

1.6 Significance of the study

This study will contribute to the anti-phishing domain by introducing a novel phishing

detection method with an automated knowledge acquisition process to update phishing

detection features over time. The proposed solution will help address the current short-

age of research in this area and provide a real-world approach that can minimise the

increasing phishing threat to have a more secure web in the future. Further, this study

makes the following contributions to the research field after the successful problem-

solving stage.

• An autonomous anti-phishing solution that can update the existing phishing de-

tection knowledge via a systematic knowledge acquisition process.

• A novel anti-phishing solution to detect phishing attacks using URL and HTML

content features.

• A novel approach to detect phishing attacks using HTML content analysis.

• A novel HTML page traverser which generates a Graph Neural Network (GNN)

compatible graph from a given HTML page.
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• A reinforcement learning-based collaborative phishing detection framework.

• An online phishing data repository uses to collect, validate, disseminate and

archive real-time phishing data.

• A large-scale, multi-modal phishing data in raw format could be used for future

research.

• A phishing-free web browser for safe browsing.

1.7 Limitations of the study

As with the many research studies, this study also includes some potential limitations

when solving the identified problem in the phishing domain. The following describes

those limitations on an abstract level.

• This study considered only the spoofed website attacks techniques when con-

structing the solution for the identified problem.

• The text/html content type HTML pages were only considered during the study.

• The significant phishing detection features used during the detection are not vis-

ible to the outside due to the used technique.

• Phishing detection features were updated only in three months, and optimal re-

training time was not assessed due to infrastructure and resource limitations.

• The RL environment of the proposed solution used a delayed feedback mecha-

nism due to the lack of resource limitations (i.e., human experts).

• This solution is built with the support of free Application Programming Interface

(API) services, and a shortage of those will interrupt the proposed solution.

• This solution is vulnerable to dynamic phishing attacks (i.e., tabnapping), which

could occur after loading the initial web page content.
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• This solution could not consider the actual location information during the web

browsing due its deployment architecture.

• This solution is only evaluated with a simulated environment due to the time

constraints and risk factors (i.e., the sensitivity of phishing attacks) associated

with the study.

• This solution is only tested for one type of adversarial attack called adversarial

inputs in a controlled environment based on certain assumptions, and other types

such as data poisoning and privacy attacks are not being tested.

• This solution needs a high-performance computer for successful execution since

it uses high-end deep learning algorithms like Graph Convolutional Networks

(GCN).

1.8 Structural outline of the dissertation

• Chapter 1 introduces the background and context of the study, followed by the

research problem, aims, objectives and questions, study’s scope, significance and

limitations.

• Chapter 2 gives a broader view of phishing attacks by first discussing the defini-

tion of phishing and its history, followed by phishing motives, medium, process,

types and techniques, mitigation, and the current state.

• Chapter 3 gives a critical review of literature on phishing attack detection under

several subheadings: data collection and labelling, feature selection and engi-

neering, existing detection techniques, performance evaluation, and the present

challenges in phishing detection. After reviewing the literature, the latter part of

this chapter identifies the research problem.

• Chapter 4 focuses on the research methodology and explains how the men-

tioned aim was achieved in a research context by discussing the research design,

solution implementation, and methodological limitations.
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• Chapter 5 introduces phase one of the proposed implementation process, a novel

phishing detection approach that uses URL and HTML features. It further dis-

cusses data collection and preprocessing, model training, and evaluation steps,

followed by a result and discussion section that highlights the effectiveness of

the proposed approach.

• Chapter 6 discusses phase two of the implementation process, a novel phishing

detection framework that has the flexibility to use a different set of phishing

detection features. This chapter also consists of data collection, preprocessing,

training, and evaluation steps followed by a result and discussion section.

• Chapter 7 introduces PhishRepo solution, a core component of the knowledge

acquisition process. It is a generalised solution to collect phishing data and is the

leading labelling agent of the proposed solution. This chapter discusses its im-

plementation under several sub-topics, followed by a diversity and effectiveness

analysis to show the importance of the implemented solution.

• Chapter 8 discusses the main steps of the proposed knowledge acquisition pro-

cess, including how the learning process of phases one and two happen. Then,

the final output of the study is introduced with a real-world application.

• Chapter 9 evaluates the final output using different types of experiments. Then,

the results achieved by these experiments are analysed to show the proposed

solution’s effectiveness against the identified research problem.

• Chapter 10 evaluates how the defined aim was successfully achieved by at-

taining the study’s objectives. Following that, the resolved research problem,

the novelty, and contributions to the current anti-phishing domain are discussed

with the study’s limitations.

• Chapter 11 concludes the dissertation by summarising the key research findings

and how the knowledge developed from this study has been disseminated to the

scientific community. Finally, this chapter suggests specific research directions

that may be undertaken in the near future.
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2 OVERVIEW OF PHISHING ATTACKS

2.1 Introduction

Chapter 1 provided the overall picture of the research presented in this dissertation.

This chapter is to make the reader aware of the research domain. Therefore, this chap-

ter gives a broader view of phishing attacks by first discussing the definition of phish-

ing and history, followed by phishing motives, medium, process, types and techniques,

mitigation, and the current state.

2.2 Phishing definition

A phishing attack is a social engineering attempt to steal Internet users’ personal or

confidential information by impersonating a trusted third party (Chiew, Yong, & Tan,

2018; Alkhalil et al., 2021; Gupta et al., 2016). However, the phishing definitions

are not consistent in the literature due to the nature of these attacks (Dou et al., 2017;

Alkhalil et al., 2021). Therefore, different studies define phishing based on the target

(i.e., email filtering or website detection) and their detection approach (Dou et al.,

2017). The following is a more generic definition of phishing found in Khonji et al.

(2013), which considered phishing as a semantic attack.

“Phishing is a type of computer attack that communicates socially engineered mes-

sages to humans via electronic communication channels in order to persuade them to

perform certain actions for the attacker’s benefit” (Khonji et al., 2013).

The current study mainly focuses on deceptive websites, a fraudulent electronic

communication channel that transfers phishing attacks via social engineering tech-

niques. Therefore, the term phishing is defined in the study as a social engineering

crime that leads a victim to a fake website to steal personal or confidential information

(H. Huang et al., 2009; Alkhalil et al., 2021; APWG, 2021b).
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2.3 History of phishing

Phishing was initially coined in 1996 with the America Online (AOL) accounts attack

that stole confidential information of the AOL account holders by online scammers

(Alkhalil et al., 2021; Gupta et al., 2016; Khonji et al., 2013). The term phishing

originated from the well-known activity of catching fish called fishing (Khonji et al.,

2013). In fishing, a fisherman uses bait to catch a fish. Similarly, phishing also uses a

social engineering or technological bait to act (i.e., steal confidential information) on

the Internet user (i.e., fish) to have the ultimate benefits (Chiew, Yong, & Tan, 2018;

Khonji et al., 2013). However, the ‘ph’ in phishing that replaced the ‘f’ in fishing was

extracted from the popular telephone hacking term called phone phreaking which was

very common in the early 1970s (Gupta et al., 2016, 2017).

After the AOL incident in 1997, the media announced the evolution of the phishing

attacks for the first time (Gupta et al., 2016). Initially, the attacks focused mainly on

online banking and e-commerce services to earn financial gains (Khonji et al., 2013).

However, over time, it has been spread into many domains (APWG, 2021a, 2021b),

and the phishers also updated to have different scamming strategies to launch new at-

tack types (Alabdan, 2020; Alkhalil et al., 2021). In 2001, the phishers started to use

URLs to direct users to phishing sites, and in 2004 they passed another milestone by

practising domain name system-based phishing called pharming (Gupta et al., 2016).

Further, in 2005, the spear-phishing attacks that target specific individuals or organi-

sations were first evolved (Gupta et al., 2016), and today it has become the dominant

attacking technique due to the high success rate (Dou et al., 2017). Moreover, the

phishers are becoming more intelligent and practising different attacking techniques

through new technological support over the years, challenging new security counter-

measures introduced in the past few years (Dou et al., 2017; Alabdan, 2020; H. Huang

et al., 2009). Therefore, the phishing threat has a top rank in the cyber threat landscape

(ENISA, 2020, 2021), and the number of attacks is rising day by day (APWG, 2021a,

2021b).
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2.4 Phishing motives

The primary motivation behind phishing is financial gains. However, these financial

gains can be direct or indirect because some phishers may use the stolen information

for their benefit, and some may sell it to a third party (Alkhalil et al., 2021; Alab-

dan, 2020). However, phishers have different intentions that motivate them to exploit

a phishing attack in a specific domain. The following are some of those intentions

mentioned in the study of Yu et al. (2008) and Gupta et al. (2016).

1. Steal money from bank accounts: Spoofed emails or some other techniques are

used by phishers to collect online bank account credentials and credit card de-

tails. That information is then used to get money out of the victim’s account

directly or indirectly (i.e., purchase goods or services).

2. Access online services: The phishers will launch an attack to steal login details of

popular online services such as Google Accounts, Microsoft Office, Amazon or

eBay. That information can be used to obtain goods or services, collect personal

information or launch more phishing attacks assuming the same login credentials

are used in different services.

3. Hide the original identity: This intention is more popular among the community

who want to hide their original identity because of illegal activities such as crimi-

nal activities or buying/selling illegal goods or services carried out in cyberspace.

However, there is a massive demand in the online community for stolen identi-

ties, and it motivates phishers to carry out more phishing in cyberspace.

4. Access to confidential documents: Phishers can launch attacks to access trade

secrets of different organisations and sell that information to interested parties,

like competitors.

5. Collect personal information: Phishers conduct attacks to collect Internet users’

personal information like addresses, telephone numbers, product loyalties, or

browsing patterns to sell or use directly for their benefit. The information col-
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lected through such attacks can be used to shift victims from one product to

another, which causes monetary loss for some businesses.

6. Exploit security holes: Phishers are interested in finding any security breaches

in different systems or employees of an organisation. Then, the phisher can use

that information to arrange further attacks like installing malware or selling those

back to the phishing community for others’ benefit.

7. Fame and notoriety: The phishers use different strategies to access personal or

confidential information without expecting financial gains. This intention mainly

targets the popularity among peers or the online community.

The one to six intentions mentioned above is always bound with financial gains.

However, the seventh intention is a gripping psychological aspect of phishing that tar-

gets the popularity among the community.

2.5 Phishing medium

In the current phishing context, the primary medium of transferring a phishing attack

to the victim’s side is the Internet (Chiew, Yong, & Tan, 2018; Alkhalil et al., 2021).

Besides that, voice and Short Message Services (SMS) are also popular among attack-

ers (Chiew, Yong, & Tan, 2018). These mediums have different vectors to transfer the

attack to the victim side (Alabdan, 2020). The most popular phishing medium, the

Internet, has six vectors: Email, eFax, Instant messaging, Social networks, Websites

and Wifi (Chiew, Yong, & Tan, 2018; Alabdan, 2020). The other two mediums, voice

and SMS, have Vishing and Smishing as vectors, respectively (Chiew, Yong, & Tan,

2018; Alabdan, 2020). However, both Vishing and Smishing are migrated from email

vectors, and the phisher uses a call in Vishing and a text message in Smishing (Chiew,

Yong, & Tan, 2018).

2.6 Phishing process

In most cases, phishing attacks are started from emails sent to random recipients or

a specific target group or individuals (Alkhalil et al., 2021; H. Huang et al., 2009).
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Subsequently, the phishing process involves different steps, and understanding those

steps is essential to developing successful phishing detection. Alkhalil et al. (2021)

discussed the phishing process under four main phases: planning, preparation, attack

conducting, and valuables acquisition.

• Planning: This is the first stage of a phishing attack, and it includes three main

steps. First, the phisher selects a target. In most cases, it could be a financial

service like an online banking interface, a retail sector business like eBay or

Amazon, or internet services provider such as Yahoo or MSN. Then the second

step is the construction of the fake website. The phishers build the fake web-

site on their own or get an already designed one, or use a website from another

source. After the construction step ends, the phishers collect the victim’s infor-

mation (i.e., name and email address), mainly via social networks.

• Attack Preparation: The phishers have used vulnerability scanning and medium

selection as the primary foundation for the attack in the preparation stage. The

medium is vital to a phisher when reaching the victims, and mainly there are

three types of mediums: Internet, phone call or text message described in Sec-

tion 2.5.

• Attack Conducting: In the third stage, the phishers select an appropriate attack-

ing technique (see Section 2.7) to deliver the attack to the victim’s end via the

selected medium. The victim interacts with the attack in this stage, and the at-

tacker will compromise the victim’s information during this time.

• Valuables Acquisition: After the successful third stage, the phishers collect in-

formation and valuables from their victims manually or automatically. However,

that information collection can happen during or after the interaction and is fi-

nally used for the phisher’s benefit.

Although Alkhalil et al. introduced the four phases that discuss phishing attacks

in a more detailed way to understand the complete phishing process, in the past lit-

erature, R. M. Mohammad et al. (2015) and Gupta et al. (2016) have presented the
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phishing process differently. R. M. Mohammad et al. (2015) mentioned three main

phases: planning, collection and fraud, and Gupta et al. (2016) mentioned five phases:

planning and setup, phishing, infiltration, data collection, and exfiltration, which both

are conceptually similar. Generally, in phishing attacks, requesting data from the vic-

tim, acquiring those data, and using the collected data for illegal purposes are common

and come under any phishing process (Alkhalil et al., 2021).

2.7 Phishing types and techniques

Phishers are always keen to take advantage of human users (Dou et al., 2017; Gupta et

al., 2016). They mainly use human psychology and technical vulnerabilities to execute

their phishing attacks (Alkhalil et al., 2021). Therefore, the existing phishing attacks

can be categorised into deceptive and technical subterfuge (Alkhalil et al., 2021).

2.7.1 Deceptive phishing

Deceptive phishing is the most common type of phishing practice that impersonate a

trusted third party to deceive a victim when performing phishing activities (Alkhalil

et al., 2021). In deceptive phishing, the attacker uses social engineering techniques to

perform the attack by making a real scenario (i.e., account update) or using a technical

aspect like images or logos (Alkhalil et al., 2021). There are different techniques of

deceptive phishing attacks listed in the literature, and out of those, spoofed website

attacks are more popular (Alkhalil et al., 2021; H. Huang et al., 2009). In spoofed

website attacks, a phishing email or a spoofed advertisement is mainly used in the

initial step, and the victims are then moved to the spoofed website through different

tactics (i.e., clicking a link) (Alkhalil et al., 2021; H. Huang et al., 2009). Although

spoofed website attacks are famous, some other deceptive phishing practices are also

common in the phishing domain (Alkhalil et al., 2021). The following is a list of those

practices based on the survey done by Alkhalil et al. (2021).

• Phishing Email: Email is the most common type of phishing vector in the phish-

ing domain. Phishers utilise it to send a link leading a victim to a spoofed web-

site. Similarly, a phishing email is also used to send malware to a potential
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victim. These emails mostly claim it is from a trusted person or organisation

and target a specific group or random community. Spear-phishing, which uses

a target group, and whaling, which uses top-rank people, are the most common

email categories other than generic phishing emails. Interestingly, phishers use

legitimate or previously sent emails from trusted authorities and resend them

to the same recipients or different communities with some spoofed content. It is

mentioned as clone phishing, and it is again a phishing practice that comes under

the email phishing technique.

• Phone Phishing (Vishing and SMishing): It is associated with phone calls or

text messages. The phisher sends a text message with a link to the victim’s

phone or calls by impersonating a trusted agent to reveal the victim’s personal or

confidential information for their benefit.

• Social Media Attack (Soshing): A new deceptive practice coined with social

media networks like Facebook or Twitter. The phisher uses different strategies

like scams, malware distribution, account hijacking and impersonation attacks

to access the victim’s social network account for malicious purposes.

2.7.2 Technical subterfuge

Unlike the deceptive phishing that relies on the human layer, technical subterfuge is

associated with technical vulnerabilities that exist on the technical layer. The phishers

are keen to take advantage of technical vulnerabilities in the victim’s environment to

have more reasoning attacks (Khonji et al., 2013). However, it is not limited to the

victim’s environment, and it can be a vulnerability of the infrastructure the victim

accessed (i.e., pharming) (Alkhalil et al., 2021). There are different phishing practices

under technical subterfuge, and some of them are listed below based on the recent

survey done by Alkhalil et al. (2021).

• Malware-based Phishing: In this technique, malicious software is downloaded

to the victim’s environment and produces some illegal actions. These actions

intend to collect personal or confidential information of the victim through dif-
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ferent strategies like logging keyboard inputs, taking screenshots, or accessing

clipboard items. However, based on malware’s spreading and collecting tech-

niques, malware-based phishing has different forms: loggers, viruses, worms,

spyware, adware, ransomware, rootkits, session hijackers, web trojans, and data

theft.

• DNS-based Phishing: Pharming is the short form of this attacking technique,

and it is a more dangerous attacking strategy since a legitimate link can lead a

user to phishing content if the relevant DNS is hijacked. The main goal of this

attack is to fill the DNS with erroneous data (i.e., add phishing page IP address

over genuine IP). Then unknowingly, a user may land on phishing content and

disclose his privacy.

• Content Injection Phishing: This technique inserts false content into a legitimate

site to misdirect a user to a phishing site. SQL injection attacks at the database

level, Cross-Site Scripting (XSS) attacks at the site level and compromising a

web server through infrastructure vulnerabilities are some standard practices that

come under this technique.

• Man-In-The-Middle Phishing: As the name implies, an attacker enters a com-

munication channel and records the communications between the victim and the

server. Then, that information may be used later for the attacker’s benefit.

• Search Engine Phishing: The attacker uses Search Engine Optimisation (SEO)

techniques to get a good index in the search engine for the implemented phishing

site. Then, it appears to users when searching for products or services.

• URL and HTML Obfuscation Attacks: Many phishing attacks use link clicking

methods to redirect users to a phishing site. In such scenarios, obfuscation makes

a URL look legitimate (i.e., hostname obfuscation).
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2.8 Mitigation of phishing attacks

Mitigation of phishing attacks could be done from different perspectives. Mainly, there

are three mitigation techniques: correction, prevention and offensive defence, used by

the anti-phishing domain to make phishing campaigns ineffective after a successful

detection (Khonji et al., 2013). The following explain those in detail based on Khonji

et al. (2013) study findings on phishing mitigation techniques.

• Correction Technique: The main intention of this technique is to take down

phishing campaigns through reporting. After the phishing attack is detected, the

information about the phishing attack could be submitted to the service providers

such as hosting services, email services and social networks. Then, these service

providers could act based on the reported case and make some actions such as

suspension of the service or removing the malicious contents to bring the phish-

ing campaigns down. Figure 2.1 shows how a service provider acts on reported

content.

• Prevention Technique: This technique depends on laws. Law Enforcement Agen-

cies introduce specific laws, and after a phishing attack is successfully detected,

they will act on this through lawsuits. This process takes a long time; however,

it will demotivate phishing campaigns because of the penalties caused by the

lawsuits.

• Offensive defence Technique: This exciting technique intends to distract phish-

ing campaigns. The primary strategy used in this technique is flooding the

phishing site with fake credentials. After the phishing website is successfully

detected, some software such as BogusBiter (Yue & Wang, 2008) and Humboldt

(Knickerbocker et al., 2009) can produce fake credentials, access this website

and submit fake login details. Then, the attacker could not find a correct login,

and the campaigns became ineffective. However, the success of this technique is

not adequately evaluated and, therefore, can be questioned.
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Figure 2.1: An example of how the correction technique works in phishing mitigation
This screenshot was captured on October 04, 2021, when accessing the http://veolon.com website.
Since a trusted third party reported the relevant web page as a phishing attempt, the service provider
could block the web page access to avoid future phishing attempts of the relevant phishing campaign.

2.9 Current state of phishing

The number of phishing attacks is gradually increasing over time. In 2004, the APWG

reported 1,609 phishing attacks per month (Li et al., 2019), and it is now more than

150,000 attacks per month (APWG, 2021b). The Coronavirus pandemic (COVID-

19) could be the key reason for such a massive number because it opened up many

opportunities for phishers to further exploit their attacks (Alkhalil et al., 2021; ENISA,

2020). According to ENISA (2020), the number of phishing scams increased by 667%

in only one month during the COVID-19, showing that phishers used the COVID-

19 to lure the victims for their benefit. Further, APWG (2021b) mentioned that the

highest number of unique phishing attacks ever reported to them increased by three

times during last year, and the number of phishing attacks doubled in 2020 compared to

the previous year. Figure 2.2 shows how the phishing trend has risen over the previous

three years, and it has been demonstrated that the year 2021 is becoming worst than

ever. Unsurprisingly, the situation is not different in the Sri Lankan context from the

world. SLCERT (2020) has shown that phishing attacks have increased during the last

few years. Further, Netcraft (2021) also listed Sri Lanka among the top fifty countries
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based on the reported cyber incidents during the latest survey.

Moreover, the use of HTTPS in the phishing domain has also increased during

the last few years. In 2017, it was around 30%, and statistics in 2021 show that it has

reached more than 80% (APWG, 2021a). Therefore, HTTPS is no longer a helpful fea-

ture in phishing detection like previous anti-phishing solutions (R. M. Mohammad et

al., 2013; El-Alfy, 2017; Jain & Gupta, 2018b). There are several new target industry

sectors that phishers have been interested in during the last few years. One such sector

is the cryptocurrency sector, and nearly 7.5% of all attacks reported during the second

quarter of 2021 were against that (APWG, 2021a). Further, the phishers’ interest in

primary industries such as Software as a Service (SaaS) and webmail, financial institu-

tions, eCommerce and retail, social media, payment, and telecommunication remains

slightly up and down during the last five years (APWG, 2021a).

Figure 2.2: Number of phishing attacks reported during the last three years

Source: APWG reports1from the 4th quarter of 2018 to the 3rd quarter of 2021

1https://apwg.org/trendsreports/
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Phishing is an acute problem since it is primarily associated with money. The

literature has shown that billions of losses happened due to phishing attacks, and more

recently, the Toyota subsidiary lost $37 million because of a phishing attack (ENISA,

2020). Moreover, the spear-phishing was the mainly used attacking vector in 2019, and

brands like Office 365, OneDrive, Adobe, Netflix, PayPal, Apple, and Google Drive

were mainly targeted by phishers (ENISA, 2020).

Interestingly, phishing has also become a service at present, and Phishing-as-a-

Service (PhaaS) has been popular among phishers for the last few years (ENISA, 2020,

2021). The low cost of these solutions and some vital features like HTML character

encoding and content-encryption motivates phishers to use them (ENISA, 2020, 2021).

Therefore, less technically skilled people can also carry out phishing attacks comfort-

ably at present (ENISA, 2020, 2021). However, this type of improvement in the phish-

ing area challenges anti-phishers to have strong countermeasures against sophisticated

phishing attacks in the future. Therefore, it is essential to have more research on the

anti-phishing sector in the current context to minimise the impact and rising phishing

trend to have a phishing-free Internet for all.

2.10 Summary

Phishing is a social engineering crime in which a victim is lured to a fake website

to get personal or confidential information. If a user eats the bait, the attacker gains

access to the victim’s digital assets, which they can utilise. The number of attacks has

increased dramatically in the last two years, while phishers’ favour focuses more on

deceptive phishing in today’s environment. Phishing attack mitigation always relies

on successful phishing detection. Therefore, the next chapter examines how phishing

detection has been done in the past and what obstacles prior research has uncovered

when implementing adequate phishing detectors.
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3 RELATED LITERATURE

3.1 Introduction

Chapter 2 provided a broader view of phishing attacks by discussing them from dif-

ferent perspectives and highlighted the importance of phishing detection in successful

phishing mitigation. This chapter provides a comprehensive review of the literature on

phishing attack detection under several topics: data collection and labelling, feature

selection and engineering, existing detection techniques, performance evaluation, and

current phishing detection challenges. After completing the literature review, the latter

part of this chapter identifies the research problem.

3.2 Phishing detection

The goal of phishing detection is to categorise a phishing attack. As depicted in Fig-

ure 3.1, this goal is the starting point of the phishing mitigation process which plays

a critical role. Phishing detection always depends on learning (Khonji et al., 2013). A

human or software uses past phishing and legitimate examples during the learning pro-

cess (Khonji et al., 2013; Alkhalil et al., 2021). Therefore, correctly labelled examples

are essential when implementing a new phishing detector.

Furthermore, data collecting and labelling, feature selection and engineering, de-

tection techniques, and performance evaluation are critical aspects when developing

successful phishing detectors. The following sections explain each of these aspects in

greater detail.

3.3 Data collection and labelling

Phishing attacks are constantly changing due to technical advancements, effective se-

curity controllers, and public awareness (Alkhalil et al., 2021). Most phishing attacks
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Figure 3.1: Phishing attack mitigation in terms of phishing detection
Source: Khonji, Iraqi, and Jones (2013, p. 2094)

were untargeted in the past, and phishers used a bulk attack distribution technique to

find a victim (Alkhalil et al., 2021). However, that technique did not seem practical, as

most untargeted attacks failed with a success rate of less than 5% (Dou et al., 2017). As

a result, phishers focus on targeted attacks like spear-phishing, which has a nearly 19%

success rate (Dou et al., 2017). When the phishing threat was evolving and threatening

in such ways, diverse groups such as researchers, business owners, and external author-

ities like law enforcement agencies were more interested in these attacks (Tally, 2009).

As a response, organisations such as the APWG, Phishing Incident Response Team,

Phishing Report Network, and Digital PhishNet started to collect phishing-related data

with different goals, resulting in different levels of data collection (Tally et al., 2006).

As a result, the Phisherman project was introduced to change the present way of

collecting phishing data (Tally, 2009; Tally et al., 2006). It was a web-based system
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that collects, validates, disseminates, and archives phishing data. Phisherman collects

inputs from individuals and trusted third-party organisations. These inputs mainly de-

pend on emails, and it uses several workflows to manage them due to the multi-format

emails it receives from various sources. Phisherman uses a two-step verification pro-

cess. The first verification is limited to a subset of submissions, while the second

employs a set of heuristic rules and is available to all submissions. Phisherman al-

lows users to download phishing URLs or a full incident report in XML format using

subscriptions and by making queries during their data distribution process.

Similarly, phishing verification systems such as PhishTank2 and OpenPhish3 were

established in the last two decades to meet phishing data needs. PhishTank is a phishing

verification system that relies on public submissions and votes (Bell & Komisarczuk,

2020). It was first released in 2006, and many anti-phishers consider it one of their

favourites (Wang et al., 2019; Yang et al., 2019; Butnaru et al., 2021). Further, the

PhishTank collects data via public submissions, and it requires URLs and additional

optional data connected with the attack, such as screenshots and WHOIS information.

Subsequently, these entries are displayed to the public for voting, and PhishTank clas-

sifies them as phishing based on the community feedback. Even though PhishTank

systematically collects phishing data, many researchers merely use it to obtain URL

information, and other information such as screenshots or WHOIS information was not

used in the literature (Wang et al., 2019; Butnaru et al., 2021; W. Chen et al., 2018).

Unlike PhishTank, OpenPhish is not free. It is based on a self-learning phishing

detection algorithm developed by several researchers (Bell & Komisarczuk, 2020).

It is utilised to collect phishing data in terms of URL, target brand, and screenshots

and is also a popular verification system among the anti-phishing community (Zeng et

al., 2020). OpenPhish services are not free, and full access to the solution requires a

subscription.

As a separate phishing data collection approach, individual attempts to collect

phishing data can be found in the literature. The UCI Phishing dataset is the most pop-

ular individual attempt, with a maximum of 11,055 data (Zeng et al., 2020). The UCI

2https://phishtank.org/
3https://openphish.com/
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dataset is an older dataset that only provides a limited number of attributes. Further, the

UCI dataset’s features were preprocessed using many heuristics (R. M. Mohammad et

al., 2012), limiting its use in various studies. In another study, Aassal et al. (2020) also

introduced a comprehensive phishing dataset with the help of PhishTank, OpenPhish,

and APWG. It resulted from a systematic data collection approach that was effectively

used in the PhishBench benchmark framework.

After analysing the existing phishing data collection approaches, the study found

Phisherman as the most acceptable approach, as it allows real-time phishing data col-

lection and appears reliable in large-scale data collecting. Unfortunately, it is not avail-

able to the general public (Beck & Zhan, 2010). Then, the alternatives like PhishTank

and OpenPhish collect many of the most recent phishing data, but their goals are dif-

ferent, such as keeping blacklists and identifying target brands. As a result, those solu-

tions mainly focus on URLs, which are only one source of information in anti-phishing

studies. Furthermore, the individual datasets mentioned earlier also have constraints,

such as the number of features, size and the collection date. Because of these reasons, a

reliable technique for collecting the most recent multi-modal phishing data is a timely

need in the current anti-phishing domain.

Like data collection, data labelling is also essential in phishing detection. As

shown in Table 3.3, many of the existing phishing detection solutions depend on la-

belled data. The expert labelling and the crowdsourcing approaches like PhishTank’s

voting method are the popular labelling approaches used in the literature. However,

expert-based labelling is often costly and time-consuming in large-scale data collection

(Chang et al., 2017). Crowdsourcing is the most suitable in such scenarios since it has

advantages like low cost, fast labelling and diverse opinions than the expert approach

(Drutsa et al., 2019). Even though crowdsourcing has many advantages, the fundamen-

tal disadvantage of it is the difficulty in acquiring quality labelled data (Chang et al.,

2017; Drutsa et al., 2019). This is due to many reasons. Mainly, the poor commitment

of crowd workers, uncertainty in a task, prior knowledge of the given task, and novice

workers affect the quality of the crowdsourcing labelling process (Chang et al., 2017).
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3.4 Feature selection and engineering

Feature selection is an essential step in phishing detection since it is highly bound to

the detection accuracy of a solution (Dou et al., 2017; Aassal et al., 2020). Past studies

have generated different features when having differentiated solutions against phish-

ing attempts. Aassal et al. (2020) presented a more complex categorisation of phishing

detection features using more than 250 phishing detection studies. First, Aassal et al.

divided phishing detection features mainly into URL-based and website-based. Then,

those two were further divided into three subclasses: lexical, network, and script. Fi-

nally, these features were analysed depending on their format and classified as syntac-

tic, semantic, and pragmatic.

In Aassal et al. taxonomy, syntactic features are based on syntaxes like the port

number and Term Frequency-Inverse Document Frequency (TF-IDF), and semantic

features are based on meaning and the interpretation of the content like the presence

of the target brand in URL and webpage. However, the features that do not belong to

any of these two were categorised under pragmatic, and it has features like backlisted

words in a URL, WHOIS information, and script loading time. In a separate study,

Dou et al. (2017) categorised phishing detection features based on four characteristics

primarily determined by the URL and website. It covers URL-based lexical features

like URL length and the presence of HTTPS protocol, and URL-based host features

such as WHOIS information. Under the website category, the content features like

page rank, hyperlinks and forms, and visual similarity-based features like images and

colours are listed.

In real-time phishing detection, the features that depend on third-party services

such as page ranking, Alexa ranking, and age of the domain should be carefully used

since those may result in increasing detection time, high development cost, and service

limitations (Jain & Gupta, 2018a; Li et al., 2019; Sahingoz et al., 2019). As a result, Li

et al. (2019) only used URL and HTML-based features in their solution, and Jain and

Gupta (2018a) used a set of new features based on a web page’s hyperlink information.

However, Yang et al. (2019) stated that using multi-modal features (i.e., URL-based,

content-based, third-party service features like Alexa rank) is good in phishing detec-
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tion since those features may represent many of the phishing attack characteristics.

Although this is a reasonable point, some key features may result in dissatisfied users

due to the time required to construct and analyse them (Li et al., 2019; Sahingoz et al.,

2019). Therefore, if a feature takes longer to extract, no matter how useful it is, it is

not an ideal feature to utilise in real-time phishing detection (Dou et al., 2017).

In contrast to Yang et al. (2019), several studies in the explored literature rely only

on URL-based features (Bahnsen et al., 2017; W. Chen et al., 2018; Wang et al., 2019;

Sameen et al., 2020). Despite their high detection accuracy, as shown in Table 3.3,

Sahoo et al. (2017) pointed out that URL simulation tools such as DeepPhish (Bahnsen

et al., 2018) that produce malicious URLs and URL shorting services could create a

long-term threat to these solutions. Further, AlEroud and Karabatis (2020) demon-

strated how the Generative Adversarial Networks (GAN) could be used to evade the

URL-based phishing detection solutions, raising the question of whether URL-based

features alone are sufficient to detect phishing attempts in the current context. More-

over, as Sahoo et al. (2017) indicated, benign URLs may be compromised in the future

to contain malicious content, which is another long-term difficulty for URL feature-

based anti-phishing solutions. However, due to the lack of sufficient frameworks in

the existing literature, the robustness of the features utilised in an anti-phishing solu-

tion cannot be evaluated quantitatively (Dou et al., 2017). Therefore, Table 3.1 has the

most often utilised elements in past anti-phishing solutions, divided into URL-based,

webpage content-based, and third-party service-based.

Similar to feature selection, feature engineering (a.k.a., feature extraction) is also

essential when building a phishing detection solution because it is also linked with

the detection accuracy of a solution (Dou et al., 2017). The current study identified

two main feature engineering techniques practised by previous anti-phishing studies:

manual and representation learning.

In manual techniques, human users actively participate in the extraction process

(R. M. Mohammad et al., 2012). It can be a direct involvement or indirect involvement

where the extraction can be done by a computer application built by a human expert

(R. M. Mohammad et al., 2012). Also, in manual techniques, the feature extraction can
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Table 3.1: Commonly used phishing detection features that come under URL, webpage
content and third-party

Information source Features References

URL

IP address, Long URL, @ symbol, URL prefix, URL suffix, Sub-domains, HTTPS avail-
ability, Abnormal URL, Number of redirections, Domain name, Primary domain name,
Path-domains, URL shortening, Redirect symbol, Domain length, Favicon, Nonstandard
port, Number of dashes, URL length, Suspicious words, Position of Top-Level Domain
(TLD), Embedded domains, Number of times HTTP appears, Domains count, Subdomain
length, Length ratio (i.e., ratio between the length of the URL and the length of the
path), Punctuation counts (i.e., !, #, $, %, and &), Number of TLDs, Port number, URL
entropy, HTTPS on domain, Raw word count, Brand name on domain, Word length,
Keyword count, Brand name count, Puny code, Consecutive character repeat, Known TLD,
Random domain, Adjacent word count, Number of dots, Similar target brand, Embedded
domain, URL with hexadecimal code, Numerical characters, Similarity index, Number
of hyphens, Information entropy, Euclidean distance, Kullback-Leibler divergence, Edit
distance outlier, Length of the longest work in the hostname, Longest number length of the
hostname

R. M. Mohammad et al. (2013);
L. A. T. Nguyen et al. (2014); El-Alfy
(2017); Jain and Gupta (2018b); W. Chen et
al. (2018); Pratiwi et al. (2018); Sahingoz et
al. (2019); Chatterjee and Namin (2019); Li
et al. (2019); Wang et al. (2019); Orunsolu et
al. (2019); Yang et al. (2019); Butnaru et al.
(2021); Odeh et al. (2021)

Webpage content
(i.e.., HTML content
and reader visible
content)

Request URL, URL of anchor, Server Form Handler, Pop-up window, Hiding the sus-
picious links, Disabling right-click, Submitting to email, Iframe, Customised status bar,
Website redirects, Number of hyperlinks, Internal hyperlink ratio, External hyperlink ratio,
Null hyperlink ratio (i.e., <a href=“#”>, <a href=“#content”>, <a href=“JavaScript
::void(0)”>), Cascading Style Sheets (CSS), Broken link (i.e., 404 not found), Login form
link, Domain name in href, Sub-domains in href, Domain name in src, Sub-domains in src,
HTML content length, Hidden or restricted information (i.e., hidden codes), URL brand
name in HTML code, HTML string embedding, most frequent link brand vs URL brand,
title brand vs URL brand, Downloadable malicious code, Number of comments used,
Number of title tag, Onmouseover

R. M. Mohammad et al. (2013); El-Alfy
(2017); Jain and Gupta (2018a); Chatterjee
and Namin (2019); Wu et al. (2019); Li et
al. (2019); Wang et al. (2019); Yang et al.
(2019); Odeh et al. (2021)

Third-party Services
DNS record, Website traffic, Age of domain, Page rank, Alexa rank, Google index, Links
to page, External reports (i.e., PhishTank), Inconsistent URL, Time to live (i.e., page exist
time), SSL certificate, blacklisted domain, Abnormal cookie domain, Number of DNS

R. M. Mohammad et al. (2013);
L. A. T. Nguyen et al. (2014); El-Alfy
(2017); Jain and Gupta (2018b); Chatterjee
and Namin (2019); Wu et al. (2019); Yang et
al. (2019); Odeh et al. (2021)
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be done in a controlled environment, and the most significant features can be picked

carefully through further analysis (Zhang et al., 2007; Joshi et al., 2008; Dunlop et

al., 2010; Jain & Gupta, 2016). Although manual techniques appear to be an effective

method in many domains, it is inefficient in phishing since the significant phishing

detection features are frequently obsolete due to the constantly changing nature of

phishing attacks, as discussed in Section 2.9. Therefore, updating the key features and

selecting the best collection of features is a time-consuming and challenging opera-

tion in manual techniques (Opara, Wei, & Chen, 2020). Furthermore, features in the

manual feature technique are handcrafted and visible from the outside. As a result,

attackers might target these features and bypass the solutions, making the solutions

useless (Opara, Wei, & Chen, 2020).

Representation learning techniques like deep learning are becoming the latest trend

in the anti-phishing domain due to the limitations of manual techniques. Many of the

latest anti-phishing solutions shown in Table 3.3 use deep learning instead of conven-

tional machine learning approaches, such as Support Vector Machine (SVM), Neural

Networks (NN), and Naive Bayes classifier (Chauhan & Singh, 2018). This is mainly

due to the architecture of deep learning, which can automatically discover the rele-

vant representations by traversing through several levels of abstractions (LeCun et al.,

2015). Further, the deep learning techniques can learn features from raw inputs, and it

gives several advantages to an anti-phishing solution over a solution that has manually

extracted features (LeCun et al., 2015). One such advantage is a selection of the best

set of features. In manual techniques, feature selection is subjective and dependent on

experts (Bahnsen et al., 2017). However, deep learning models extract features from

raw data, and the selected features are unknown to the outside world since they behave

like black boxes (Bahnsen et al., 2017; Sahoo et al., 2017). Therefore, the attackers

cannot pre-plan a way to bypass these solutions as they can with manual feature-based

solutions (Bahnsen et al., 2017; Sahoo et al., 2017).
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3.5 Detection techniques

Human errors are the most prominent factor for successive phishing attacks (Alkhalil

et al., 2021). Therefore, various solutions (see Table 3.3) have been implemented to

safeguard Internet users from phishing attacks through early detection and warning.

As shown in Figure 3.2, these solutions can be classified mainly into two groups: user

education and software-based solutions.

Figure 3.2: Categorisation of phishing detection solutions

3.5.1 User education

Novice people are the primary target of phishers (Khonji et al., 2013). Therefore,

user education and awareness about phishing are critical in phishing detection (Khonji

et al., 2013). As a result, several studies in the literature have tried to improve user

education and awareness by introducing different solutions. These solutions have been
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categorised under game-based education and other techniques such as online courses

or seminars, phishing frameworks, and mock phishing attacks (Khonji et al., 2013;

Tchakounté et al., 2020; Dixon et al., 2019).

Game-based education. Game-based education is a widespread technique applied

in different studies when educating users about phishing (Tchakounté et al., 2020).

It is considered an effective technique since it inherits the unique characteristics of

gaming, such as fun of playing, intrinsic entertainment value, ability to ask questions

from players and explore the players’ ideas (Denning et al., 2013). The Anti-Phishing

Phil proposed by Sheng et al. (2007) is a game-based approach focusing on phishing

URLs. It has been built to practice good habits to avoid victimisation by phishing

attacks. NoPhish (Canova et al., 2014) is another educational application similar to

Anti-Phishing Phil, designed for Android smartphones. The main intention of this

application is to provide knowledge about how to use URLs to distinguish between

phishing and legitimate websites. This Android game has been designed with ten

levels, and each level can be achieved based on the correct choices made by the user.

In addition, Smells Phishy (Baslyman & Chiasson, 2016) is another educational

game that has been introduced in the literature. It aimed to teach users about the

implications of their actions in phishing to understand the nature of phishing. Further,

Smells Phishy has tried to teach the importance of SSL indicators, basic password

rules, and common phishing attack characteristics to learn about the best cybersecurity

practices. Similarly, What.Hack (Wen et al., 2019) is another interesting anti-phishing

game that has been introduced under the user education category. It has been built with

a sequence of puzzles and used to teach how a user should handle URLs, social media

and attachments. According to the What.Hack experiments, this solution has increased

the participants’ ability to detect phishing and legitimate emails by 36.7%. Further, this

study has shown that What.Hack is more effective in training than Anti-Phishing Phil,

which focuses only on URLs.

Other techniques. X. Dong et al. (2008) developed a phishing framework known as

a user-phishing interaction model after analysing 400 sample phishing attacks. The

model was built by examining the user’s selected information from an interface (i.e.,
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clicking a link or giving some confidential information) and the assumptions or ex-

pectations (i.e., the system feedback) in each step. Therefore, the model discusses the

interaction from beginning to end, and it illustrates where human users make mistakes

when interacting with a phishing attack. Further, X. Dong et al. stated that forming an

accurate perception when working with computing systems is the key to user educa-

tion. However, phishing detection might not be effective only with human users, and

humans need the support of others (i.e., system designers) to make the correct decisions

against attacks (X. Dong et al., 2008). Moreover, Younis and Musbah (2020) imple-

mented an interactive solution to enhance user awareness. This solution has a training

awareness component to train the user and a gamification component to assess the ac-

quired knowledge. Furthermore, they used animated videos to improve the knowledge

of their trainers and game-based challenges to evaluate the trainers’ knowledge.

In contrast to the techniques mentioned above, Khonji et al. (2013) mentioned that

user education and awareness could be improved via online reading materials. There

are plenty of online materials available on the Internet, and some of them are Mi-

crosoft’s Security blog on Phishing4 and eBay’s tutorial on spoofed emails5 (Khonji

et al., 2013). Moreover, interactive notifications and warning messages are also com-

mon techniques that modern browsers have used to improve user awareness (Khonji

et al., 2013). However, when these notifications and warnings are practised, the active

interaction is considered superior to passive because many users often ignore passive

interactions (Khonji et al., 2013; Dou et al., 2017).

Even though user education has been practised to minimise the phishing threat, it

may not be a practical approach because phishing is continually developing, and new

attacking strategies are being developed to respond to new security countermeasures

(Alkhalil et al., 2021). Therefore, user education has become a costly strategy since the

users need to update their knowledge about these attacks frequently, which needs many

resources such as people, time and physical equipment (Khonji et al., 2013; Alkhalil et

al., 2021). Furthermore, the user education approach also requires participants to have

a minimum degree of security understanding to succeed, which is again a challenge in

4https://www.microsoft.com/security/blog/phishing/
5https://pages.ebay.com.my/education/spooftutorial/spoof\_2.html
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phishing (Khonji et al., 2013; Alkhalil et al., 2021). Thus, user education may not be

a realistic solution to minimise the phishing impact, but it could be employed.

3.5.2 Software-based solutions

Khonji et al. (2013) categorised software-based solutions into four main categories:

blacklisting/whitelisting, rule-based heuristic, visual similarity, and machine learning.

Although this categorisation may seem a bit outdated, it can still be considered as valid

in the anti-phishing domain. This is because when examine the current trends in phish-

ing detection, the application of deep learning and reinforcement learning has emerged

as significant techniques that were not discussed in Khonji et al. (2013)’s study. How-

ever, these two techniques fall under the broader category of Machine Learning, which

has already been identified as a separate category in that study. Therefore, Khonji et

al. (2013)’s categorisation remains valid in the field of phishing detection and is also

adopted in this study. Furthermore, this study focuses on machine learning-based so-

lutions within the domains of supervised learning and reinforcement learning, as the

machine learning efforts explored here are predominantly centered around these two

techniques (L. A. T. Nguyen et al., 2014; Bahnsen et al., 2017; Chatterjee & Namin,

2019; Wang et al., 2019; Opara, Chen, & Wei, 2020). As illustrated in Figure 3.2,

this study analyses the previous software-based solutions under four categories, in-

cluding two machine learning branches. The following sections discuss each of these

techniques in detail, and the summary is presented in Table 3.2.

3.5.2.1 Blacklisting/Whitelisting

The blacklisting/whitelisting technique is based on the simple concept of text matching

and uses a list of stored URLs when detecting phishing or legitimate websites (El-Alfy,

2017). A blacklist includes phishing URLs (Bell & Komisarczuk, 2020; Prakash et

al., 2010), and legitimate URLs are handled by a whitelist (Cao et al., 2008; Jain &

Gupta, 2016). In this technique, if a given URL is found on a blacklist, it is considered

a phishing URL, and then the user is informed while blocking further access to the

website. In contrast, if it is on the whitelist, it is considered a legitimate website which
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Table 3.2: Overview of the standard phishing detection approaches

Approach Limitations/Remarks

Supervised Learning
– A model trains from known phishing and legitimate data.

(Bahnsen et al., 2017; El-Alfy, 2017; W. Chen et al., 2018; Opara, Wei, &
Chen, 2020; Opara, Chen, & Wei, 2020; Feng et al., 2020)

– It depends on a set of features (i.e. URL features).
– A learning algorithm uses to adjust the weights of these features to achieve optimum perfor-

mance. (LeCun et al., 2015; Buczak & Guven, 2016)

Reinforcement Learning
– An agent is used to gather its experience in web surfing for sequential deci-

sion making.
(Chatterjee & Namin, 2019)

– Agent produces an action (i.e. access/block a website) from a set of collected features from a
website.

– Action is measured (i.e. how good or bad) later with the correct action to be taken to make the
learning happens.
(François-Lavet et al., 2018)

User Awareness
– A technique used in training Internet users to access the Internet services in

a safe mode to protect them from phishing attacks.
(Sheng et al., 2007; Baslyman & Chiasson, 2016)

– It is a machine-centric approach.
– Game-based education has been found as an effective method when improving the user-

awareness.
– This technique expecting users to get educated about phishing is not a practical approach.

(Khonji et al., 2013)
Blacklist & Whitelist
– Blacklist contains a list of phishing website URLs, and a whitelist is a list of

legitimate website URLs.
(Cao et al., 2008; Prakash et al., 2010; Sánchez-Paniagua et al., 2020)

– List-based techniques require exact matching of the website URLs.
– These techniques fail when detecting zero-day attacks since those may not include in the lists.
– It is practically difficult to have an up-to-date list.

(Khonji et al., 2013; Jain & Gupta, 2016; El-Alfy, 2017; Sánchez-Paniagua et al., 2020)
Rule-based Heuristics
– A technique that uses a set of rules in detecting phishing attacks.

(Teraguchi & Mitchell, 2004; Zhang et al., 2007; Joshi et al., 2008)

– This technique expects domain expertise when constructing high-end rules.
– These rules need frequent updates to keep them alive.
– The cost of updating the rules is high.

(Khonji et al., 2013; Gupta et al., 2016)
Visual Similarity
– A technique that uses the visual appearance of the web page in phishing

detection.
(Rosiello et al., 2007; Dunlop et al., 2010; Afroz & Greenstadt, 2011)

– These solutions depend on a threshold value, and it is difficult to find the optimum value.
– This technique uses visual features such as text, HTML tags, CSS and images.
– Maintaining an up-to-date database is challenging in these solutions; therefore, it fails to detect

zero-day attacks.
– Decision-making time is relatively high.

(Jain & Gupta, 2017)
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is safe to browse. Further, many services nowadays generate these lists for different

purposes, and one famous blacklist is Google Safe Browsing (GSB) API6 (Bell &

Komisarczuk, 2020). It is a well-known blacklist that many current browsers employ

to protect their users from phishing attacks (Bell & Komisarczuk, 2020).

Although this list-based technique appears simple, maintaining a list on today’s In-

ternet is challenging. The literature currently lists over 200,000 unique phishing attacks

per month (APWG, 2021a), and the situation is similar on the legitimate side (Netcraft,

2021). Although many phishing websites are added, Khonji et al. (2013) mentioned

that 47% to 83% of phishing URLs took twelve hours from their first appearance to

enter a blacklist. It is a significant delay compared to the lifetime of a phishing web-

site, as 63% of phishing efforts usually end within the first two hours (Khonji et al.,

2013). On the other hand, maintaining these lists needs more than just collecting in-

dividual URLs since a practical list includes both reporting and confirmation, which

is challenging on the present Internet (Jain & Gupta, 2016; Sánchez-Paniagua et al.,

2020). Therefore, blacklisting/whitelisting is ineffective in phishing detection since it

is vulnerable to zero-day attacks (Khonji et al., 2013; El-Alfy, 2017).

However, the literature has used various strategies to overcome the limitations of

the blacklisting/whitelisting technique. The PhishNet tool (Prakash et al., 2010) is one

such strategy which has some creative characteristics to address some of these lim-

itations. These characteristics include a heuristic-based predictive blacklist that can

generate new URLs from current ones and an approximate text matching technique

that replaced the exact text matching technique of typical list-based techniques. In an-

other study, Cao et al. (2008) introduced an Automated Individual White-List (AIWL),

which is based on the Login User Interfaces. When a user enters credentials to a login

interface, it first checks the whitelist. If the login URL is listed in the whitelist, this

AIWL allows the user to move forward. Otherwise, it warns the users about the sus-

piciousness of this website. Although this AIWL seems interesting, it distracts users

until it collects a list of known websites because this is a personalised whitelist.

Another whitelist called White-List maintainer (Jain & Gupta, 2016), which is

6https://developers.google.com/safe-browsing
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based on multiple heuristics, has also been found in the literature. White-List main-

tainer primarily focuses on hyperlink properties and applies several heuristics. If these

heuristics are passed, the URL is automatically added to the whitelist. However, the

heuristics are not applied for each request in this solution. It first uses the whitelist

as an initial filter, and if the specific URL is not listed in the whitelist, it forwards the

URLs through these heuristics.

Even though these advanced solutions were attempted to improve the blacklist-

ing/whitelisting technique, these efforts were insufficient to overcome the limitations

mentioned in Table 3.2 (El-Alfy, 2017). Therefore, this technique could not eliminate

zero-day attacks, which is essential for successful phishing detection.

3.5.2.2 Rule-based heuristic

Phishing heuristics are based on the typical characteristics of phishing pages (Khonji

et al., 2013). These heuristics can be generalised and used as rules to detect phishing

attacks (Khonji et al., 2013). SpoofGuard, a tool developed by Stanford University

(Teraguchi & Mitchell, 2004), is one of several heuristic solutions available in the lit-

erature. SpoofGuard heuristics are based on domain names, URLs, links, and images,

and these heuristics have been used to maintain a spoof score to make the ultimate

judgement about a webpage. Another heuristic approach based on the TF-IDF algo-

rithm is CANTINA (Zhang et al., 2007). It is a content-based solution that outperforms

SpoofGuard by reaching 90% detection accuracy and a 1% false-positive rate. How-

ever, CANTINA had a significant false-positive rate of 6% at the beginning because

CANTINA was mainly dependent on TF-IDF and Google search in its first imple-

mentation. Then, the research team combined simple heuristics such as the age of the

domain, known images, suspicious URL, suspicious links, IP address, dots in URL,

and forms with CANTINA. That strategy reduced false positives by 1% and allowed

CANTINA to achieve its current accuracy.

Another heuristic solution based on the HTTP digest authentication principle is

PhishGuard (Joshi et al., 2008). PhishGuard is a creative tool that hides the actual

credentials, generates erroneous credentials many times, and checks the HTTP status
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during a login attempt. This tool detects a phishing attempt in that process if the HTTP

status is always sent 200 OK status for fake credentials or 401 UNAUTHORISED

status for actual credentials. Moreover, R. M. Mohammad et al. (2014) also provided

seventeen features for implementing an intelligent rule-based anti-phishing system.

They thoroughly examined phishing detection features available in the literature and

selected the relevant features based on popularity.

The rule-based heuristic technique is more successful than blacklisting/whitelist-

ing, since it can detect zero-day attacks (Khonji et al., 2013). However, even though it

detects zero-day attacks, more generic heuristics are prone to misclassifying legitimate

websites, which is a significant drawback of this technique (Khonji et al., 2013). In

addition, heuristic-based approaches have several other limitations, such as the visibil-

ity of used rules to the outside, which aids phishers in forging solutions, the validity

of rules due to the rapidly changing nature of phishing, and the cost of updating rules

(Khonji et al., 2013; Gupta et al., 2016).

3.5.2.3 Visual similarity

Visual similarity examines the visual look of a web page based on many characteristics

(Khonji et al., 2013). There are a variety of visual similarity-based solutions, and one

such solution is DOMAntiPhish (Rosiello et al., 2007). It has been considered a DOM-

based method that uses a basic tag comparison when determining the similarity of two

web pages. DOMAntiPhish uses three primary processes, initialisation, template com-

putation, and coverage when identifying this similarity, and the final decision is solely

based on the similarity value. Although DOMAntiPhish is a different approach, DOM

obfuscation is a threat to this solution because the same website look can be achieved

through multiple DOM trees in the current online context. As a result, L. D. Nguyen

et al. (2014) presented an extension for DOMAntiPhish that checks the similarity of

DOMs in two different methods, including the evolutionary algorithm-based DOM

graph (L. D. Nguyen et al., 2014).

In contrast, PhishZoo (Afroz & Greenstadt, 2011) is a profile-based technique that

detects phishing attacks using previously recorded profiles. These profiles have been
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built using URLs, SSL certificates, HTML content, pictures, and scripts to achieve

96.1% detection accuracy. In another study, C.-Y. Huang et al. (2010) developed a site

signature-based solution to detect phishing attempts. It is unique to a domain and is

based on text and image-based elements. In their solution, the signature and domain

information is cross-checked to determine the legitimacy of a website.

GoldPhish (Dunlop et al., 2010) is a browser-based plugin that detects phishing at-

tacks by combining website logo information with Google search results. It is a viable

technique for preventing zero-day attacks and superior to previous visual similarity ap-

proaches. However, the effectiveness of GoldPhish is dependent on the captured logo

image and the ranking of the Google search (Jain & Gupta, 2017). This is a drawback

of this solution because new businesses will struggle with GoldPhish due to their lower

Google ranking (Dunlop et al., 2010; Jain & Gupta, 2017).

In addition to the visual similarity-based solutions discussed above, solutions like

Phishing-Alarm (Mao et al., 2017), a wavelet hashing-based similarity mechanism (J.-

L. Chen et al., 2020), pixel-level solutions (Fu et al., 2006), and many hybrid ap-

proaches (Jain & Gupta, 2017) have been proposed in the literature. Despite such ap-

proaches, visual similarity detection still faces several challenges: problems of defin-

ing a clear similarity value, maintaining databases in detection, ineffectiveness against

zero-day attacks, and embedded object detection issues (Jain & Gupta, 2017). There-

fore, it is not a competitive technique to fight against modern phishing attacks.

3.5.2.4 Machine learning

Machine learning-based phishing detection has begun a decade ago and has shown

some promising results in the past (R. M. Mohammad et al., 2013; Bahnsen et al.,

2017; Wang et al., 2019; Yang et al., 2019; Opara, Chen, & Wei, 2020). According to

Table 3.3, these solutions have been implemented mainly with supervised learning and

reinforcement learning techniques.

Supervised learning. The first supervised learning solution against phishing attacks

was proposed by R. M. Mohammad et al. (2013). It was one hidden layer based

Multi-Layer Perceptron (MLP) network that used seventeen input features to achieve
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92.5% detection accuracy. Similarly, L. A. T. Nguyen et al. (2014) presented another

single-layer neural network with six heuristics. It was tested against 11,660 phishing

sites and 10,000 legitimate sites and achieved 98% accuracy. Furthermore, Pratiwi et

al. (2018) also proposed a neural network using the phishing detection features pro-

posed by R. M. Mohammad et al. (2013). However, it could not reach the accuracy of

R. M. Mohammad et al. (2013) and could only achieve 83.38% detection accuracy.

Phish-Safe (Jain & Gupta, 2018b) is another phishing detection solution developed

using fourteen URL features. These features were first evaluated using SVM and Naïve

Bayes classifiers. Then, SVM was selected as the best classifier since it has achieved

90% detection accuracy. In a different study, Sahingoz et al. (2019) compared seven

different machine learning algorithms, Naive Bayes, Random Forest (RF), k-Nearest

Neighbour (k-NN), Adaboost, K-star, Sequential Minimal Optimisation (SMO) and

Decision Tree, with three feature classes, Natural Language Processing (NLP)-based

features such as average word length and keyword count, word vectors (i.e., converting

words like ‘online’, ‘protect’ and ‘store’ into vectors) and hybrid features (i.e., NLP

features and word vectors) to classify phishing and legitimate URLs. The RF algorithm

with NLP-based features achieved the best performance during the experiment, and the

reported accuracy was 97.98%. In a different study, Jain and Gupta (2018a) introduced

an anti-phishing solution based on the HTML code of the webpage, and it achieved an

overall accuracy of 98.42% using the hyperlink information available on the given web

pages. However, the study only employed 2,544 phishing and legitimate web pages,

relying mainly on PhishTank and Alexa.

The fuzzy logic-based data mining approach proposed by Aburrous et al. (2010)

can be considered as yet another machine learning approach in phishing detection.

This approach utilizes three layers and six phishing criteria: URL and domain identi-

fication, security and encryption, source code and JavaScript, page style and contents,

web address bar, and human social component. The study demonstrates that among

all the criteria, URL and domain identity are the essential factors in recognizing e-

banking-related phishing websites. However, the features used in this solution require

further analysis, as Aburrous et al. mentioned that their work is insufficient for clas-
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Table 3.3: Phishing detection solutions exist in the literature

Solution Detection Approach Features
Feature
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SpoofGuard (Teraguchi & Mitchell, 2004) X X X X X NS**

Anti-Phishing Phil (Sheng et al., 2007) X X X 87.0%

DOMAntiPhish (Rosiello et al., 2007) X X X NS

CANTINA (Zhang et al., 2007) X X X X X 90.0%

AIWL (Cao et al., 2008) X X X X X X 100.0%

PhishGuard (Joshi et al., 2008) X X X NS

PhishNet (Prakash et al., 2010) X X X X NS

GoldPhish (Dunlop et al., 2010) X X X X 98.0%

PhishZoo (Afroz & Greenstadt, 2011) X X X X X 96.0%

Self-structuring MLP Network (R. M. Mohammad et al., 2013) X X X X X 92.5%

NoPhish (Canova et al., 2014) X X X NS

Single-layer Neural Network (L. A. T. Nguyen et al., 2014) X X X X 98.0%

Phishing Detection using Public Key Certificates (Z. Dong et al.,
2015)

X X X NS

Smells Phishy (Baslyman & Chiasson, 2016) X X X X 75.0%

White-List Maintainer (Jain & Gupta, 2016) X X X X X 89.4%

Continued on Next Page. . .

42



Table 3.3 – Continued

Phishing Detection with Rogue Certificates (Z. Dong et al., 2016) X X X NS

Phishing URL Detection (Jeeva & Rajsingh, 2016) X X X 93.0%

Probabilistic Neural Network (PNN) (El-Alfy, 2017) X X X X X 96.8%

LSTM Network (Bahnsen et al., 2017) X X X 98.7%

Random Forest Classifier (Subasi et al., 2017) X X X X X 97.4%

Hyperlink-based Detector (Jain & Gupta, 2018a) X X X 98.4%

Phish-Safe (Jain & Gupta, 2018b) X X X 90.0%

LSTM Recurrent Neural Network (W. Chen et al., 2018) X X X 99.1%

Phishing Detection using ANN (Pratiwi et al., 2018) X X X X 83.4%

Href-based Detection (Wu et al., 2019) X X X X 89.3%

Deep RL based Detection (Chatterjee & Namin, 2019) X X X X X 90.1%

What.Hack (Wen et al., 2019) X X X NS

Machine Learning based Detection (Sahingoz et al., 2019) X X X 98.0%

Stacking Model (Li et al., 2019) X X X X 97.3%

PDRCNN (Wang et al., 2019) X X X 97.0%

MFPD Model (Yang et al., 2019) X X X X X X 99.0%

HTMLPhish (Opara, Wei, & Chen, 2020) X X X 97.2%

PhishHaven (Sameen et al., 2020) X X X 98.0%

WebPhish (Opara, Chen, & Wei, 2020) X X X X 98.0%

Web2Vec (Feng et al., 2020) X X X X 99.0%

PHIBOOST (Odeh et al., 2021) X X X X X 98.9%

**NS means ‘Not Specified’. It is used when the solution’s accuracy cannot be found.
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sifying e-banking phishing websites, and additional efforts are needed to collect the

most effective e-banking phishing detection features.

In addition, Jeeva and Rajsingh (2016) employed an association rule mining tech-

nique to extract rules for detecting phishing websites. Using the Apriori algorithm,

they produced eighteen rules that correctly detected 93% of phishing URLs. In a sep-

arate study, Subasi et al. (2017) applied multiple learning algorithms to develop an

effective anti-phishing system. The algorithms included Artificial Neural Networks

(ANN), k-NN, SVM, C4.5 Decision Tree, RF, and Rotation Forest (RoF). Their find-

ings revealed that RF performed the best in detecting phishing attacks, achieving a

detection accuracy of 97.36% during the experiment.

In the realm of machine learning, Z. Dong et al. (2015) developed a real-time sys-

tem for detecting phishing webpages hosted on HTTPS-enabled servers. They utilized

42 features from X.509 certificates and achieved an impressive 95.5% recall in iden-

tifying phishing websites, with an average precision of 93.7%. However, their system

has a limitation—it can only detect phishing sites on HTTPS. Similarly, Z. Dong et

al. (2016) also conducted experiments with machine learning techniques, using rogue

certificates to detect phishing attacks. In their study, they selected several root Certifi-

cate Authorities (CA) and achieved significant results. However, in a separate study,

Drury and Meyer (2019) pointed out that distinguishing between phishing and legiti-

mate websites based on certificate information is challenging. The reason behind this

argument is that phishing sites often use certificates with information similar to gen-

uine sites, especially if both use certificates from the same issuer. Phishers can exploit

compromised server certificates to make their sites look authentic, making it difficult

to differentiate between them based solely on certificate details.

Bahnsen et al. (2017) proposed the first Long Short-Term Memory (LSTM)-based

anti-phishing solution. It only utilises URLs and immediately feeds these URLs into

the LSTM model after transferring to a machine-understandable format. This solution

has achieved 98.7% detection accuracy and has been considered an effective solution

compared to previous solutions. In addition, Bahnsen et al. demonstrated that the

LSTM was a powerful technique for detecting phishing URLs by comparing the LSTM
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performance with an RF model. The experiment used the same 2,000,000 URLs for

both techniques and revealed the effect of representation learning in phishing detection.

In a separate study, W. Chen et al. (2018) also used LSTM to detect phishing URLs

and obtained 99.1% detection accuracy. However, W. Chen et al. used manual feature

extraction during the proposed methodology and did not use the representation learning

effectively.

Furthermore, W. Chen et al. (2018) showed that the LSTM is superior to the Con-

volutional Neural Network (CNN). They demonstrated that the LSTM could achieve

more than 0.02% accuracy over the CNN in the same dataset. However, the exper-

imented dataset was relatively limited and had only 4,000 URLs divided evenly be-

tween phishing and legitimate. Although LSTM outperformed CNN when detecting

malicious URLs, Pham et al. (2018) stated that a CNN combined with LSTM could

outperform each of these techniques individually. As a result, Wang et al. (2019) pre-

sented an anti-phishing solution named PDRCNN using LSTM and CNN. This study

employed 500,000 data points from PhishTank and Alexa and obtained a detection

accuracy of 97%. The PDRCNN detection procedure is quick, and it could detect a

malicious URL within 0.4 milliseconds.

El-Alfy (2017) used PNN to develop a machine learning-based anti-phishing solu-

tion. It clustered thirty features using the k-medoid clustering technique and achieved

a detection accuracy of 96.74% with a benchmark dataset. PNN used preprocessed

multi-modal features, which include several third-party features. Although third-party

features were employed in PNN, Li et al. (2019) mentioned that these features could in-

crease the detection time of the solution. As a result, Li et al. (2019) introduced the first

stack model-based phishing detection solution without relying on third-party service

features. It used eight URL and HTML-based characteristics which can be extracted

internally, including a new HTML string embedding feature. The stack model em-

ployed Gradient Boosting Decision Tree (GBDT), eXtreme Gradient Boosting (XG-

Boost), and Light Gradient Boosting Machine (LightGBM) in several layers to achieve

97.3% detection accuracy.

According to the literature, Yang et al. (2019) also proposed an XGBoost and
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CNN-LSTM-based phishing detection solution. It used multi-modal features, includ-

ing URL-based sequence features, URL-based statistical features, webpage code, and

text features. By proving the previous statement made by Li et al. (2019) about detec-

tion time, the solution recorded a high detection time. As a result, Yang et al. employed

a threshold value to filter the web pages that require more features during the evalua-

tion. Although a practical threshold value seems challenging, that strategy decreased

the detection time of this solution during the experiment.

In light of the literature, HTMLPhish (Opara, Wei, & Chen, 2020) was the first

anti-phishing solution that relies solely on HTML analysis. It used a representation

learning approach, and the raw HTML documents were fed to the model directly. This

solution performed well during the experiment and achieved 97.2% detection accuracy.

Moreover, WebPhish (Opara, Chen, & Wei, 2020) was an extension of HTMLPhish

that combined URL features with the HTML features used by HTMLPhish. It uses

raw URL and HTML and is the first of its kind. The WebPhish achieved 98% detection

accuracy during the experiment. However, both HTMLPhish and WebPhish showed a

noticeable performance degradation after two months, which was later regained after

a successful retraining step. These two solutions demonstrated the effectiveness of

the retraining process in regaining the performance of an anti-phishing model after a

certain period of time.

Feng et al. (2020) also proposed an anti-phishing solution based on representation

learning that employs URL and HTML in raw format. It was named Web2Vec and

has outperformed all recent anti-phishing solutions (see Table 3.3) with a detection

accuracy of 99%. Even though WebPhish and Web2Vec have demonstrated good ac-

curacy, they have collected the experiment data from Alexa and PhishTank. However,

Verma et al. (2019) and Aassal et al. (2020) stated that if a dataset collects data from

Alexa and PhishTank, it might not have diverse URL lengths, resulting in misleading

accuracy. Thus, the accuracies recorded by WebPhish and Web2Vec are problematic

because the diversity of the used features has not been analysed in these solutions,

similar to Aassal et al. (2020). PhishHaven (Sameen et al., 2020) is a different solu-

tion that looks at phishing URLs from human and AI perspectives. It has trained with
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typical phishing URLs and AI-generated phishing URLs and has detected both forms

of phishing URLs with an accuracy of 98%.

Reinforcement learning. This technique was not widely used against phishing attacks

in the accessed literature. However, the study could find one solution under this cat-

egory built by Chatterjee and Namin (2019). This solution depends entirely on URL-

based features and employs dynamic behaviour. However, according to Table 3.3, the

solution is not practical as it has recorded only a 90% detection accuracy. Although it

has not been quite effective, the dynamic approach presented by Chatterjee and Namin

has opened a different direction for future anti-phishing studies.

Despite some promising results in phishing detection (Dou et al., 2017), machine

learning has specific challenges when dealing with the changing nature of phishing.

Data drifting is one such challenge that is typical for all machine learning solutions

(Sahoo et al., 2017; Aassal et al., 2020). However, machine learning-based anti-

phishing solutions are greatly affected by this challenge because phishing attacks are

constantly changing (Aassal et al., 2020). Even though a successful retraining pro-

cess can address the issue of data drifting (Aassal et al., 2020), gathering a substantial

amount of labeled data for the retraining process remains a challenge in the field of

phishing (Sahoo et al., 2017; Zeng et al., 2020). Table 3.4 provides insights into the

data quantities employed by recent machine learning-based phishing detection solu-

tions and the corresponding machine learning algorithms utilized. It becomes evident

that deep learning solutions, which have demonstrated promising results, have exten-

sively relied on abundant data.

In addition to these, deep learning solutions are especially brittle on adversarial

attacks such as data poisoning, adversarial inputs at run-time, and privacy attacks

(Sahoo et al., 2017; Shirazi et al., 2019; Kashyap, 2020). These attacks can turn

good-performing models into inaccurate predictions by lowering the trustworthiness

of a solution (Shirazi et al., 2019). Furthermore, implementing multi-modal feature-

based solutions, which are more effective in phishing detection, is also challenging in

the anti-phishing domain due to the lack of data collection approaches (Sahoo et al.,

2017). Therefore, machine learning techniques face various difficulties when fighting
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Table 3.4: Recent advances in machine learning-based phishing detection solutions

Study Technique Algorithm(s)i Training Size Accuracy KAPii
Legitimate Phishing

Machine Learning based Detection (Sahingoz et al., 2019) CML RF 36,400 37,175 97.98% No
Remarks: The study used NLP-based features, word features and hybrid features with seven different machine learning algorithms. All these features were extracted from URLs, and
NLP-based features with RF showed the highest performance.

Deep RL based Phishing Detection (Chatterjee & Namin, 2019) RL DQN 36,400 37,175 90.10% No
Remarks: The study proposed a reinforcement learning-based approach to detect phishing attacks first time in accessed literature. However, it could not achieve good detection accuracy
compared to Sahingoz et al. (2019), since both studies used the same data source. The proposed study is limited to URL-based and few domain-based features. Therefore, content-based
and page-based features may increase the detection rate further, as proposed by the authors.

Href-based Detection (Wu et al., 2019) CML SVM 10,000 5,000 89.30% No
Remarks: A different approach proposed by the authors depends on the ‘src’ and ‘href’ attributes in a web page. Original URL features were cross-checked with ‘src’ and ‘href’ values to
determine phishing pages. The presented accuracy is comparatively low; however, the study showed low false positives and negatives compared to famous CANTINA anti-phishing
solutions.

Stacking Model (Li et al., 2019) CML GBDT, XGBoost and LightGBM 31,873 20,074 97.30% No
Remarks: The proposed solution included two and six new features extracted from URL and HTML content, respectively, out of 20 used features. Further, the authors tested the
effectiveness of the visual features using a different dataset that contained screenshots of web pages as a separate experiment in the study. They used a pre-trained model and a small-scale
CNN in the experiment, and CNN showed 98.60% detection accuracy with the used dataset.

A predictive model for phishing detection (Orunsolu et al., 2019) CML SVM and Naïve Bayes 2,500 2,541 99.96% No
Remarks: A small dataset was used during the experiment, and both SVM and Naïve Bayes achieved 99.96% detection accuracy.

PDRCNN (Wang et al., 2019) DL LSTM, CNN 500,000 500,000 97.00% No
Remarks: The study proposed another DL approach based on URL information like Bahnsen et al. (2017). The authors highlighted that the main drawback of the proposed solution is the
training time. However, it is a common problem for any deep learning-based approach. Further, the study highlighted that if a phishing URL does not have relevant semantics, the
proposed solution failed to detect it.

MFPD Model (Yang et al., 2019) DL CNN, LSTM, XGBoost 989,021 1,021,758 98.99% No
Remarks: The study highlighted that multidimensional features are essential when detecting phishing attacks. The proposed solution used the CNN-LSTM algorithm to get deep URL
features. Further, URL statistical features, web page code features and web page text features were used as multidimensional features. The study mentioned that nearly a million phishing
and legitimate data were used during the experiment. However, only 22,445 phishing samples and 22,390 legitimate samples were used when experimenting with multidimensional
features since most of the web pages in the primary dataset was not accessible.

HTMLPhish (Opara, Wei, & Chen, 2020) DL CNN 47,000 4,700 93.00% Partial
Remarks: A content-based approach that used automatic feature engineering for the first time in accessed literature. All the elements in an HTML document were considered, and a
longitudinal study was carried out to find the next retraining day to handle continuously evolving issues associated with phishing detection. However, the process of new data collection
and retraining was not described comprehensively in the study.

Continued on Next Page. . .
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Table 3.4 – Continued

WebPhish (Opara, Chen, & Wei, 2020) DL CNN 47,000 4,700 98.00% Partial
Remarks: The study proposed an anti-phishing solution that concatenates raw URL and HTML content of a web page for the first time in accessed literature. Further, it is a
language-independent lightweight solution and is able to detect a web page within 194µs. Even though WebPhish retrained after 2 months, the study did not discuss a systematic way to
acquire the latest knowledge in the future.

Web2Vec (Feng et al., 2020) DL CNN, LSTM 24,800 21,303 99.00% No
Remarks: The study used representation approach to introduce a novel phishing detection solution. The proposed solution used URL, HTML page content, and DOM (Document Object
Model) structure of web pages.

Lightweight URL-Based Phishing Detection (Butnaru et al., 2021) CML RF 305,737 74,436 99.29% No
Remarks: The proposed solution performed well compared to SVM and MLP classifiers during the experiment. Further, the study compared the proposed solution performance with
Google Safe Browsing API and achieved nearly 50% more average accuracy over Google Safe Browsing. The study used a vast legitimate dataset in the experiment. The authors claimed
that using an imbalanced dataset in evaluation makes a realistic scenario since legitimate traffic is high compared to phishing traffic in the natural environment.

iIn this column, “CML” refers to Conventional Machine Learning, and “DL” stands for Deep Learning.
ii“KAP” stands for Knowledge Acquisition Process, which has been utilized in this context to assess the preparedness of these recent solutions in adopting newer

phishing detection features. The term “Partial” is employed for solutions that have recognized the importance of such an approach, even though they have not yet
implemented it.
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against phishing attacks.

3.6 Performance evaluation

Phishing detection is a binary classification problem that checks whether phishing in-

stances are available in a mixture of phishing and legitimate instances. Therefore,

phishing detection can have only four classification probabilities. These are Np→p: the

number of correctly detected phishing instances (referred to as True Positive or TP),

Np→l: the number of instances where phishing is marked as legitimate (referred to as

False Negative or FN), Nl→l: the number of correctly detected legitimate instances

(referred to as True Negative or TN), and Nl→p: the number of legitimate instances

marked as phishing (referred to as False Positive or FP). The more descriptive presen-

tation of these four probabilities is presented in the confusion matrix in Figure 3.3.

Furthermore, the literature has mainly used five evaluation metrics to evaluate the

performance of previous anti-phishing solutions based on the given confusion matrix

(Khonji et al., 2013; Dou et al., 2017; Opara, Chen, & Wei, 2020; Feng et al., 2020).

The details of the evaluation metrics are listed below.

• False Negative Rate (FNR): This metric measures the number of phishing in-

stances classified as legitimate to the total number of phishing instances.

FNR =
FN

T P+FN
(3.1)

• Precision: This metric measures the number of instances where phishing is ac-

curately identified to the total number of instances identified as phishing.

Precision =
T P

T P+FP
(3.2)

• Recall: This metric measures the number of instances where phishing is cor-

rectly identified to the total number of phishing instances.

Recall =
T P

T P+FN
(3.3)
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• f1-score: This metric measures the harmonic mean between precision and recall.

f1− score =
2∗Precision∗Recall

Precision+Recall
(3.4)

• Accuracy: This metric measures the proportion of phishing and legitimate in-

stances accurately marked to the total number of instances.

Accuracy =
T P+T N

T P+T N +FP+FN
(3.5)

An anti-phishing tool sees a phishing website much less frequently than a legiti-

mate one on the Internet. As a result, the phishing to legitimate ratio is imbalanced, and

the accuracy metric may be meaningless. In such instances, f1-score is the most influ-

ential metric utilised by earlier studies (Aassal et al., 2020; Opara, Chen, & Wei, 2020;

Opara, Wei, & Chen, 2020). Even though the Internet has an imbalanced phishing-

to-legitimate ratio, most of the previous anti-phishing solutions have primarily been

evaluated in balanced environments, and few in an imbalanced environment or both

(Aassal et al., 2020; Opara, Chen, & Wei, 2020; Opara, Wei, & Chen, 2020).

Figure 3.3: Classification confusion matrix
The TP category includes correctly predicted phishing web pages, while the TN category includes cor-
rectly predicted legitimate web pages. The categories where the incorrect classification occurs are FP
and FN. In the FP, legitimate web pages are predicted as phishing, while phishing web pages are pre-
dicted as legitimate in the FN. Furthermore, this study has two class labels, 1 and 0, representing phish-
ing and legitimate, respectively.
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3.7 Present challenges

On the current Internet, comprehensive phishing detection is a timely need due to the

constantly changing phishing attacks (Sahoo et al., 2017; Aassal et al., 2020; Alabdan,

2020; Alkhalil et al., 2021). However, the challenges that exist in the anti-phishing

domain hinder the development of such attempts (Li et al., 2019). These challenges

are from different angles, and the following is a detailed overview of the identified

challenges.

1. Emerging challenges: The current phishing attacks are mainly developed using

the support of new tools that can generate sophisticated attacks capable of by-

passing some modern security controllers (Alabdan, 2020; Alkhalil et al., 2021).

DeepPhish (Bahnsen et al., 2018), an AI-powered tool, is one such example de-

signed to bypass URL-based phishing detectors by selecting the best-attacking

URLs. On the other hand, phishing kits are also becoming popular among phish-

ers. These kits remove the technical barriers that phishers face when construct-

ing an attack and increase the complexity of modern attacks (Alabdan, 2020).

Other than these, some emerging attacking techniques such as skill squatting,

typosquatting, and tab-napping are also available on today’s Internet (Alabdan,

2020). Complex attacks like skill squatting coupled with smart speakers are

also challenging current phishing detection efforts (Alabdan, 2020). Because of

these emerging challenges, phishing detection has become more complicated at

present, and more robust detection techniques are required for future phishing

detection success (Alabdan, 2020; Aassal et al., 2020; Sahoo et al., 2017).

2. The difficulty of acquiring training data: Phishing detection is based on previ-

ous examples, and good quality training data is essential for a successful training

step. However, the literature has mentioned that a well-defined standard for col-

lecting high-quality phishing data is a challenge in phishing detection (Verma et

al., 2019; Aassal et al., 2020). As a result, previous researchers have conducted

their studies using self-generated datasets (Bahnsen et al., 2017; Wang et al.,

2019; Opara, Wei, & Chen, 2020; Sánchez-Paniagua et al., 2020; Butnaru et al.,
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2021). However, constructing such datasets in a single night is also impossible

due to the short lifespan of phishing pages (Bell & Komisarczuk, 2020; Zeng et

al., 2020). Furthermore, previous studies have shown that many of the datasets

used had several limitations, such as size, up-to-dateness, and diversity which

could affect the performance of the final solution (Verma et al., 2019; Aassal

et al., 2020; Sánchez-Paniagua et al., 2020). In addition, Verma et al. (2019)

and Aassal et al. (2020) stated that the current anti-phishing domain lacks multi-

modal feature-based reliable phishing datasets, which is a current requirement.

Even though these issues have been discussed in the literature, there is still a

lack of a well-established systematic approach for collecting large-scale phish-

ing data for future anti-phishing initiatives.

3. Lack of latest phishing data: A well-labelled dataset is vital in anti-phishing re-

search. Similarly, up-to-date phishing data is also essential to enhance real-world

detection. In an anti-phishing study, if the training step uses old examples, the ul-

timate goal of the study will be useless since it may not perform well at present.

As a solution to this problem, some previous studies have used (Wang et al.,

2019; Yang et al., 2019; Orunsolu et al., 2019; Butnaru et al., 2021) phishing

verification systems like PhishTank. Although these systems are a good choice,

they only provide limited information (e.g., URL information), as explained in

Section 3.3. Therefore, as Sahoo et al. (2017) and Aassal et al. (2020) high-

lighted, the lack of a reliable source for collecting the latest phishing data is an

early challenge for any anti-phishing study.

4. Data drifting leads to model decay: Phishers are moving with the technology.

As a result, they are keen to use new technologies to change their attacking

strategies (Aassal et al., 2020; Alkhalil et al., 2021; Alabdan, 2020). However,

such attempts negatively impact the existing models because these new attempts

modify the significant phishing detection features employed in phishing attacks

(Aassal et al., 2020; Sánchez-Paniagua et al., 2020). For example, consider

the use of HTTPS in modern attacks. In 2017, only 30% of phishing attacks

used HTTPS in their attacks. Therefore, earlier solutions (R. M. Mohammad
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et al., 2013; El-Alfy, 2017; Jain & Gupta, 2018b) used HTTPS as a significant

phishing detection feature. However, the use of HTTPS in phishing attacks has

reached an 80% level at present and almost tally with HTTPS usage on legitimate

websites (APWG, 2021b). As a result, the importance of the HTTPS feature

in phishing detection is degraded presently. This indicates that the constantly

changing phishing attacks change the significant features that could easily be

used to detect phishing attacks. It causes a problem for existing anti-phishing

solutions because these changes reduce their performance (Aassal et al., 2020;

Opara, Wei, & Chen, 2020; Opara, Chen, & Wei, 2020; Sánchez-Paniagua et al.,

2020). Therefore, frequent updates of significant phishing detection features are

critical to maintaining the performance of these anti-phishing solutions. Even

though this has been identified, it is a challenge for anti-phishing solutions due

to a lack of effort in systematic knowledge acquisition processes (Sahoo et al.,

2017; Aassal et al., 2020).

5. Issues in third-party feature representation: According to Yang et al. (2019),

multi-modal features are critical for an effective anti-phishing solution because

it reflects phishing attacks from different perspectives. However, many of the

previous solutions (Bahnsen et al., 2017; Wang et al., 2019; Opara, Chen, &

Wei, 2020; Feng et al., 2020; Butnaru et al., 2021) have relied heavily on URL

and HTML features since third-party features such as domain age, Alexa rank-

ing, and Google ranking mainly cause service delays and increase the detection

time (Li et al., 2019; Sahingoz et al., 2019). Therefore, if a solution is planned

to design on third-party services to get the support of multi-modal features for

effective phishing detection, the designers should consider a better strategy to

handle these service delays to satisfy their end-users.

6. Adversarial attacks: Adversarial attacks are mainly associated with machine

learning-based solutions (Sahoo et al., 2017; Shirazi et al., 2019; Kashyap,

2020). These attacks could be categorised under privacy attacks, adversarial

inputs at runtime, and data poisoning (Kashyap, 2020). Furthermore, these at-

tacks can convert well-performing models into incorrect predictions and lower
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their trustworthiness (Shirazi et al., 2019). Therefore, adversarial attacks are

challenging for current machine learning-based anti-phishing solutions.

3.8 Problem definition

Phishing is a type of fraud that primarily targets personal or confidential information,

damaging Internet credibility (Alabdan, 2020; Alkhalil et al., 2021). It is one of the

most successful forms of cybercrime on today’s Internet and has grown from thou-

sands to hundreds of thousands over the last several years (Alabdan, 2020; Alkhalil et

al., 2021; APWG, 2021b; ENISA, 2021). According to the literature, phishing miti-

gation has been considered the most successful strategy against these attacks, which

mainly depends on a successful phishing detection (Khonji et al., 2013; Alabdan, 2020;

Alkhalil et al., 2021). Therefore, academics and the industry have worked together to

develop successful phishing detection solutions for many years (Teraguchi & Mitchell,

2004; Sheng et al., 2007; Prakash et al., 2010; Baslyman & Chiasson, 2016; Bahnsen

et al., 2017; Li et al., 2019; Jain & Gupta, 2016; Opara, Chen, & Wei, 2020; Feng et al.,

2020). These efforts have been categorised mainly into user education and software-

based solutions, and out of these, software-based solutions have shown some promising

results, especially machine learning-based solutions (Khonji et al., 2013; Bahnsen et

al., 2017; Li et al., 2019; Opara, Chen, & Wei, 2020; Feng et al., 2020; Alkhalil et al.,

2021).

However, existing anti-phishing solutions are inadequate for detecting new phish-

ing attacks when significant phishing detection features emerge rapidly on the Internet

(Aassal et al., 2020; Opara, Wei, & Chen, 2020; Opara, Chen, & Wei, 2020; Sánchez-

Paniagua et al., 2020). As a result, the performance of these anti-phishing solutions

is declining over time, and it has become a significant problem in the current anti-

phishing domain (Aassal et al., 2020; Opara, Wei, & Chen, 2020; Opara, Chen, &

Wei, 2020; Sánchez-Paniagua et al., 2020).The primary reason for this problem is the

insufficient focus that existing anti-phishing solutions have received when integrating

newer phishing detection features into their systems (Aassal et al., 2020; Opara, Wei,

& Chen, 2020; Opara, Chen, & Wei, 2020; Sánchez-Paniagua et al., 2020). This ob-
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servation becomes evident when examining the “KAP” column in Table 3.4. It reveals

that only a few solutions (Opara, Chen, & Wei, 2020; Opara, Wei, & Chen, 2020)

have recognized the necessity of such an approach to ensure the accuracy of the anti-

phishing solution. However, none of these solutions have actually implemented this

approach to address the issue of declining performance.

Even though the literature identified the leading cause of the main problem, the

anti-phishing domain currently lacks a systematic way of incorporating the latest phish-

ing detection features into anti-phishing solutions due to various challenges, as dis-

cussed in Section 3.7. Therefore, this research aims to develop an autonomous anti-

phishing solution that can update the existing phishing detection knowledge via a sys-

tematic knowledge acquisition process to reduce the impact of phishing attacks on

Internet users.

3.9 Summary

In the phishing mitigation process, phishing detection is an essential step. User ed-

ucation and software-based solutions are the two most common phishing detection

approaches, and out of these, machine learning solutions which are classified under

software-based solutions, have attracted a lot of phishing detection interest. It is mainly

due to the learning ability of these machine learning solutions, especially deep learning

solutions, which can extract features from raw data. Even though these solutions exist

on the Internet, they are unprepared for newer phishing attacks due to many challenges.

Therefore, the study aimed at an anti-phishing solution with continuous learning sup-

port to automatically update the effective phishing detection features. As the starting

point, the next chapter discusses the proposed methodology and explains the essential

stages to be followed when achieving the aim of the study.
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4 RESEARCH METHODOLOGY

4.1 Introduction

Chapter 3 provided a comprehensive review of the literature on phishing detection,

which is the core area of this study. It also defined the research problem and justi-

fied the aim. As mentioned in Chapter 3, this study aims to develop an autonomous

anti-phishing solution that can update the existing phishing detection knowledge via a

systematic knowledge acquisition process. This chapter introduces the methodology as

the initial step in that direction. It discusses the research design, solution implementa-

tion, environment setup, and methodological limitations to illustrate how this research

attained its goals.

4.2 Research design

This study was primarily motivated by the increasing trend of phishing attacks noticed

over the last few years. Phishing attacks primarily target the digital assets of Internet

users and directly affect the credibility of the Internet. As a result, phishing mitigation

is a timely need, and it always depends on successful phishing detection. Therefore,

the goal of this study was to develop a phishing detection approach that could reduce

the impact of phishing attacks.

Phishing detection is generally a classification task where the detection knowledge

depends on previous examples. According to Villiers (2012), the research on phishing

detection follows the positivism research philosophy since the detection knowledge

can be reproduced. Following this philosophy, previous works on phishing detection

were first analysed to understand the problem domain. This analysis discovered that

existing phishing detection solutions had performance losses over a brief period (two

months) due to a lack of attention dedicated to adopting newer phishing detection
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features into their solutions. However, some of these solutions have regained their

usual performance after updating their phishing detection knowledge with the latest

phishing examples. According to these findings, if a successful knowledge acquisition

process can be integrated with an anti-phishing solution, it can retain the phishing

detection ability for a more extended period. Therefore, this research aims to develop

an autonomous anti-phishing solution that can update the existing phishing detection

knowledge via a systematic knowledge acquisition process to reduce the impact of

phishing attacks on Internet users.

This study followed a deductive reasoning since the proposed solution depends on

the existing anti-phishing solutions. Therefore, these solutions were first analysed to

identify the effective techniques employed in previous solutions. As a result, several

distinct phishing detection techniques were identified in Chapter 3. In recent years,

machine learning techniques have attracted most of the interest in phishing detection

mainly due to their ability to learn and their previous success in detecting phishing

attacks. Therefore, machine learning was selected as the appropriate technique for

achieving the mentioned goal.

Since this research came under a quantitative research approach and followed an

experimental research strategy, the study’s experiments were conducted in controlled

simulated environments with data. Therefore, the data collection step of the methodol-

ogy was essential. Also, this research aimed to update the existing phishing detection

knowledge through an automatic process in different time frames. As a result, time-

series data was required to update the existing phishing detection knowledge and eval-

uate the proposed architecture. Since the data were collected at multiple time points,

the time horizon was longitudinal.

A machine learning-based research has a set of standard steps: data collection,

pre-processing, model building and evaluation (Kamiri & Mariga, 2021). Thus, these

steps were effectively utilised in the proposed implementation process, which used

three phases, as shown in Figure 4.1. Section 4.3 discusses these three phases in detail

by justifying the design artefacts employed. A more detailed overview of the imple-

mentation process is divided into chapters since each phase included several sub-steps,
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Figure 4.1: Research methodology
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as shown in Figure 4.1. Therefore, Chapters 5, 6, 7, and 8 explain each phase of the

implementation process and the final solution in detail.

The literature review identified a critical challenge after the solution was fully im-

plemented. It was the impact of adversarial attacks, which was discussed in Section

3.7. According to that, these attacks generally come under three categories: privacy

attacks, adversarial inputs at runtime, and data poisoning. Even though the privacy

attacks could be managed through solid security practices like strong passwords and

a secure physical setup, adversarial inputs at runtime were identified as a threat to the

proposed solution. As a solution to this threat, a Generator Network (GN) was im-

plemented with the support of a deep learning-based generative model called GAN to

generate some possible adversarial inputs. These inputs were then used to train the

proposed solution to detect these attacks in future. This GAN technique is explored

in detail when introducing the GN architecture used in the final solution in Chapter

8. However, the third adversarial attacking type is minimal in the proposed solution

because the used knowledge acquisition process primarily depends on self-generated

data created after a systematic verification step. Therefore, these attacks were not con-

sidered during the implementation process.

The final solution was constructed after connecting the components mentioned

above (i.e., phase two outcome, knowledge acquisition process and GN). This solu-

tion was then deployed as a Representational State Transfer (RESTful) web service,

and was integrated with a web browser environment implemented by this study. Af-

ter that, the proposed solution was evaluated using a simulated browser environment,

and the results were thoroughly analysed and discussed. The conclusion of the final

solution was discussed in terms of the aims and objectives to justify how the identi-

fied problem was solved through the proposed solution in the latter phase. Finally, the

research was concluded by making a few future recommendations that could improve

the solution performance further to detect more complex phishing attacks in the future.
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4.3 Solution implementation

According to Section 4.2, the solution was implemented in three phases: Phase 1:

Phishing detection with URL and HTML, Phase 2: RL-based phishing detection frame-

work, and Phase 3: Knowledge acquisition process. The following sections discusses

the implementation process for each phase by justifying the design considerations

used.

Phase 1 implementation: Phishing detection always depends on the significant

features employed to detect a phishing attack. Therefore, in Chapter 3, these features

were analysed and clustered under three main categories: URL-based, HTML-based,

and third-party (see Table 3.1). Even though the features from all these three cate-

gories are essential for better phishing detection, various previous solutions depended

on URL-based and HTML-based phishing detection features due to limitations existing

with third-party features, such as the detection time and service cost.

According to the analysis shown in Table 3.1, the internal features (i.e., URL-based

and HTML-based) are the most vulnerable to phishing attacks because phishers have

more control over them. Therefore, these internal features need to be retrained occa-

sionally to detect the latest phishing attacks to overcome the first and fourth challenges

mentioned in Section 3.7. Therefore, this phase one outcome was limited to URL-

based and HTML-based phishing detection features, and this was one design constraint

used in the initial design of the proposed solution.

As mentioned previously, the current study was driven by the machine learning

technique. Therefore, manual or representation learning techniques were suitable for

extracting significant phishing detection features. However, according to the study’s

aim, manual techniques were inappropriate because they required human involvement.

Therefore, a representation learning technique called deep learning was selected to

construct the phase one phishing detection solution. Various machine learning research

have used deep learning, as shown in Chapter 3, although these has mostly been lim-

ited to the URL-based category. Therefore, a deep learning-based phishing detection

solution with raw HTML content could not be found in the initial stage.

As a result, a novel approach was constructed in this study to analyse raw HTML
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content to detect phishing attacks. It was GCN-based and the first method to phishing

detection to employ GNN. Although deep learning was used in the implementation

process, it is a black-box technique that does not allow for interpreting the significant

phishing detection features employed in this solution. However, this constraint added

a plus point to the proposed solution because these crucial features are hidden from the

outside; therefore, the phishers could not easily bypass the proposed solution. After

forming the design level decisions, the phase one solution was implemented with two

deep learning architectures to manage a given website’s URL and HTML content.

Here, the URL part of the website was overseen by an LRCN architecture and HTML

content analysis was performed by a GCN architecture. This implementation included

several steps, as shown in Figure 4.1. Chapter 5 discusses these steps in detail when

introducing the complete implementation of the phase one solution.

Following the successful implementation of the phase one solution, an anti-phishing

solution with 96.4% detection accuracy and a 0.036 FN rate was produced. Even

though it performed well during the experiment, the performance of the phase one so-

lution declined by 9.35% for one year time. It indicated that the phase one solution

performance was also affected over time, similar to the previous anti-phishing solu-

tions. It implied that the phase one solution was affected by the research problem. Al-

though retraining could improve the performance of this solution, this step demanded

an enormous number of data because deep learning models require a large amount of

data for a good training phase. However, according to the second and third challenges

identified in Section 3.7, collecting a large amount of data in a shorter period is dif-

ficult in the phishing domain. As a result, phase two was proposed to minimise the

performance drop until a retraining step was met.

Phase 2 implementation: All neural network solutions, in general, involve func-

tion approximation in their learning curves (Smadi, 2017), and these solutions could be

regarded function approximation machines meant to accomplish statistical generalisa-

tion (Goodfellow et al., 2017, p. 169). However, when finding the optimal behaviour,

the network depends on the preliminary information available in the training dataset

(Smadi, 2017). Although this scenario is expected in the supervised learning paradigm,
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it becomes a problem for neural network solutions that function in environments like

phishing, where frequent changes and the latest examples are limited (Smadi, 2017;

Sahoo et al., 2017; Aassal et al., 2020). In such cases, the Reinforcement Learning

(RL) approach was proposed (Smadi, 2017). Since RL uses the trial-and-error con-

cept, it is more appropriate to overcome the challenges of finding more latest data

since it can learn through experience (Smadi, 2017; Sutton & Barto, 2018). Therefore,

the phase one solution was upgraded to an RL-based phishing detection framework

during phase two.

RL is an active machine learning approach that is based on the interaction between

an intelligent agent and the environment (Sutton & Barto, 2018). In RL, an agent is

responsible for learning optimal behaviour for a certain situation by interacting with the

environment and gathering knowledge (Sutton & Barto, 2018). The main disadvantage

of RL systems is the high computational costs associated with achieving the optimal

policy (Tizhoosh, 2005; Smadi, 2017). Therefore, the current work selected only three

observations to have an uncomplicated RL environment to work with less execution

power. These observations are the phishing probability produced by the phase one

solution, the popularity of a website and the present blacklist knowledge.

The main problem with the phase one solution was the performance degradation

over time due to constantly changing phishing attacks. It might be due to the significant

phishing detection features employed by this solution because the phase one solution

relies entirely on internal features. Therefore, attackers have more freedom to change

their strategies to create newer attacks. In contrast, the phase two solution used two

external factors alongside the phishing probability generated by the phase one solu-

tion. As a result, this second phase solution may slightly alter the phase one decision

depending on its experience with the other two aspects because this second solution is

an RL environment. For example, if the phishing probability of a phishing website was

0.49, the phase one solution identified this website as a legitimate website. However,

if the RL has past phishing website experience with a non-popular website with a 0.49

phishing chance, the RL may identify this website as a phishing website within the RL

environment. This example scenario is possible in phase two because the phase one
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solution is dependent on prior knowledge, whereas RL works in the real world using

its experience.

Phase two produced a phishing detection framework. According to the results of

the experiments, phase two output achieved 94.11% detection accuracy, whereas phase

one achieved only 87.82% detection accuracy with the same experiment. It has been

demonstrated that the phase two implementation achieved its objective. However, the

entire implementation process cannot be discussed here because it includes several

steps, as illustrated in Figure 4.1. As a result, Chapter 6 describes the steps followed

when implementing the phase two output, including experiments and results.

Although the phase two solution addressed the performance drop problem identi-

fied in phase one, retraining these two solutions (i.e., phase one and phase two outputs)

was required when addressing the fourth challenge presented in Section 3.7. As a re-

sult, phase three was critical in achieving the study’s aim. This phase was primarily

implemented to collect data for the phase one solution’s retraining process and pro-

vide feedback to the phase two solution to continue its learning process. However,

it followed a systematic approach from data collection to knowledge acquisition, as

described in Chapter 8.

Phase 3 implementation: According to A. H. Mohammad and Al Saiyd (2010),

a successful knowledge acquisition always depends on the entity that can provide the

related knowledge. In phishing detection, this entity is phishing or legitimate web

pages. However, legitimate web pages are easy to collect because these are typical

websites available on the Internet. A simple Google search can provide more than a

hundred thousand legitimate web pages to acquire knowledge for phishing detection.

However, phishing data collection is challenging due to the second and third chal-

lenges mentioned in Section 3.7. Therefore, a systematic approach to collect and label

phishing websites was an initial requirement, and it was identified as an existing gap in

the anti-phishing domain. As a result, a gap-filling solution named PhishRepo, which

collects, verifies, disseminates, and archives real-time phishing data, was proposed in

phase three. Although this solution is used for phishing data collection, it has an in-

teractive phishing data labelling process, which can be used to label both phishing and
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legitimate data. Chapter 7 discusses more details about this solution.

The main objective of this knowledge acquisition process was to provide the latest

data to update the existing phishing detection knowledge of the phase two solution. In

that case, the recent phishing web pages are the perfect source to update the existing

phishing detection knowledge (Khonji et al., 2013; Alkhalil et al., 2021). On the other

hand, the phase two solution continuously interacted with the real environment when

detecting phishing attacks. Therefore, the implemented RL environment in phase two

was considered the appropriate place to collect recent phishing and legitimate data. Al-

though the required data could be collected from this RL environment, proper labelling

of these data was vital in the quality learning process.

However, in real-world execution, the RL environment often receives a large num-

ber of web page requests, and labelling each web page becomes a hard, time-consuming,

and costly task. Therefore, the concept of active learning was selected to overcome the

labelling bottleneck (Settles, 2009). Active learning is a subset of machine learning

that queries an information source to label new data due to the difficulties of labelling

every data point collected by a solution (Settles, 2009). There are several active learn-

ing techniques (Settles, 2009), and out of those, a pool-based active learning technique

was selected to label unlabelled web pages.

As shown in Figure 4.2, active learning depends on an Oracle. Therefore, the

current study selected PhishRepo as Oracle. Even though this PhishRepo could pro-

vide the Oracle service, sending more legitimate data made some problems in the

PhishRepo process. As mentioned in Chapter 7, the PhishRepo labelling process con-

sists of two parts, the first of which is automated and the second of which is dependent

on crowd workers. The main intention of the first step was to reduce the workload of

crowd workers. As a result, if a web page is labelled in the first stage, it will not proceed

to the second step. Further, this first verification step depends on two primary phishing

verification systems since PhishRepo intended to collect phishing data. Therefore, if a

legitimate web page comes to this verification process, this web page ultimately goes

to the crowd workers. It was considered an overload for the crowd workers because

simple services like Google search ranking can verify the legitimacy of a web page
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Figure 4.2: The active learning cycle
Source: Settles (2009, p. 4)

Active learning is a machine learning approach that involves iteratively selecting and annotating the most
informative or uncertain data samples for training a model. By actively selecting the most informative
data samples for annotation, active learning can achieve higher model performance with fewer labeled
data points compared to traditional supervised learning approaches.

within a few seconds. Although this Google ranking service has some drawbacks (see

Chapter 3), the implementation process decided to use this service only to verify the

high probability legitimate websites marked by the RL agent to reduce the number

of legitimates that were sent to Oracle. Therefore, when selecting the active learning

strategy, a hybrid of expected model change and uncertainty sampling strategies were

considered to label the unlabelled data (Settles, 2009).

The expected model change strategy generally labels the data item, which is more

critical when changing the model behaviour. Therefore, with this strategy, all the

phishing web pages marked by the RL agent were sent to Oracle because phishing

examples are vital when updating the existing phishing knowledge. The other selected

strategy depended on the uncertainty. Since all the phishing data were selected with

the first strategy, this strategy only applied to the legitimate web pages. Therefore, high

uncertainty legitimate web pages were also sent to Oracle for correct labelling. The

uncertainty was measured by a formula derived from Shannon’s entropy (Shannon,
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1948):

Ew =−
N−1

∑
i=0

pi log2 pi (4.1)

where Ew is the entropy for a given web page, N is the number of possible labels (i.e.,

phishing, and legitimate), and pi denotes the legitimate and phishing probabilities of

the web page, which were output by the phase one solution.

However, the disqualified legitimate web pages were separately verified using Google

Search. It was merely a verification phase, and only the potential web pages were

checked. Since the number of legitimates was higher than phishing in real execution,

the labelling strategy did not introduce further problems. The implemented knowledge

acquisition process included several steps, and Chapter 8 presents more details about

the proposed knowledge acquisition process.

4.4 Environment setup

A successful environment setup is essential in a machine learning-based study to pro-

duce a good output. Therefore, the following considerations were made during a suc-

cessful implementation process.

1. Programming language: Python

The most used programming language in machine learning-based studies is Python

(Kamiri & Mariga, 2021). Therefore, this study selected Python version 3.7

since it was the latest Python version available in the initial stage of this study.

The python environment was installed from Anaconda3-2019.03-Linux-x86_64

distribution.

2. High-level library: Keras8

Keras and Apache MXNet are the two popular high-level neural network APIs

used in Pythonic environments (Ramasubramanian & Singh, 2018). However,

Keras is a widespread library with good community support (Ramasubramanian

& Singh, 2018). Therefore, Keras was selected as the high-level library for the

implementation tasks.
8https://keras.io/
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3. Backend engine: TensorFlow

There are several backend engines like TensorFlow, Theano, and CNTK in the

current dataflow programming industry (Ramasubramanian & Singh, 2018). How-

ever, TensorFlow is the most efficient (Ramasubramanian & Singh, 2018), and

this study also depended on TensorFlow version 2.1, which was the latest in the

initial stage of this study.

4. Hardware capability: CPU based machine

The solution was implemented in a CPU-based machine since it was affordable

and readily available for this study. However, this machine was used only to

function the final solution. The primary implementation process required a high-

end machine, which is described in point five of this section. The basic machine

was Intel(R) Xeon(R) CPU @ 2.30GHz virtual machine with one core and 8 GB

of memory. It had 52GB of hard disk capacity.

5. Cloud infrastructure: Google cloud

This study used high-end deep learning architectures like GCN. It was not ob-

tained from the local environment due to resource constraints. Therefore, as

an alternative way, this study decided to use cloud infrastructure since it was

the most affordable and flexible solution due to time and budget constraints.

Therefore, Google cloud was selected based on its attractive packages and cost-

effectiveness. This cloud platform provided Intel(R) Xeon(R) CPU @ 2.20GHz

based deep learning virtual machine with eight cores and 192 GB of memory. It

further had 100GB of hard disk capacity.

6. Database engine: MySQL

This study selected a free and open-source database engine called MySQL due

to budget constraints. However, this solution did not use any high-end database

processes. Therefore, MySQL had all the features to fulfil the database require-

ment of the implementation process.

7. GNN library: Spektral9

9https://graphneural.network/
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Spektral is a Python library for deep graph learning based on the Keras API

and TensorFlow. It is a simple and flexible framework for creating GNNs. This

study used Spektral version 0.3 during the implementation process since it was

the latest in the initial stage of this study.

4.5 Methodological limitations

As with most studies, the current study’s design is subject to limitations as follows.

1. The text/html content type HTML pages were only considered.

The HTML pages nowadays have different content types. For example, appli-

cation/pdf, where the content is delivered as a PDF file, and text/html, where

the content is delivered as a generic HTML page. However, all these content

types cannot be used with this study’s graph generation process due to specific

structural differences compared to a generic HTML page. Therefore, text/html

content type HTML pages were only considered during this study by filtering

them through the content-type meta tag.

2. The significant phishing detection features used during the detection are not

visible to the outside due to the used technique.

This study used deep learning as it is an intelligent technology in situations

where automatic feature extraction is frequently needed. However, deep learning

technologies are black-box types, and the internal structure is not visible to the

outside. Therefore, the lack of interpretability of the used feature in the proposed

phishing detection approach is a limitation of this study.

3. Existing phishing detection knowledge was updated only in three months,

and optimal retraining time was not assessed due to infrastructure and re-

source limitations.

This study used a knowledge acquisition process to update the existing knowl-

edge of the phishing detection features and provide feedback to the implemented

RL environment. However, updating the current phishing detection features in-

volved high-end deep learning techniques like GCN, requiring high-end compu-
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tational power. Therefore, due to the infrastructure limitations, the performance

loss was examined after three months, and regular check-ups were not performed

to determine the optimal retrain duration. Furthermore, this study discovered a

lack of up-to-date data to conduct a retraining process when time is limited.

Therefore, a three-month interval for the retraining was defined and used several

times.

4. The RL environment of the proposed solution used delayed feedback mech-

anism due to the lack of resource limitations (i.e., human experts).

The proposed solution has an RL environment responsible for getting the final

decision on a given web page. It is based on actions and rewards. However, the

rewards depend on the feedback given by the external party, and it was incorpo-

rated with the implemented labelling process. Since the labelling process started

two days after the submission, the feedback for action was delayed for at least

two days. Therefore, after two days of delay, the agent learned about its past

actions.

4.6 Summary

This research was motivated by the increasing number of phishing attacks in cyberspace.

Phishing detection is a successful strategy against phishing attacks that entirely de-

pends on previous theories. Although there are numerous anti-phishing solutions, they

are ineffectual against continually evolving phishing attempts due to their lack of readi-

ness. Therefore, this study proposed a new phishing detection approach that involved

a systematic knowledge acquisition process. However, implementing this solution was

not straightforward due to its complexity. Therefore, this proposed implementation

was planned in three subsequent phases organised in several chapters. The next chap-

ter discusses the first phase of the implementation process, named phishing detection

with URL and HTML.
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5 PHISHING DETECTION WITH URL AND HTML

5.1 Introduction

Chapter 4 discussed the research methodology followed by the study when achieving

the research aim. It also justified specific design artefacts with the methodological lim-

itation the solution experienced during the research design. Further, the methodology

chapter highlighted that the proposed solution was implemented in three phases. This

chapter focuses on phase one of these three, implementing a phishing detection solu-

tion with URL and HTML features. This chapter first discusses the overall design of

the solution. Then, data collection and preprocessing, model training, and evaluation

steps are discussed. Finally, a result and discussion section highlight the effectiveness

of the phase one implementation when achieving the study’s aim.

5.2 Overview of the solution

In the initial stage of this study, there was no deep network model10 in the phishing

detection domain that used representation learning to extract features simultaneously

from URLs and HTML contents. However, several solutions effectively utilised deep

learning with URLs (Bahnsen et al., 2017; Wang et al., 2019; Sahingoz et al., 2019;

Butnaru et al., 2021). Therefore, the study planned to have two separate deep network

models to handle URL and HTML features and combine the knowledge at the end

to have a collective decision. For referencing simplicity, these models were given

meaningful names. The model that handled URL features in the detection process

was named URLDet, and the HTMLDet was the other one that handled the HTML
10The first model that uses representation learning to extract features simultaneously from URLs

and HTML contents was introduced in November 2020. This study output was also presented to the
scientific community at that time. However, due to the publication procedure, this study could not get
the credit of the first model.
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features. Then, the complete model means that the concatenation of URLDet and

HTMLDet was named Deep Learning Model (DLM). However, the DLM building

logic was first tested using a hybrid approach in the study’s initial stage. Section 5.2.4

describes the used hybrid approach in detail, and the following sections (Section 5.2.1

to Section 5.2.3) describe the followed design process when implementing the DLM.

5.2.1 URLDet

Malicious URL detection through deep learning is a popular topic in the anti-phishing

domain (Sahoo et al., 2017). This study first analysed different architectures used

by previous studies. Then, the LRCN deep learning architecture with a CNN layer

followed by an LSTM network (Donahue et al., 2015) was selected due to its past

performance (Pham et al., 2018; Yang et al., 2019). In LRCN architecture, the CNN

could work as a front layer to extract useful local features from raw URLs, and then

LSTM extracts contextual features (Yang et al., 2019). Hence, the URLDet model was

designed based on LRCN architecture. As shown in Figure 5.1, the URLDet model

has three primary parts: preprocessing, feature extraction, and classification.

Figure 5.1: Workflow of the URLDet model

5.2.1.1 Preprocessing

A typical website URL looks like Figure 5.2. However, the feature extraction will be

done by the deep learning architecture in deep learning approaches. Therefore, the
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URL needs to be in machine-understand language and not in Figure 5.2 format. In

neural network architecture, the inputs need to be in a vector of numbers to perform

mathematical operations (Wang et al., 2019). Hence, the study wanted to preprocess

the collected URLs to have a numeric format as the first step.

Figure 5.2: The typical structure of a URL
Source: Yang et al. (2019, p. 15198) and Sahingoz et al. (2019, p. 348)

At first, each character of a URL is considered a word, and the vocabulary index

was created based on word frequency using the text_tokenizer and fit_text_tokenizer

methods from the Keras library to have a word-index dictionary. The URL corpus for

the dictionary was the URLs available in the training set of the classic dataset (see

Section 5.3). Then, the texts_to_sequences Keras method transformed each character

in the URL into a sequence of integers. In that process, each character in the URL was

replaced with the corresponding integer value from the word-index dictionary to have

a numeric format for a given URL.

As shown in Figure 5.3, the input layer of the URLDet was a tensor, and the tensor

must have the same shape throughout the training process. Therefore, the study gen-

erated the character length distribution on the URLs available in the classic dataset.

The distribution looked like Figure 5.4, and the URLs did not have the same size to

produce the same shape. Therefore, as the second step of the preprocessing task, the

URLs were normalised to have the same character lengths and a maximum length of

150. That value was selected based on the URLs’ character length distribution, and

as shown in Figure 5.4, most of the URLs were fully represented when it came to the

150th character. Thus, in the normalisation process, the URLs with more than 150
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character lengths were chopped at the 150th character, and if the URL did not contain

150 character length, then the remaining character length was filled with 0s to have the

same input shape. The Keras pad_sequence method was used during the normalisa-

tion process by setting the padding argument to ‘post’ to fill the zeros at the end when

necessary. Algorithm 1 shows the preprocessing procedure for a 150-size sequence to

feed the URLDet model.

Figure 5.3: The URLDet architecture

Figure 5.4: Character length distribution of the URLs
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Algorithm 1 URL preprocessing procedure
1: procedure URLPREPROCESS(url, wordindexdic)
2: maxlen← 150
3: padding← post
4: url_int_tokens← wordindexdic.texts_to_sequences(url)
5: url_normalised← pad_sequences(url_int_tokens, maxlen, padding)
6: return url_normalised

5.2.1.2 Feature extraction

After the preprocessing step, the URLs were ready for the feature extraction. The

LRCN was responsible for this task, and Figure 5.3 shows the proposed LRCN ar-

chitecture for the URLDet. When designing the proposed architecture, the study fol-

lowed the evolution approach that used random values to fine-tune hyper-parameters

and network structure (Smadi, 2017). Therefore, the study used different CNN and

LSTM layers with different hyper-parameter values. Then, the presented architecture

was selected as the reasonable architecture. However, due to the time constraints of

the study, all the different type of combinations with hyper-parameters and different

network structures was not evaluated during the implementation process. Hence, the

proposed model was built with the most influential architecture (Figure 5.3) found

through the experimented architectures.

First, the preprocessed URLs were passed to the input layer in feature extraction.

Then the input layer passed that input to the embedding layer to have a vector rep-

resentation. The embedding layer was configured to have a vocabulary size of 100,

256 dense embedding dimensions, and a 150-length input sequence with 1e-5 valued

L2 regulariser function. The result of the embedding layer was then inputted to the

1D convolutional and Maxpooling layers for the feature extraction, and the layers col-

lectively extracted local deep correlation features from the embedding matrix. The

window size of the 1D convolutional layer was set as three, and it had a 256 output

size with the Rectified Linear Unit (ReLU) activation function. Further, the ‘he uni-

form’ initialiser with ‘zeros’ bias was used in the 1D convolutional layer, and the L2

regulariser function was also applied with the value of 1e-5. Then the result of the

pooling was inputted into the first LSTM layer.
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The LSTM network was responsible for carrying out the representation learning

task, especially capturing the context of the URL sequence using the local features

extracted from the CNN layer. In that process, the LSTM layers used a Hyperbolic

Tangent (Tanh) activation function in a 32 output space with a 1e-5 valued L2 regu-

lariser function. Further, the last moment output of the first LSTM layer was inputted

to the second LSTM layer, and it further extracted the contextual features from the

URL sequence. Finally, the last moment of the LSTM neural network was sent to

the classifier for the classification task. Further, as shown in Figure 5.3, the dropout

strategy was applied in several places to prevent overfitting in the feature extraction

process.

5.2.1.3 Classification

After the feature extraction step, the classifier was responsible for the final decision

about the URL. Since the URL is legitimate or phishing, the study built the classifier

using a dense layer with the sigmoid activation function. Further, the study selected

the binary cross-entropy loss function as the target loss function since this was a bi-

nary classification problem. However, when selecting the optimising strategy for the

target loss function, the study underwent different optimisation strategies and found

that Adaptive Moment Estimation (Adam), which is an improvement of the Stochastic

Gradient Descent (SGD) algorithm, was the perfect selection for the current scenario

(Yang et al., 2019). Therefore, it used Adam optimiser to minimise the target loss.

Figure 5.5 shows the summary of the URLDet model and the full implementation of

the model presented in Appendix A.1 for further reference.

5.2.2 HTMLDet

HTML is the primary language used when building web pages. As shown in the liter-

ature (R. M. Mohammad et al., 2013; Subasi et al., 2017; Pratiwi et al., 2018; Li et al.,

2019; Opara, Wei, & Chen, 2020; Opara, Chen, & Wei, 2020; Feng et al., 2020), the

HTML content of the web page has provided some essential features when detecting

phishing attacks. However, in the initial stage of this study, there was no representation
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Figure 5.5: The URLDet model summary

learning approach11 to extract significant HTML features automatically. Although the

representation learning was not practised, manual feature extraction was highly used

to collect HTML features since it was an essential source when detecting phishing at-

tacks (R. M. Mohammad et al., 2013; Subasi et al., 2017; Pratiwi et al., 2018; Li et al.,

2019).

However, when it comes to representation learning, any input needs to be con-

structed in a machine-understandable way to perform some task (Wang et al., 2019).

Therefore, it was a challenge in the initial stage of the study since there was no clue

on how to convert an HTML page into a machine-understandable way. Thus, the study

11Opara, Wei, and Chen (2020); Opara, Chen, and Wei (2020); Feng et al. (2020) came in latter part
of the study.
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first considered doing a thorough literature analysis of different deep learning architec-

tures used in different studies. Then, this study’s interest was focused on an interesting

novel architecture called GCN (Kipf & Welling, 2016). GCN is a compelling neu-

ral network architecture that operates on graphs (Kipf & Welling, 2016). In general,

graph (G) is a pair of nodes (V) and edges (E) which is denoted as G(V, E) (Scarselli

et al., 2009). A GCN takes an input feature matrix (X) and graph structure (A). The

input feature matrix is an N × D matrix, where N is the number of nodes, and D is the

number of input features for each node (Kipf & Welling, 2016). Similarly, the graph

structure is an N × N adjacency matrix representation (Kipf & Welling, 2016).

Further, Bianchi et al. (2021) proposed a new filtering mechanism over the tradi-

tional polynomial filters called Auto-Regressive Moving Average (ARMA) filters to

improve the GCN architecture. The experiment shows that ARMA achieves higher

mean accuracy and lower standard deviation than the traditional GCN approach in

graph classification (Bianchi et al., 2021). Furthermore, Bianchi et al. defined a Graph

Convolutional Skip (GCS) layer in that work and proposed GCS with ARMA filters

for better performance in the GCN architecture.

Technically, the HTML content of a web page contains HTML tags called ele-

ments, and elements have been attributed to providing additional information about the

element. Further, an attribute usually comes in name/value pair like name = ‘value’.

As shown in Figure 5.6, the HTML content has a tree structure, and the study identi-

fied that the HTML tree structure could be used to generate a graph. Since the HTML

content can be extended to a graph structure and GCN architecture is effective with

graphs, the study selected GCN as the deep learning architecture to process the HTML

content. However, it could not be done directly. Therefore, as shown in Figure 5.7,

the HTML content also had to go through three primary parts: preprocessing, feature

extraction, and classification.

5.2.2.1 Preprocessing

GCN architecture requires two inputs: adjacency matrix (A) to describe graphs struc-

ture and feature matrix (X) to describe node features. The HTML content was first

78



(a) Sample HTML code (b) Tree view of the given HTML code

Figure 5.6: Example of an HTML page in a tree view

converted into a graph in an adjacency and feature matrix. However, the study could

not find any systematic way to convert HTML content directly into a graph. Therefore,

it had to decide a way to do it. In the process of doing this, initially, the HTML ele-

ments were selected as graph’s nodes, and the attributes of those elements became the

node features. However, the HTML tag did not carry an equal number of attributes.

As a result, the feature matrix was in different sizes, making it unacceptable in GCN

architecture since GCN requires the same set of features for all nodes (Kipf & Welling,

2016). Thus, the study had to reconsider the graph generation process.

Figure 5.7: Workflow of the HTMLDet model

In the second approach, the study selected HTML elements and those elements’
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attributes as the graph’s nodes, and the node features were node labels, which means

tag or attribute name, and values, which means the value of the tag or attribute. The

HTML elements do not contain any values; those contain only the labels. However, the

attributes usually have labels and values. In the second approach, the feature matrix or

the X became N × 2 matrices since each node has only two features: label and value.

Then the problem of having different feature matrix sizes was solved with the second

approach. Therefore, the study selected it to extract nodes and features to construct the

graph.

The graph was generated based on Algorithm 2 in the preprocessing step. It gets

two inputs: the URL of the website and the HTML content, and outputs adjacency

matrix and feature matrix. The algorithm first selects the graph nodes by selecting the

elements and attributes available on the page. Then, the node’s features are filled with

element or attribute names and any value associated with the attribute. However, the

element node’s value feature is always empty since it has only the name and does not

carry any value. Then, based on the parent-child relationship, the graph’s edges are

decided hierarchically. For example, consider the following HTML code example to

understand how Algorithm 2 process this code to construct a graph.

<p>

<img src = ‘a.jpg’ alt = ‘example-image’/>

</p>

In the above example, the HTML element, ‘p’ and ‘img’, and ‘img’ element at-

tributes, ‘src’ and ‘alt’, are considered nodes. Therefore, the example has four nodes:

p, img, src, and alt. First, the Algorithm label these nodes with a unique identification

number. It starts from the top element and hierarchically goes to the bottom and gets an

integer value starting from one. The attributes of an element also get an integer value

starting from one, but it has a specific format: first, element label, then underscore

character, and finally, the relevant integer value. For example, consider ‘img’ element

‘src’ attribute. The algorithm label it as 2_1 since two is the ‘img’ element identifi-

cation number, and one is the identification number of the ‘src’ attribute. Therefore,

in the above example, nodes get 1, 2, 2_1 and 2_2, respectively. After the labelling
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Algorithm 2 Graph generation procedure
1: procedure GRAPHGENERATION(url, HTMLContent)
2: node← integer
3: node_ f rom← integer
4: attr_node← integer
5: nodes_list← list object
6: attr_list← list object
7: name← string
8: value← string
9: separator← string

10: initialisation:
11: node← 0
12: name← label
13: value← value
14: separator← _
15: extraction:
16: node_ f rom← node
17: node++
18: for element in HTMLContent do
19: attr_node← 1
20: nodes_list← tuple(node_from, node)
21: attr_list← concatenate(node, name, element_name)
22: attr_list← concatenate(node, value, empty_string)
23: for attribute in element do
24: attr_node_label← concatenate(node, separator, attr_node)
25: nodes_list← tuple(node, attr_node_label)
26: attr_list← concatenate(attr_node_label, name, attribute_name)
27: attr_list← concatenate(attr_node_label, value, attribute_value)
28: attr_node++

29: goto extraction.
30: nodes_list remove oth element
31: attribute_list remove 1st element
32: attribute_list insert 1st element← concatenate(1, value, url)
33: generation:
34: graph← node_list
35: ad jacency_matrix← graph
36: attr_list← doc2vec(attribute_name, attribute_value in attr_list)
37: f eature_matrix← attr_list
38: return ad jacency_matrix, f eature_matrix
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step, the edges list is generated based on the relationship of those two nodes. Here, the

edges list is (1, 2), (2, 2_1), and (2, 2_2). Then, these nodes and edges construct an

adjacency matrix. Figure 5.8 presents two graph representations that came through Al-

gorithm 2. Graph A is relevant to the given example HTML code, and graph B shows

the constructed graph for Figure 5.6 HTML code through Algorithm 2.

(a) Graph A (b) Graph B

Figure 5.8: Example graphs constructed from the graph construction process

The subsequent output that Algorithm 2 produced was the feature matrix. It is also

generated simultaneously to the edges list. However, the feature values were converted

to a machine-understand format using the doc2vec transformation technique (Q. Le

& Mikolov, 2014) when generating the feature matrix. A domain-specific doc2vec

model was first constructed before the experiment using the classic dataset web pages

corpus, and the trained doc2vec model was used to transform feature values into a

vector format. Table 5.1 shows the feature matrix of the above example. It shows

values in a human-readable format; however, values are in vector format in actual

execution.

Further, as additional information, the study decided to use the URL of the website

under the ‘html’ element by introducing a feature called ‘url’. It is not a common

attribute that comes with ‘html’ elements but was intentionally added because some

studies have shown that the URL of the website has a direct relationship with several

html elements (i.e., a, img, script, and link) in a webpage (Jain & Gupta, 2018a; Chiew

et al., 2019). Therefore, as supporting information, the study decided to add the URL

of the website for the first node of each graph generated through Algorithm 2.
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Table 5.1: Input X values

Node / Feature Label Valuea

1 p
2 img
2_1 src a.jpg
2_2 alt example_image

aThe values are transformed to a vector format in real execution using doc2vec.

5.2.2.2 Feature extraction

The feature extraction process of the HTMLDet model consisted of an input layer and

three GCS layers with pooling layers. The reason to use GCS layers was the Bianchi et

al. (2021) study. They experimentally showed that GCS with ARMA filters is better in

terms of performance in GCN architecture. However, the model required three inputs

with GCS layers: the adjacency matrix, the feature matrix, and segment ids. Then the

requirement of three tensors was originated to capture those inputs. Mainly, it wanted

a sparse tensor to capture the adjacency matrix. However, the preprocessing step could

only generate two inputs: adjacency matrix and feature matrix. Therefore, the third

input, segment ids, was needed before the input layer. However, segment ids depend

on adjacency and feature matrix based on Spektral documentation. Thus, this study

used Spektral inbuilt method to generate the third input.

Like in URLDet, the HTMLDet also used an evolution approach when building

the GCN architecture. Therefore, a different number of GCS layers with different

hyper-parameters were exercised. Then, Figure 5.9 architecture was selected based on

the performance. However, all combinations were not experimented with during the

study due to time constraints, and the best structure and hyper-parameter values were

selected based on performed experiments. All GCS layers consisted of 32 channels

in the selected structure and used ReLU as the activation function. Further, all the

GCS layers used the L2 regulariser function with the value of 1e-3 and ‘he uniform’

initialiser with ‘zeros’ bias.

Similarly, all the MinCutPool layers also used ReLU as the activation function, L2

as the regulariser function with the value of 1e-3 and ‘he uniform’ initialiser with ‘ze-

ros’ bias as kernel and bias initialisers. Further, the k value of the MinCutPool layer

83



Figure 5.9: The HTMLDet architecture

was decided using the number of average nodes. However, the last layer, GlobalAvg-

Pool, was used by the study with the default settings since the layer generates a feature

map for the classification task.

First, the three inputs were passed to the input layer during the feature extraction

process. Then, the input layer converted those into tensors, and two of those, the ad-

jacency matrix and feature matrix, were inputted to the first GCS layer to carry out

graph nodes’ feature representation. Then, the output of GCS was passed to the Min-

CutPool layer. The MinCutPool layer was responsible for constructing the aggregated

features. Therefore, initial segment ids were passed to the MinCutPool to construct the

aggregated features with relevant adjacency and segment ids.

Then the aggregated features were outputted by the first MinCutPool layer and

were passed to the second GCS layer for more abstract feature representation. The

GCS and MinCutPool processed the node features in the same way as the previous and

outputted relevant feature matrix, adjacency matrix, and segment ids. Then the second-

level feature matrix was again passed to the third GCS layer for a more deep feature

representation. After the third GCS layer completed the feature extraction process, its

output was inputted to a GlobalAvgPool layer and generated one feature map for the

classification task.

5.2.2.3 Classification

Once the feature map was ready, the next task was to classify the input based on the

constructed feature map. It was done through a dense layer with a softmax activa-

tion function. The study used the softmax activation function since it had shown bet-
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ter performance than the sigmoid activation function in several experiments done at

the design stage of the model. The study selected the categorical cross-entropy loss

function since softmax was used as the activation function to adjust the network’s

weights. However, when selecting the optimising strategy for the target loss function,

the study followed the same criteria explained under URLDet model implementation

(Section 5.2.1.3) and selected Adam optimiser to minimise the target loss. Figure 5.10

shows the summary of the HTMLDet model and the full implementation of the model

presented in Appendix A.2 for further reference.

Figure 5.10: The HTMLDet model summary

5.2.3 Deep learning model (DLM)

The primary task of the DLM was to classify whether a given website is phishing or not

based on the URL and HTML content of the website. After constructing the URLDet

and HTMLDet models, the next challenge was combining those outputs to make a

collective decision. In that task, the study followed the concept of transfer learning
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that aims to improve the performance of the final model. During this process, the two

models, URLDet and HTMLDet, were separately trained and saved (see Section 5.4).

Then, the classification parts of the models were removed, and both feature vectors

were concatenated to form the final feature vector yk
c(x), as in equation 5.1. It was a

64-length vector since both URLDet and HTMLDet feature vectors were 32-length.

yc(x) =Concat(yk
c(x)) k ε {1,2} (5.1)

Then a dense layer with two neurons was added as the output layer of DLM, and

the softmax activation was enabled to distinguish between phishing and legitimate

websites. Further, DLM used Adam optimiser with a categorical cross-entropy loss

function to optimise the difference between actual and predicted outputs. As shown

in Figure 5.11, the final model was implemented to get URL and HTML content as

inputs and output phishing and legitimate probability bypassing the inputs through the

URLDet and HTMLDet models. Figure 5.12 shows the plotted DLM model graph and

the full implementation of the model presented in Appendix A.3 for further reference.

Figure 5.11: The DLM architecture

5.2.4 Hybrid DLM

The purpose of the Hybrid DLM was to appraise the proposed DLM building logic

mentioned above, and some of the design considerations exist in the literature (i.e., the
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Figure 5.12: A plot of DLM model graph

use of LRCN architecture in malicious URL detection) with the classic dataset. Since

a representation learning-based HTMLDet model has not existed in the literature, the

study first planned to implement a phishing detection solution with the existing model-

building knowledge. It confirmed that the proposed approach was good from two sides.

First, the experiment results confirmed that the classic dataset not being used before
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was compatible with phishing detection tasks. Secondly, it confirmed that the proposed

primary logic and some design considerations were reasonable within a short time. For

example, with the Hybrid DLM, this study would check whether the LSTM or LRCN

works well in malicious URL detection. In literature, Pham et al. (2018) mentioned

that LRCN is a better approach. So, with the support of Hybrid DLM, this study proved

that Pham et al. argument is correct with evidence.

Further, the logic used to combine the outputs of URLDet and HTMLDet models

to produce a combined decision was also evaluated with Hybrid DLM. Since Hybrid

DLM performed well during the experiments (see Table 5.4), this study concluded that

the proposed logic was reasonable when detecting phishing attacks. Therefore, Hybrid

DLM played an essential role during the study by acting as a prototype solution to

validate some of the used design aspects.

When building Hybrid DLM, the URLDet model used the same deep learning ar-

chitecture proposed during the design of DLM (Section 5.2.3). However, the Hybrid

DLM’s URLDet model used only one LSTM layer, and when converting URLs into

the numeric format, it used Python’s printable class in the string package instead of

Keras’s inbuilt tokeniser due to its simplicity. Figure 5.13 shows the architecture of the

Hybrid DLM’s URLDet model, and Appendix A.4 presents the model implementation.

Figure 5.13: The URLDet architecture of the Hybrid DLM

However, the HTMLDet model in Hybrid DLM was a manual feature extraction-

based deep learning architecture since there were no representation learning-based

feature extraction solutions. Therefore, fifteen features were manually extracted and
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passed to a 1D convolutional network. All these features were already used in the pre-

vious solutions. The study selected those based on the importance and relevancy by

referring to the relevant literature. The features are as follows:

1. Number of hyperlinks (Jain & Gupta, 2016): Number of ‘href’ attributes rele-

vant to <a> in a web page.

2. Number of null pointers (Gu et al., 2013; Jain & Gupta, 2016): Number of

‘href’ attributes with the value empty or ‘#’ on a web page.

3. External link ratio (Gu et al., 2013; Jain & Gupta, 2016; Li et al., 2019): Ratio

between the total number of available hyperlinks and external links.

4. Personal data forms (Li et al., 2019; Gupta et al., 2016): Binary value was used

to check whether a <form> tag with one or more <input> child tags is available

on a page.

5. Length of the HTML page (Li et al., 2019): HTML code taken as a string and

its length calculated.

6. Number of <script> tags (Li et al., 2019): The number of <script> tags used

in the web page.

7. Number of <link> tags (Li et al., 2019): The number of <link> tags used in

the web page.

8. Number of <!–> tags (Li et al., 2019): The number of comments used on the

web page.

9. External resource ratio (Li et al., 2019): Ratio calculated using HTML tags

like <img> , <script> , and <link> .

10. Favicon (Chiew et al., 2019): Binary value was used to indicate whether a web

page had a favicon and loaded from the same domain.

11. Internal form ratio (Chiew et al., 2019): Ratio between the available <form> tags

and the number of form’s action attribute had the same domain or relative path.
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12. Abnormal form ratio (Chiew et al., 2019): Ratio between the available <form> tags

and the number of form’s action attribute contained a ‘#’, ‘about:blank’ or an

empty string.

13. External form ratio (Chiew et al., 2019): Ratio between the available <form> tags

and the number of form’s action attribute contained a URL from an external do-

main.

14. Title tag (Chiew et al., 2019): Binary value was used to check whether the

<title> tag was used one time on the page inside the head area.

15. Title tag and brand name (Li et al., 2019): Binary value was used to check

whether the <title> tag contained the URL brand name.

The study used a self-generated script (see Appendix B - HTML feature extractor)

to extract the features mentioned above. Like in the original HTMLDet, Hybrid DLM’s

HTMLDet also used HTML content and the website URL as inputs to produce the

values of these features. After extracting these features, the features were passed to a

1D convolutional network. It had an input layer, two 1D convolution layers, a pooling

layer, a flatten layer, a dense layer, and an output layer. First, the inputs were converted

to a floating-point value. Then, those values were shaped and passed to the convolution

layers, which used the ReLU activation function. Then the pooling and flatten layers

further processed the input and extracted local features. Those were then passed to

a dense layer with 32 neurons and ReLU activation function. Then the output of the

dense layer was fed to the output layer of the model. It was also a dense layer with one

neuron. Since phishing detection is a binary classification task, the sigmoid activation

function with binary cross-entropy loss function was used with Adam optimiser for

the optimisation task. Further, the dropouts were used after each convolution layer, as

shown in Figure 5.14, to avoid over fittings. Appendix A.5 presents the implemented

Hybrid DLM’s HTMLDet model.

After implementing URLDet and HTMLDet models, the outputs of both models

were added to produce a combined output for a given website URL and HTML con-

tent. However, the final layer of the Hybrid DLM was a single neuron-based dense
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Figure 5.14: The HTMLDet architecture of the Hybrid DLM

layer with a sigmoid activation function since the output was either phishing or legit-

imate. It used binary cross-entropy loss function with Adam optimiser when finding

the optimum mapping. Figure 5.15 shows the plotted Hybrid DLM model graph and

the full implementation of the model presented in Appendix A.6 for further reference.

5.3 Data collection and preprocessing

Phishing detection was considered a classification task containing two classes: legit-

imate and phishing. Therefore, the data collection process included the collection of

legitimate and phishing data to construct a dataset. Suppose a dataset has S amount of

data points where each data point consists of three parts: website URL (u), an HTML

content of the web page (w) and the label (y). A data point can be represented as ui, wi,

yi, where i indicates the index of the data point. Then, yi ε {0, 1}; yi = 1 corresponds

to a phishing website, and yi = 0 represents a legitimate website.

Data collection is a challenging task for any phishing detection solution since most

phishing websites are available online only for a few hours (Zeng et al., 2020). The

study had to collect URLs and the relevant web pages to support the implementation

process, and it made the task more challenging since there was no central place to col-

lect both at the same time (Sahoo et al., 2017; Aassal et al., 2020). Therefore, this

study had to collect these data at different times to construct a more reliable dataset.

As a result, the study used two primary self-constructed datasets. Those were named
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Figure 5.15: A plot of Hybrid DLM model graph

classic dataset and modern dataset. The classic dataset contained old data collected

before September 2019, and the modern had the latest data collected from December

2020 to October 2021. Other than these two, the study had used a separate dataset to
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compare the performance of the implemented solution with a well-performed similar

solution in the state of arts. It was named a benchmark dataset and collected from Feng

et al. (2020) study recently done in the anti-phishing domain that shows a reasonably

high detection accuracy compared to existing phishing detection solutions. These three

datasets were used in different scales during the experiments to have the training, test-

ing and validation tasks, and Table 5.2 presents the details of those datasets in each

task. After the datasets were collected, those datasets were preprocessed according to

the procedures mentioned in Section 5.2.1.1 and 5.2.2.1 to generate inputs for URLDet

and HTMLDet models.

Table 5.2: Details of the used datasets

Dataset Sub-dataset Legitimate Phishing Total

Classic
[40,000]

Training Set (TrC) 13,895 14,105 28,000
Validation Set (ValC) 2,006 1,994 4,000
Testing Set (TeC) 4,099 3,901 8,000

Modern
[50,000]

Training Set (TrM) 17,500 17,500 35,000
Validation Set (ValM) 2,500 2,500 5,000
Testing Set (TeM) 5,000 5,000 10,000

Benchmark
[46,096]

Training Set (TrB) 17,360 14,906 32,266
Validation Set (ValB) 2,480 2,130 4,610
Testing Set (TeB) 4,960 4,260 9,220

5.3.1 Classic dataset

As the name implies, the classic dataset contained data downloaded early in the study.

Therefore, all the data contained in the classic dataset were downloaded before Septem-

ber 2019. The classic dataset contained 40,000 data in an equal amount of phishing

and legitimate. The legitimate data were downloaded with the support of Google.

Since the Google search engine rank was used by several studies to select legitimate

websites (Zhang et al., 2007; Dunlop et al., 2010; El-Alfy, 2017; Odeh et al., 2021),

the study assumed that top-ranked Google search results belong to the legitimate cate-

gory. Therefore, the study selected a set of keywords (see Appendix B - Google search

keywords) from the Internet and passed those to the Google search engine. Once the

results were received from Google, the study selected the top ten URLs. However, this
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study did not select any already selected URL and always checked whether the URL

domain was listed in the selected list maximum of ten times to have a diverse dataset

(Aassal et al., 2020). The study used a self-generated script to perform legitimate data

download tasks, and it is available in the project source repository for further reference.

After the list of URLs was collected, this study fetched those URLs to download the

relevant web pages. Finally, the URLs and web pages were saved appropriately under

the classic dataset.

The phishing data was constructed with the support of PhishTank and a public

phishing website dataset (Chiew, Chang, et al., 2018). This public dataset contained

15,000 phishing website URLs with relevant web pages, which were downloaded from

March 20, 2016, to April 30, 2016, with the support of PhishTank. However, the study

did not use all of those since a preprocessing step was initially carried out to have

a quality dataset. In that step, first, all URLs were verified either by PhishTank or

GSB. Suppose one of those systems did not validate any URLs, then those were not

carried forward during the dataset construction. After the verification was done, the

verified URL’s webpages were again checked to remove some noisy data items like

webpages with 404 error status and some different content like hosting servers’ home

page due to the unavailability of the requested webpage. This study got the support

of the Beautiful Soup library12, and a self-generated script (see Appendix B - Noisy

data remover) was used during that task. After the preprocessing step, this study could

collect 5,060 amounts of data from this public dataset.

However, based on the previous studies (R. M. Mohammad et al., 2013; El-Alfy,

2017; W. Chen et al., 2018; Sahingoz et al., 2019), this study intended to collect 20,000

phishing data. Therefore, to fill the remaining numbers, this study used the Phish-

Tank phishing URL list. With the support of PhishTank API13, this study downloaded

phishing URLs and fetched those content to get the webpage. However, if the URL

was not accessible, those were removed, and only accessible URLs were saved under

the classic dataset with relevant webpages. Although a set of criteria were used when

downloading PhishTank data, the study again checked the downloaded webpages to

12https://pypi.org/project/beautifulsoup4/
13https://phishtank.org/api_info.php
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remove noisy data items, as mentioned before, to maintain the quality of the dataset.

After several iterations, the study collected 20,000 phishing data to construct the clas-

sic dataset. Then, to have a balanced dataset, the study selected 20,000 legitimate data

items alongside phishing data items to finalise the classic dataset.

After constructing the classic dataset, the 40,000 data items were divided randomly

into three sub-datasets: training, validation, and testing. 70% of the data was used for

the training, while the remaining 10% and 20% were used for validation and testing, re-

spectively. The amounts of legitimate and phishing data available in those sub-datasets

are mentioned in Table 5.2.

5.3.2 Modern dataset

Phishing attacks are constantly changing. Therefore, this study wanted to have data

on the latest phishing attacks and incorporate that knowledge with the implemented

model. The modern dataset was constructed with that intention, and it contained

50,000 data in an equal amount of phishing and legitimate. The legitimate data was

downloaded with the support of the Ebbu201714 dataset and Google search engine.

Ebbu2017 dataset contained legitimate and phishing URLs. However, the study con-

sidered only legitimate URLs since phishing data were old. First, the legitimate URLs

were selected and fetched from the Internet. If the page was not accessible, then that

URL was skipped. Otherwise, it was saved with the relevant webpage. However, the

study could collect 12,731 legitimate data from the Ebbu2017 dataset. Then, the re-

maining data items were collected using the Google search engine following the same

procedure followed during the classic dataset construction process mentioned in Sec-

tion 5.3.1.

Phishing data was mainly collected from PhishTank and OpenPhish. Since the

modern dataset was constructed to get the latest data, two scripts were primarily im-

plemented to download the latest phishing URLs from PhishTank (see Appendix B -

PhishTank data extractor) and OpenPhish (see Appendix B - OpenPhish data extrac-

tor). The scripts were executed every hour to communicate with PhishTank and Open-

14https://github.com/ebubekirbbr/pdd/tree/master/input
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Phish APIs to download the latest phishing URLs to minimise 404 errors experienced

with phishing pages due to their short-lived nature. The modern dataset construction

was done from December 1, 2020, to October 31, 2021.

After constructing the modern dataset, it was mainly split into two sub-datasets

as training and testing in a 4:1 ratio, and 10% of the training data were used for the

validation task during the model training. The experiments used a balanced dataset

during the training process. Therefore, equally legitimate and phishing data were listed

under all sub-datasets of the modern dataset, as displayed in Table 5.2.

5.3.3 Benchmark dataset

The purpose of the benchmark dataset was to compare the model’s performance with

an anti-phishing solution introduced by Feng et al. (2020) that has shown some in-

teresting performance in phishing detection during the study’s period. Therefore, the

benchmark dataset was constructed using a publically shared dataset15 that was used

by Feng et al. (2020) to evaluate their model. The benchmark dataset contained 24,800

legitimate data items and 21,296 phishing data items. Since the Feng et al. dataset

had URLs and relevant web pages, there was no need to fetch the web pages sepa-

rately. However, seven phishing pages had some issues when extracting the down-

loaded dataset. Therefore, the benchmark dataset from the original dataset excludes

those seven data items. In the Feng et al. dataset, the phishing data were collected

from September 2019 to November 2019. Although those data were old compared to

the study’s modern dataset, it was used as the benchmark dataset since a similar solu-

tion that performed well over others had used this dataset. Hence, to have an accurate

comparison, this dataset was required. Further, during the experiments, the benchmark

dataset was split into three sub-datasets: training, validation and testing, the same as

the modern dataset. The amounts of legitimate and phishing data available in those

sub-datasets are mentioned in Table 5.2.
15https://github.com/Hanjingzhou/Web2vec

96



5.3.4 Diversity of datasets

Out of those three datasets, the classic dataset was used only in the initial stage of

the study to train the URLDet model, HTMLDet model and DLM. The performance

of the proposed model and the benchmark task were done with modern and bench-

mark datasets. Therefore, those datasets were analysed to check for their diversity

before being used for performance evaluation or benchmark tasks. Aassal et al. (2020)

mentioned that the diverse dataset in an anti-phishing study is essential for a more gen-

eralised trained model. However, Aassal et al. (2020) mentioned that there is no widely

accepted method to check the diversity of a dataset, and they have used the number of

different domains and the number of different TLDs when checking the diversity of

their dataset.

The current study used two distribution graphs, URL length and secure and non-

secure representation, alongside Aassal et al. (2020) criteria to analyse the diversity

of the used datasets. Those two distribution graphs were used because of two rea-

sons. First, the literature has shown that HTTPS in phishing attacks has an increasing

trend (APWG, 2021a). Therefore, the study wanted to check whether the collected

datasets presented this trend to confirm the reliability of the dataset. Next, Verma et

al. (2019) mentioned that the URL length distribution is essential to have unbiased,

accurate model training since if a feature like URL length is not well distributed, it

may become a prominent feature and leads to a biased model at the end. Therefore, the

study used the number of different domains, the number of different TLDs, the distri-

bution of HTTPS, and the distribution of URL length when analysing the diversity of

modern and benchmark datasets.

When analysing the domains and TLDs distribution, this study inherited Aassal et

al. (2020) procedure. First, a list of unique domains and TLDs were collected sepa-

rately from each dataset and used in calculating those frequencies. Then, the top fifty

domains and TLDs were selected and used in calculating the percentage of those pro-

portionally to the size of the relevant dataset. Then those were plotted to have the

domains and TLDs distribution as shown in Figure 5.16. In URL length distribution

analysis, the number of characters of a URL was considered the URL’s length (Li et
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(a) Modern dataset (b) Benchmark dataset

(c) Modern dataset (d) Benchmark dataset

Figure 5.16: Distributions of domains and TLDs in the modern and benchmark datasets

al., 2019). Then the length was calculated, and the URLs were divided into several

intervals to have more meaningful insight into the distribution. This study selected 20

as the interval after several intervals since it was the more descriptive and convenient

presentation. Figure 5.17(a) shows the URL distribution of the two datasets. Then, the

HTTPS analysis was mainly based on whether the URL used HTTPS or not. There-

fore, the URLs were divided into two categories based on the HTTPS appearance of

the URL. After that, the number of URLs that came under each category was counted

to draw Figure 5.17(b) distribution.

The results obtained through domain and TLDs analysis show that both datasets

were not biased to a specific set of domains or TLDs. However, the URL charac-

ter length and HTTPS distribution (Figure 5.17) interpreted a different viewpoint of

these two datasets. Figure 5.17(b) shows that the benchmark dataset’s legitimate URL

98



(a) Modern dataset (b) Benchmark dataset

(c) Modern dataset (d) Benchmark dataset

Figure 5.17: Distributions of URL length and HTTPS in the modern and benchmark
datasets

character lengths were positively skewed, and most URLs had come under the HTTP

category. However, the modern dataset had well-distributed data under both these crite-

ria. Therefore, the modern dataset was comparatively more diverse than the benchmark

dataset. Thus, the study had used the benchmark dataset only for benchmark tasks, and

the evaluation was done with the modern dataset since it presented the real phishing

attacking nature.

5.4 Model training

As described in Section 5.2, the study mainly had two models: Hybrid DLM and DLM.

Therefore, the model training section discusses these two separately since those two

had different intentions.
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5.4.1 Hybrid DLM training

The hybrid DLM was mainly trained with the classic dataset. However, it was trained

with the modern dataset once the benchmarking task was performed in the DLM model

evaluation. During the training, first, the URLDet and HTMLDet were separately

trained and saved to the disk using the h5py package (see Appendix A.4 and 5). Then

the complete solution, Hybrid DLM, was trained for 50 epochs with a 0.001 learning

rate. Figure 5.18 shows the Hybrid DLM’s accuracy and loss curves. However, the

performance graphs indicated a performance loss of the validation dataset once the

epoch exceeded ten. The study identified it as an overfitting scenario. Then, the early

stopping technique was applied and trained again. The Hybrid DLM was trained and

evaluated three times to avoid data biases that could exist in the selected data, and

the selection was made with the support of the model selection function in Python’s

scikit-learn library.

(a) Accuracy curve for train and validation set (b) Loss curve for train and validation set

Figure 5.18: Hybrid DLM performance curves

5.4.2 DLM training

The DLM model was trained in two phases. In the first phase, the model was trained

with the classic dataset. Then, in the second phase, it was retrained from the modern

dataset since the study wanted to have a realistic model before having the final perfor-

mance evaluation of the DLM. However, due to the nature of modern and benchmark

datasets, the study had retrained phase one DLM again with a benchmark dataset to
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have an accurate performance comparison with Feng et al. (2020) solution.

5.4.2.1 Training with the classic dataset

The modern dataset construction process took nearly a year since it collected most of

the data daily. Thus, the initial level of the study used the classic dataset. Therefore,

the classic dataset was used to train the sub-models: URLDet and HTMLDet and the

DLM model in three separate steps. First, the URLDet model was trained with 64 batch

sizes and a learning rate of 1e-4 for 500 epochs. Since the early stopping technique

was used, the training process was stopped at the 355th epoch. Then, the trained model

was saved and given the name ‘URLDet.h5’. Figure 5.19 shows the accuracy and loss

curves of URLDet for both training and validation data. Next, the HTMLDet model

was trained using a batch size of one since one was a requirement in ARMA filters and

a learning rate of 1e-3. Here, the early stopping technique was applied to avoid over-

fitting, and the training was stopped in the 272nd epoch, as presented in Figure 5.20.

The trained model was again saved to the disk with the name ‘HTMLDet.h5’. Finally,

DLM was trained with a batch size of 1 and a learning rate of 1e-5. In DLM training,

the training process was stopped at the 79th epoch due to the applied early stopping

criteria. Figure 5.21 illustrates the DLM training process’s accuracy and loss curves.

Training and validation data were selected based on Table 5.2 in all these steps.

(a) Accuracy curve for train and validation set (b) Loss curve for train and validation set

Figure 5.19: URLDet performance curves
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(a) Accuracy curve for train and validation set (b) Loss curve for train and validation set

Figure 5.20: HTMLDet performance curves

(a) Accuracy curve for train and validation set (b) Loss curve for train and validation set

Figure 5.21: DLM performance curves in phase one training

5.4.2.2 Training with the modern dataset

After a successful phase one training, the DLM was retrained with the modern dataset

in phase two to have a realistic performance evaluation process since the phishing na-

ture is rapidly changing and the classic dataset was comparatively old. The retraining

used a batch size of 1 and a learning rate of 1e-5 like in phase one and completed train-

ing within 292 epochs. Figure 5.22 shows the phase two training process’s accuracy

and loss curves. After phase two training, the DLM was ready for evaluation. Table 5.2

was referred to when selecting training and validation data for the retraining task.

5.4.2.3 Training with the benchmark dataset

After a successful diversity analysis stage, the study concluded that the benchmark

dataset was not well diverse compared to the modern dataset. Therefore, as explained
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(a) Accuracy curve for train and validation set (b) Loss curve for train and validation set

Figure 5.22: DLM performance curves in phase two training

in Section 5.4.2, the DLM that was retrained with the modern dataset was not suitable

for carrying out the benchmark task since it was more biased in specific criteria. There-

fore, as a solution, the phase one DLM was retrained with the benchmark dataset to

have model compatibility with the benchmark dataset to have an accurate comparison.

The same batch size and learning rate exercised in phase two training were used in

the benchmark training phase as well. After the successful training phase, the trained

DLM was used to compare its performance with the Feng et al. (2020) solution.

5.5 Model evaluation

Like in training, the evaluation process was also conducted separately for Hybrid DLM

and DLM models.

5.5.1 Hybrid DLM performance

Hybrid DLM was used only to confirm whether the planned architecture effectively

detects phishing attacks. Therefore, the study performed an overall performance check

with the Hybrid DLM, and also it was benchmarked with different architectures to

validate the effectiveness of the selected architecture. Table 5.3 shows the overall

performance of the Hybrid DLM with the classic dataset, and Table 5.4 presents the

detection accuracies of different architectures with a selected test dataset.

103



Table 5.3: Hybrid DLM performance evaluation

Accuracy Precision Recall f1-score
Experiment 1 98.49% 98.23% 98.75% 98.44%
Experiment 2 98.46% 98.74% 98.18% 98.41%
Experiment 3 98.07% 98.39% 97.77% 98.02%
Average 98.34% 98.45% 98.23% 98.29%

Table 5.4: The Hybrid DLM comparison with different architectures

Architecture Feature Set Accuracy
LSTM only only URLs 88.67%
LSTM + 1D Conv only URLs 96.20%
1D Conv only 15 HTML Features 91.70%
Hybrid DLM 15 HTML Features and URLs 97.74%

5.5.2 DLM performance

The DLM was the main output of phase one of the implementation process. Therefore,

it was evaluated under four main criteria: overall performance, benchmarking, zero-

day attack detection, and detection time. The following sub-sections describe those in

detail.

5.5.2.1 Overall performance

After the initial training of the DLM, the solution was evaluated on TeC and TeM

datasets. Then, after phase two training was concluded, the model was re-evaluated

with the TeM dataset. Table 5.5 shows the results for the specified performance metrics

during these evaluations.

Table 5.5: DLM performance evaluation

Dataset Phase Accuracy Precision Recall f1-score
TeC Phase 1 96.64% 97.59% 95.80% 96.69%

TeM
Phase 1 87.29% 86.35% 88.58% 87.45%
Phase 2 96.42% 96.40% 96.44% 96.42%
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5.5.2.2 Benchmarking

DLM was benchmarked in two ways. First, it was used with three benchmark models:

URLDet, HTMLDet, and Hybrid DLM. Then, it was evaluated with the benchmark

dataset to compare the model’s performance with a similar solution that outperformed

all state of art solutions.

All the benchmark models were initially trained with the modern dataset in the first

experiment. Then, the performance was evaluated using the TeM dataset. Table 5.6

shows the obtained results of the experiment. In the second experiment, the phase

one DLM was trained on the benchmark dataset and evaluated the before and after

performance of the DLM using the TeB dataset. Table 5.7 presents the results achieved

by the second experiment.

Table 5.6: The DLM comparison with selected phishing detection models

Model Feature Set(s) Accuracy Precision Recall f1-score

URLDet URL Only 94.81% 95.57% 93.98% 94.77%
HTMLDet HTML Only 89.87% 91.18% 88.28% 89.71%
Hybrid DLM URL + HTML* 96.95% 96.98% 96.28% 96.51%
DLM URL + HTML 96.42% 96.40% 96.44% 96.42%
*Manually extracted HTML features

Table 5.7: The DLM performance evaluation with the benchmark dataset

Accuracy Precision Recall f1-score

Before Train with TrB 86.65% 94.58% 75.42% 83.92%
After Train with TrB 99.57% 99.41% 99.65% 99.53%

5.5.2.3 Zero-day attack detection

A zero-day attack, essentially a new or not yet reported attack detection, is a vital fea-

ture to be considered in any anti-phishing solution. Therefore, DLM was evaluated

against zero-day attacks through a specific testing procedure exercised in previous

studies (Thakur & Verma, 2014; Butnaru et al., 2021) with the support of a famous

GSB blacklist.
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During the experiment, the PhishTank was continuously monitored through a self-

generated script (see Appendix B - PhishTank data extractor). The script was executed

every hour and collected verified phishing URLs submitted in the last hour. Then,

the collected URLs were submitted to DLM and GSB API simultaneously. Once the

results of those two were available, those were separately recorded. After a while, the

second attempt was carried out using the URLs that were not marked as phishing by

Google during the first attempt. However, the study recorded a more than 24 hours

delay between the first and second attempts since 47%-83% of phishing URLs are

added to the blacklists after 12 hours (Khonji et al., 2013). Then, if a submitted URL

did not receive a phishing flag from Google in the first attempt but received it in the

second attempt, it was considered a zero-day attack. Finally, the correct decisions

made by DLM over the zero-day attacks were calculated to get a conclusion about

DLM’s zero-day attack detection ability. The experiment was done for three days, and

the results can be seen in Table 5.8.

Table 5.8: Results of the zero-day attack detection experiment

1st Attempt
Date*

2nd Attempt
Date

f1 f2 f3 f4 f5

20-11-2021 22-11-2021 53 49 16 04 04
21-11-2021 23-11-2021 217 188 101 18 17
22-11-2021 24-11-2021 135 128 85 06 06

*URLs submitted to the PhishTank on this date were only used
f1 - Number of phishing websites downloaded from PhishTank
f2 - Number of phishing websites correctly detected by the DLM
f3 - Number of phishing websites correctly detected by Google Safe Browsing API
f4 - Number of zero-day attacks recorded by the experiment
f5 - Number of zero-day attacks correctly detected by the DLM

5.5.2.4 Detection time

The average detection time for a given website was calculated using 3,000 randomly

selected data from the TeM dataset. The achieved results have shown that DLM takes

1.8 seconds average time when responding to the given requests, as shown in Fig-

ure 5.23.
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Figure 5.23: DLM detection time curve

5.6 Results and discussion

As mentioned in the design stage, the two models: Hybrid DLM and DLM, were evalu-

ated for different purposes. The Hybrid DLM acted as the prototype model to evaluate

the proposed primary architecture of the solution and validate the classic dataset’s com-

patibility when training a deep learning network. Table 5.3 showed 98.34% average

detection accuracy in the Hybrid DLM. It indicates that extracting URL and HTML

features separately and combining the significant features to make the final decision

works well when detecting phishing attacks. Table 5.4 illustrates it more precisely by

ranking the proposed architecture well over the other architectures on the same dataset.

As shown in Table 5.4, URLDet and HTMLDet achieved 96.20% and 91.70% detec-

tion accuracy, respectively, and after combining those in the proposed way, the result

was 97.74%. Therefore, based on the Hybrid DLM results, it is clear that the proposed

primary architecture of the phase one solution is effective in phishing attack detection.

Further, it proved that the LRCN architecture that was suggested by the literature in

malicious URL detection was superior compared to the LSTM architecture since the
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LRCN achieved 7.53% more detection accuracy compared to the LSTM.

Furthermore, Section 5.5.1 experiment also proved the effectiveness of the clas-

sic dataset in deep learning tasks. Since there is no standard mechanism to check the

quality and quantity of the training dataset in a successful deep network training, the

study used Section 5.5.1 experiment to show its effectiveness. The experiment used

three different portions of the training, testing, and validation dataset, and all the ex-

periments achieved more than 98% detection accuracy. It illustrates that the training

model always sees enough phishing and legitimate examples from the classic dataset

to select significant phishing detection features to improve detection accuracy.

The DLM was introduced from Hybrid DLM as the original solution. It mainly

addresses the part of the RQ1. The DLM is a brand new idea that uses robust GNN ar-

chitecture. It has experimentally shown that it can detect phishing attacks with 96.42%

accuracy. The DLM performs well against zero-day attacks, and it is more practical in

real-time since it takes only 1.8 seconds to take a decision on a single request. Further,

the DLM was benchmarked with the benchmark dataset to compare the performance

with the Feng et al. (2020) solution. As shown in Table 5.7, the DLM achieved 99.57%

detection accuracy on the benchmark dataset, and it is well above Feng et al. (2020)

achieved accuracy.

However, the accuracy is not a good metric to compare two machine learning-

based phishing detection models. The results available in Table 5.5 and 5.7 illustrates

that more precisely. According to the experiment, the DLM accuracy with the modern

dataset was 96.42%, but it achieved 99.57% with the benchmark dataset. According to

Aassal et al. (2020), it is because of the diversity of the dataset. The study has clearly

shown that the benchmark dataset is not diverse since it failed two used criteria during

the diversity analysis. However, the modern dataset is diverse and reliable. It indicates

that the accuracy is not a perfect metric when comparing two detection models if both

are not using the same dataset. However, it also highlights the importance of sharing

the used dataset with the research community once a detection model is built. Then, as

this study did, the others can also use the dataset to benchmark and compare models.

However, the study had identified that the benchmark dataset was biased. Therefore,
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the more realistic detection accuracy of the model is considered 96.42%.

Furthermore, the FNR of the DLM was calculated at 0.036 with the support of

Table 5.5. A low FNR is a good achievement of the DLM since FNR is critical in

a problem like phishing since marking a phishing website as a legitimate one has a

high impact in the anti-phishing domain. Further, the benchmarking results presented

in Table 5.6 proved that the used approach is better in phishing detection since it out-

performed both URLDet and HTMLDet models. However, the Hybrid DLM achieved

marginally high detection accuracy compared to the DLM. It may be due to manually

selected features in the Hybrid DLM. However, it will not be an effective solution when

achieving the research aim since it requires expert support when updating significant

phishing detection features.

In any phishing detection solution, zero-day attack detection is crucial. The DLM

achieved it more successfully. According to the zero-day attack detection experiment,

the DLM has correctly detected 27 attacks out of 28 attacks. It is proportionally

96.43%. Further, the solution’s overall accuracy was 90.12% during the experiment,

and it was well above the GSB API, which had only 49.88% detection accuracy. Like

zero-day attacks, detection time also plays a vital role in real-time phishing detection

since the high detection time always creates inconvenienced users in the end (Dou et

al., 2017). The DLM was successful in that case also since it recorded only 1.8 sec-

onds average detection time during the experiment. It is less compared to the Yang et

al. (2019) study since, after several tries, they only could achieve 3.5 seconds average

detection time in their solution. Therefore, in terms of the phishing detection accuracy,

detection time and effectiveness against zero-day attacks, the DLM has shown good

performance in real-time phishing detection.

Although the DLM is an effective anti-phishing solution, Section 5.5.2.1 experi-

ment highlights that the detection ability of the model declined by 9.35% during a one-

year time. This declining model performance over time was identified as the research

problem at the initial stage of this study. At this point, the study now experimentally

shows the identified problem’s reality because DLM performance decreased by 9.35%

within a year. However, after retraining on the modern dataset, Table 5.5 shows that
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the DLM had reclaimed its accuracy. It again proves the effectiveness of the retraining

process that was already proved in the literature. It also guarantees that the retraining

that updates the existing phishing detection knowledge of the model could improve the

model performance again to a reasonable level. Then, the remaining issues are how

to accomplish this retraining process systematically and how to minimise the perfor-

mance loss of this solution until the model reaches a retraining point, as retraining is

a difficult task as identified in Section 3.7 due to the difficulties in collecting training

data in phishing domain. The future chapters of this dissertation will discuss how this

study counters these challenges to achieve the proposed research aim.

5.7 Summary

This chapter delivered a phishing detection solution named DLM with 96.42% detec-

tion accuracy and a 0.036 FN rate with the help of LRCN and GCN deep learning

architectures that used URL and HTML features. However, the proposed solution

achieved 99.57% detection accuracy with a benchmark dataset, moving the solution to

the top of similar solutions. The DLM recorded a detection time of 1.8 seconds per web

page, and the proposed solution was very effective against zero-day attacks. However,

the DLM suffered from performance degradation like similar solutions. Therefore,

the subsequent phases proposed in Chapter 4 are critical for successfully resolving the

identified problem. As a result, the next chapter discusses phase two of the proposed

methodology.
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6 REINFORCEMENT LEARNING TO ENHANCE PHISH-

ING ATTACK DETECTION

6.1 Introduction

Chapter 5 introduced the first phase of the proposed implementation. It was a repre-

sentation learning-based phishing detection approach that simultaneously used URL

and HTML features. According to the proposed methodology, the next step of the

study was implementing phase two, a reinforcement learning-based phishing detection

framework. Therefore, this chapter first discusses the technology followed during the

phase two implementation. Then, the phase two solution elements, the proposed so-

lution, data collection and preprocessing, the solution training, and evaluation steps

are discussed. Finally, a result and discussion section highlight the importance of this

framework when achieving the proposed aim.

6.2 Reinforcement learning (RL)

RL is a branch of machine learning, and it learns through trial-and-error experience

(Sutton & Barto, 2018). The agent and the environment are core elements of an RL

framework, and a policy, a reward signal, and a value function are sub-elements of it

(Sutton & Barto, 2018). The following explains those in brief:

1. Agent: The agent is the learner and the decision-maker in the RL framework

(Sutton & Barto, 2018). In a typical RL problem, the agent observes the envi-

ronment and acts on a situation presented by the environment (Sutton & Barto,

2018; François-Lavet et al., 2018). The agent decides it based on a policy and

receives a pleasure or pain value called reward to estimate the produced decision

(Sutton & Barto, 2018).

111



2. Environment: The environment is what the agent interacts with. It includes ev-

erything other than the agent (Sutton & Barto, 2018). The environment produces

states for the agent, and once the agent takes action, the environment updates the

states to next.

3. Policy (π): Policy defines how an agent act at a given time and the core of an RL

agent (Sutton & Barto, 2018). It is a mapping between the perceived state and

the action (Sutton & Barto, 2018). For example, if an agent follows policy π at

time t, then π(a|s) is the probability that At = a if St = s. It further defines how

an agent should behave at a given time (Sutton & Barto, 2018; François-Lavet

et al., 2018). Therefore, it can be considered the brain of the agent. Since the

agent aims to achieve many rewards over the long run, the agent should find the

optimal policy that depends on an optimal action-value function.

4. Reward signal: This defines the goal of an RL problem. The agent observes the

environment and acts accordingly to receive a reward (Sutton & Barto, 2018;

Alkhalil et al., 2021). A reward is a numerical value used to encourage or dis-

courage the agent’s action in RL (Sutton & Barto, 2018; Alkhalil et al., 2021).

Since the agent is goal-directed and the goal is to maximise the expected cumu-

lative reward over time, the agent tries to learn the best sequence of actions to

maximise the total amount of rewards in the long run (Sutton & Barto, 2018;

Alkhalil et al., 2021). In that process, if an agent receives a low reward for a

specific action, the agent may change the action through policy change to get a

high reward in the future. Therefore, the reward signal is the primary basis when

altering an agent’s policy (Sutton & Barto, 2018).

5. Value function: The value function produces the long-term action effect for a

given state (Sutton & Barto, 2018). The value is the total amount of reward

an agent expects to collect over the future, and it is not immediate like rewards

(Sutton & Barto, 2018). Those are secondary since there are no rewards, mean-

ing there are no values. However, the RL always seeks the highest values regard-

less of the highest rewards since the value is the most important when selecting
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an optimal policy (Sutton & Barto, 2018).

Figure 6.1 illustrates a typical RL framework. According to Figure 6.1, at each step

t, t = 0,1,2,3..., the agent observed an environment’s state, st ∈ S, where S is a set of

possible states. Then the agent acts on the observed state, st, and selects the best action

at at ∈ A(st), where A(st) is the set of actions available for the state st. As a result of

the previous action, the agent receives a reward, rt+1 ∈ R, and the next observable state,

st+1 ∈ S, at a one-time step later. Each time step, the agent receives a reward relevant

to the previous state, rt, and defines whether the agent’s previous action is good or bad

(Sutton & Barto, 2018).

Figure 6.1: The agent–environment interaction in RL
Source: Sutton and Barto (2018, p. 54)

Generally, RL learns to control dynamical systems, which can be fully defined by

a Markov Decision Process (MDP) (Levine et al., 2020; Sutton & Barto, 2018). MDP

is built on top of the Markov property mentioned as the next state mainly depends on

the current state and the action taken at that state (Sutton & Barto, 2018). Generally,

MDP denotes a tuple (Smadi, 2017; Levine et al., 2020): (S, A, Tr, R) where S is the

state space for all possible states and A is the action or control space. Then, A(St)

becomes the possible actions set for a given S at time t. Furthermore, Tr defines the

state transition function, and R is the reward function. The reward maximises when it

is closer to the goal and reduces when it is away from the goal (Smadi, 2017).

The goal of RL is to learn a policy (Levine et al., 2020). It can be achieved

through different ways such as policy gradients, approximate dynamic programming
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(e.g. Q-learning and actor-critic) and model-based reinforcement learning (Levine et

al., 2020). RL is fundamentally in the online learning paradigm (Levine et al., 2020).

However, online learning is not always practical due to the cost of collecting data and

the dangers of using online data directly in a learning process (Levine et al., 2020).

Furthermore, online learning is unsuitable if the domain is complex and some gener-

alisation techniques are essential when using data (Levine et al., 2020). Therefore, the

literature suggests different RL paradigms: online reinforcement learning, off-policy

reinforcement learning, and offline reinforcement learning (Levine et al., 2020). Figure

6.2 shows the different architectures of those paradigms.

(a) Online RL (b) Off-policy RL

(c) Offline RL

Figure 6.2: Different types of RL architectures
Source: Levine, Kumar, Tucker, and Fu (2020, p. 2)
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6.3 Reinforcement learning model (RLM)

As mentioned in Section 4.3, reinforcement learning was the appropriate technology to

enhance the phase one solution. Therefore, the study was planned to implement an RL

environment called RLM during the enhancement step to decide whether a given web-

site is phishing or not. The RLM was implemented by adding the required elements

mentioned in Section 6.2. Figure 6.3 shows the implemented RLM.

Figure 6.3: The proposed RLM architecture

6.3.1 Environment

Generally, an agent interacts with the environment by gathering observations from a

given state (Sutton & Barto, 2018; François-Lavet et al., 2018). Therefore, the study

decided the state’s observations to support an effective agent action. First, the output of

DLM was considered. The DLM produces two primary outputs: legitimate probability

and phishing probability. Those two probabilities are interrelated, and the sum of both

becomes one always. Therefore, one of those was decided to select, and since the
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study’s aim is related to phishing detection, the phishing probability was selected as

the first observation value to produce the state of the RLM.

Since the DLM represents the internal phishing detection features, the study de-

cided to use external phishing detection features alongside phishing probability during

the RLM implementation, as mentioned in Chapter 4. However, the literature found

that the external features negatively impacted the solution by increasing the detection

time when using external features. Therefore, the study carefully selected only two

external factors initially to form an effective detection process in the RLM.

The first one, community decision, indicates whether the phishing community has

already identified a given web page as a phishing attack. It was derived from the black-

list feature listed in previous studies (El-Alfy, 2017; Bell & Komisarczuk, 2020). The

community decision was generated with popular phishing verification systems: Phish-

Tank and GSB. These two systems collaboratively work in the RLM, and if one of the

services previously recorded a given web page as a phishing attack, that information

would be passed to the RLM environment with the value of one or zero. One shows if

either PhishTank or GSB already identified the requested page as a phishing attempt,

and zero indicates that it was not detected as a phishing attempt. Even though the com-

munity may not always identify the attacks before RLM, if they are identified, then

that information makes the RLM process fast and more accurate since the agent could

observe it. Therefore, the fundamental theory behind the community decision was to

transfer the existing knowledge available in the phishing community about phishing

websites to the RLM agent to support the correct decision-making process. The study

only depended on PhishTank and GSB since those provide free API services, but the

RLM could use other specific services with little engineering effort if required.

The second external factor was Alexa global rank. It is identified as an essential fac-

tor in the literature to measure the popularity of the requested web page (L. D. Nguyen

et al., 2014; El-Alfy, 2017; Yang et al., 2019). The Alexa global ranking system16 is

an Amazon service that ranks millions of websites in popularity. The Alexa service

provides the popularity of a website starting from one, and one indicates the most pop-

16https://www.alexa.com/
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ular website over the past three months. If a given web page ranking was not available

in the Alexa service, the RLM made the ranking zero. Otherwise, the rank provided

by the service would be used as it is in the proposed solution. Since most phishing

attacks are reported from non-popular sources17, the popularity provides additional

information to the agent to make correct decisions.

In general, Alexa rank provides a sense of popularity about a website. It provides

a global rank ranging from 1-100,000 and higher. Therefore, the global rank factor

may intrinsically influence the agent more due to its value since other two factors are

in the range of 0-1. To avoid such a situation and converge gradient descents more

quickly, the normalisation process generated a normalised Alexa rank by bringing the

range into 0-1. Equation 6.1 was used in the normalisation process, and Ar denotes

the Alexa global rank for a given website. However, as mentioned previously, the

Alexa rank was zero if the Alexa service failed to provide a global rank for a submitted

website address.

Alexa rank =
1
Ar

(6.1)

In a general RL problem, the agent starts interacting with the environment by gath-

ering an initial observation in a given state (Sutton & Barto, 2018; François-Lavet et

al., 2018). In RLM, a state was a web page request; therefore, the agent-environment

interactions continued without a limit since the solution was constantly getting requests

in the real world. In the proposed architecture, the state was a three-dimension web

page request that overviews a web page regarding phishing probability, community

decision and Alexa global rank. Therefore, the web page request or the state in RLM

was a size three vector of three inputs that the environment perceived from outside.

In there, the phishing probability was generated by the DLM. Therefore, the phishing

probability was directly inputted into the environment from the DLM. However, to

minimise the impact of the external factors over the detection time of the solution, the

services were asynchronously called while DLM produced the phishing probability.

17Most of the phishing attacks recorded in PhishTank and OpenPhish have non-popular domains.
However, some recorded attacks are from some famous web hosting domain like sites.google.com,
weebly.com and 000webhostapp.com.
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Furthermore, the proposed RLM environment was built with the popular RL toolkit

called Gym18. Since the environment perceives three factors as described previously

and the agent produces three actions (see Section 6.3.4), the observation space and

action space of the RLM were set into three. The minimum implementation of the

RLM environment is available in Appendix A.7 for further reference.

6.3.2 Policy

The final goal of RL is to find the optimal policy. Therefore, policy plays a vital

role in the RL framework. As shown in Figure 6.2, the RL solutions are mainly cate-

gorised into three based on how the policy will update when finding the optimal policy.

Therefore, initially, the study wanted to select an appropriate architecture to construct

a policy for the agent to work in the RL environment.

According to Levine et al. (2020), the online RL environment updates the policy

with data collected by the same policy. In such cases, if a reasonable policy already

exists, it can be used effectively to implement the RL environment. However, there

was no such policy to start the learning process in this study. Therefore, online rein-

forcement learning was considered an imperfect option initially. Then, the off-policy

approach was considered. In the off-policy approach, the solution can collect data from

a different policy (e.g. ε-greedy) and train a policy in the future (Sutton & Barto, 2018;

Levine et al., 2020). Since that was more appropriate for the study’s perspective, the

study selected off-policy RL architecture to build the RLM.

After selecting the architecture, the study wanted to select an appropriate RL al-

gorithm to optimise the RL objective. Then a simple off-policy algorithm called Q-

learning was found. Since Q-learning is simple and widely used (Sutton & Barto,

2018; Levine et al., 2020), the RLM implementation was planned with the Q-learning

algorithm. Q-learning is a dynamic programming approach that accurately estimates

the state-action value function when finding the near-optimal policy. In any RL prob-

lem, the agent’s goal is to achieve many rewards over the long run. Therefore, the

agent should find the optimal policy that depends on an optimal action-value function.

18https://gym.openai.com/
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The optimal action-value function or in Q-learning optimal Q-function (q̄) is defined

as,

q̄(s,a) = maxπqπ(s,a) (6.2)

for all s ∈ S and a ∈ A(s) (Sutton & Barto, 2018; Levine et al., 2020). In simple

words, Equation 6.2 gives the highest expected return that an agent can get by policy

π for each possible state-action pair. The q̄ further satisfies the Bellman optimality

equation (Sutton & Barto, 2018; Levine et al., 2020),

q̄(s,a) = E[Rt+1 + γ maxa′ q̄(s
′,a′)] (6.3)

where Rt+1 is the expected reward for the state, s, by the following action, a, at time

t; γ is the discount factor, and (s, a) is the next state-action pair. Algorithm 3 shows the

Q-learning algorithm.

Algorithm 3 Q learning

1: Initialize Q(s, a),∀s ∈ S,a ∈ A(s), arbitrarily, and Q(terminal-state, ·) = 0
2: for all episode do
3: Initialize S
4: for all step until S is terminal do
5: Choose A from S using policy derived from Q (e.g., ε-greedy)
6: Take action A, observe R, S’
7: Q(S,A)← Q(S,A) + α [R + γ maxa Q(S’,a) - Q(S,A)]
8: S← S’

The Q-learning was recently combined with a deep convolutional network and im-

plemented a Deep Q-learning Network (DQN) to get the benefits of deep learning when

finding the optimal policy in RL (Mnih et al., 2015; Mousavi et al., 2017). Therefore,

the DQN was preferred in the current study when finding optimal state-action pairs.

The following section discusses the DQN implementation carried out during the RLM

implementation.
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6.3.3 DQN

The DQN of the proposed solution was implemented, as shown in Figure 6.4. It has

several parts like prediction network, target network, and replay memory. The follow-

ing discusses the functions of these parts in detail.

Figure 6.4: DQN architecture

First, the prediction network was implemented as a Multilayer Perceptron Network

(MPN) with two hidden layers of 128 units and ReLU activation. Figure 6.5 shows that

the network absorbs three inputs from the RL environment and produces one output

with the support of the linear activation function. However, the study followed an

evolutionary approach when selecting the presented prediction network. Therefore,

different sets of prediction models were configured with different hidden layers, units,

and hyperparameters (i.e., loss function, activation function). Then, those were trained

and evaluated based on the maximum cumulative rewards each achieved. After that,

Figure 6.5 architecture was selected based on its effectiveness (see Appendix B). How-

ever, the study did not evaluate all the combinations of networks built with different

aspects due to time constraints.

Although the DQN is effective when selecting action-value pairs, it results in un-

stable or diverged RL when similar observations are seen for a certain period (Mnih et

al., 2015). In the phishing context, the identified situation was more prominent since
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Figure 6.5: DQN prediction model

a phishing page is a rear case than the number of legitimate cases seen by an agent

(Aassal et al., 2020). Therefore, two essential techniques proposed by Mnih et al.

(2015) were considered to overcome such situations to avoid the unstable or diverged

RL.

The first one was experience reply. It solves correlations present in the sequence of

observations and allows the agent to learn more from individual tuples multiple times

(Mnih et al., 2015; François-Lavet et al., 2018). A large buffer of experience and a ran-

domised training data sample (Mnih et al., 2015) was used. The current study incorpo-

rated this technique into implemented DQN environment by introducing a fixed-size

replay memory. Then a minibatch from the buffer was selected when training the DQN,

allowing it to pass the same tuple multiple times to the DQN. Algorithm 4 explains it

in detail. The second essential technique proposed by Mnih et al. (2015) is the target

network. This technique further reduces the RL’s correlation effects and makes it more

stable (Mnih et al., 2015; François-Lavet et al., 2018). Therefore, in RLM, the agent

has two similar Q-networks called prediction and target network in the same structure.

Traditionally, the target network is a mirror network of the prediction network. The

prediction network is used in training, but the target network is not trained. Those

were periodically synchronised with the weights of the prediction network. However,

the Q-values of the target network are used only to improve the training of the pre-
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diction network. Algorithm 4 further explains the experience reply and target network

techniques used during DQN implementation to improve the stability of the training.

Algorithm 4 DQN procedure used in the RLM
1: Initialise prediction network Q
2: Initialise target network Q̄
3: Initialise replay memory D
4: Initialise the Agent to interact with the Environment
5: ε ← setting ε value
6: εd← setting a ε-decay value
7: εmin← setting a ε-minimum value
8:
9: for new state s do

10: Choose an action a using policy ε-greedy(Q)
11: Agent takes action a, observe reward r, and next state s’
12: Store transition (s,a,r,s’,done) in experience replay memory D
13:
14: if enough experience in D then
15: Sample a random minibatch of N transitions from D
16: for every transition (si,ai,ri,s’i,donei) in minibatch do
17: if donei then
18: yi = ri
19: else
20: yi = ri + γ maxa′∈A Q̄(s′i, a′)

21: Calculate the loss L = 1
N ∑

N−1
i=0 (Q(si, ai)− yi)

2

22: Update Q using the Adam algorithm by minimising the loss L
23: Every C step copy weights from Q to Q̄
24:
25: if ε is not in εmin then
26: ε ← decrease ε by εd

6.3.4 Agent

The RLM used a DQN-based agent, as mentioned previously. The agent is responsible

for selecting a suitable action for a given state from three primary actions: ‘allow

access’, ‘stop access’ and ‘ask user’. The allow access was used when the agent saw

a secure web page. The stop access action was used if a given web page was more

toward the phishing side. However, if the existing knowledge was not enough for the

agent to decide on a specific web page, the agent requested some additional support

from the outside; that is, the user who requested the webpage. The ask user action was
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used in that situation. Then the user could submit his feedback about the web page for

further action.

In RL, the agent’s goal is to maximise the total number of rewards it receives.

Sutton and Barto (2018) highlighted that the balance between exploration and ex-

ploitation is essential in RL to get a good reward from the existing knowledge or

achieve a better one through exploration. The RLM uses three parameters to balance

the exploration-exploitation dilemma. Those are epsilon (ε), a numerical value used

to decide whether to explore or exploit, an ε decay value to decrease ε to maintain

the trade-off between exploration-exploitation when the agent is getting more knowl-

edgeable, and ε minimum to have a minimum exploration ability with the agent in

the long run. Further, the agent uses an undirected exploration technique called ε-

greedy (François-Lavet et al., 2018) to select an action during the exploration time.

The ε-greedy balances exploration and exploitation by choosing between exploration

and exploitation randomly. In the initial stage of the agent training, the current study

was more toward exploration since the agent did not have any prior experience with

states. However, once the agent learned, more control was taken by the prediction

network by reducing the involvement of the random action by minimising the ε value.

Algorithm 4 further describes how the agent used the DQN to get compelling predic-

tions, and the full implementation of the RLM agent is available in Appendix A.8 for

further reference.

6.3.5 Reward function

A reward is a single number sent by the environment to the agent in each time step,

depending on the agent’s action (Sutton & Barto, 2018; François-Lavet et al., 2018).

It is the only way to alter a policy, and it produces evaluative feedback to the selected

action at a time step (Sutton & Barto, 2018; François-Lavet et al., 2018). In RLM, the

reward function depends on human feedback on the agent’s behaviour, and it used three

equations relevant to three specific scenarios. Further, the RLM evaluated whether the

agent got an easy task or a difficult task and accordingly, the reward was generated.

The easiness or difficulty was decided based on an entropy value (Ew) calculated us-
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ing Shannon’s entropy defined in Equation 4.1. If the entropy or uncertainty was very

low for a given task, it indicated that the agent got an easy task. Then the RLM ex-

pected a correct action from the agent. If the agent failed to do so, the environment

produced a very high negative reward since the agent failed in a simple task. However,

if the uncertainty was very high, it was considered a difficult task and a correct action

resulted in a very high positive reward for the agent. However, the correctness was

decided by the feedback the RLM gets through human participation.

The RLM used three reward functions to handle different scenarios. The following

described those in detail.

r = int(Ew ∗100) (6.4)

r = int((Ew−1)∗100) (6.5)

r = int(
Ew−P(x)

2
∗100) (6.6)

In Equations 6.4, 6.5 and 6.6, the r is the reward; Ew is the entropy calculated for

a web page using Equation 4.1. Equation 6.4 was used when the agent’s action was

correct, and if it was incorrect, Equation 6.5 would be used. If RL asked the user to

select an action, Equation 6.6 would be executed. In Equation 6.6, the P(x) is the web

page probability based on user feedback. For example, if the user sent the feedback as

a trusted web page, then P(x) became the legitimate probability of the given web page.

However, the relevant P(x) was picked from the DLM output. Equation 6.4 always

gave a positive value, and Equation 6.5 was negative all the time. However, Equation

6.6 gives either a negative or positive value, depending on the requested web page and

the user’s feedback.

Equation 6.6 was formulated to generate rewards when the agent provided an action

to get web user support in some instances. Since high rewards for such action promoted

the agent to select it more often, Equation 6.6 was organised to minimise this action

by giving a low reward. Therefore, Equation 6.6 includes a divide by two to decrease
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the reward and gives half of the original reward to the agent since it is a collaborative

work by the agent and the web user. However, Equation 6.6 gave a low negative value

compared to Equation 6.5 for the same scenario, which was a strategic approach to

teach the agent to get user support if any negative experience presented in the current

state. Further, the reward was converted to a whole number in all the equations that

range from -100 to 100 since it represents the common feedback approach in general

learning systems. Figure 6.6 shows some example scenarios and the rewards an agent

received in those examples (see Appendix B for more details).

(a) Rewards generated from Equation 6.4 and 6.5 (b) Rewards generated from Equation 6.6

Figure 6.6: Generated rewards by RLM in different scenarios

According to Figure 6.6(a), if an agent gets a high entropy task, the agent gets more

rewards for collecting decisions and a low penalty for incorrect decisions in legitimate

and phishing cases. It is because high entropy means a difficult task. If an agent is

correctly decided in a problematic situation, the proposed architecture appreciates the

agent more. However, if the agent fails, the reward keeps minimising since the agent

failed in a difficult task, and it is not fair to give a high penalty. Although Figure

6.6(a) rewarding mechanism motivates an agent to take the risk since the penalty is

low, 6.6(b) indicates that if the agent is not very sure, getting the support from the user
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may keep the rewards positive, and it helps the agent to gather more rewards at the end.

These three cases teach agents to take the correct decision and, if not, get user support.

However, in low entropy scenarios, since it indicates an easy task, incorrect deci-

sions get a high penalty compared to the previous situations. Further, the proposed

RLM will not appreciate an agent more if the agent makes a correct decision on an

easy task. Therefore, rewards keep getting low on the positive side for correct deci-

sions. Since getting user support for an easy task is useless, the proposed rewarding

mechanism will not promote an agent to get user support in such tasks. However, as

presented in 6.6(b), the rewarding process indicates that going to the user is better than

making incorrect decisions when accumulating rewards by the agent.

6.3.6 Phishing detection framework

After adding all these elements, the RLM was constructed, as shown in Figure 6.3.

The RLM can be considered a phishing detection framework since it could use more

phishing detection criteria with minimum engineering effort. The RLM uses only three

phishing detection criteria: phishing probability from DLM, community decision and

Alexa ranking. However, more characteristics could also add to the RLM with mini-

mum engineering effort. For example, if a phishing or legitimate decision based on the

website’s visual appearance can be produced via a separate solution, then that output

could be integrated into the RLM state via a separate observation. Then, the RLM can

reset its agent to the initial stage and give some time for an agent to train. Since the RL

can learn from a small amount of data, the RLM agent will get the competency to filter

websites using all of these four observations included in a state after a certain period.

Therefore, the implemented RLM is a phishing detection framework configured to use

different phishing detection criteria other than the initial criteria used in developing the

proposed solution.

6.4 Phishing detection solution (RDLM)

Figure 6.7 shows that the study connected RLM with DLM and designed the final

phishing detection solution. The solution was named RDLM for referencing sim-
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plicity, and the name was selected since it was a reinforcement learning and deep

learning-based model. The RDLM was the final solution produced after phase two of

the implementation process, and it primarily answered the first research question of the

study.

6.5 Data collection and preprocessing

The study has already constructed two classic and modern datasets in phase one of

the implementation process. However, those were unsuitable for the RLM training

and evaluation since the RLM required Alexa rank and community decision as two

inputs other than the URL and HTML content. Further, the Alexa rank and community

decision are frequently changing. Therefore, it is not correct to construct these values

for past data. Thus, the study constructed two new datasets to train and evaluate the

RLM by following the same procedure followed when constructing the modern dataset.

However, when collecting phishing data, other than the PhishTank, the study also used

OpenPhish. It was due to the community decision input used by the RLM. The RLM

implementation also included PhishTank as a service when generating the community

decision. Therefore, if the study collected data only from PhishTank, all the collected

phishing data might have value under the community decision and result in a biased

dataset. Therefore, OpenPhish was used to collect some phishing data that were not

recorded in PhishTank via a self-generated script. Table 6.1 summarises the collected

data to train and evaluate the RLM.

Table 6.1: Details of the dataset used in RLM training and evaluation

Dataset
Phishing

Legitimate Total
PhishTank OpenPhish

Training 1,011 3,351 4,338 8,700
Test 1,203 919 2,122 4,244

The training dataset was collected from July 27, 2021, to August 11, 2021. It had

8,700 data, including 4,362 phishing data and 4,338 legitimate data. The collection

process used the Google search engine to collect legitimate data and followed Section

5.3.2 mentioned procedure to collect diverse data. The phishing data was collected
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Figure 6.7: Overview of the proposed phishing detection solution
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through PhishTank and OpenPhish with the support of self-generated scripts. The

community decision and Alexa rank were collected simultaneously when the phishing

and legitimate datasets were constructed. Similarly, the test dataset was collected fol-

lowing the same procedure from November 01, 2021, to November 12, 2021. It had

4,244 data in an equal amount of phishing and legitimate.

The RLM required three inputs to train and evaluate the model. Therefore, the

data was preprocessed to meet the input requirements while constructing the datasets.

First, the phishing probability was generated using a DLM retrained on July 21, 2021.

The collected URLs and HTML contents were passed to that DLM, and the outputted

phishing probability was collected. Then, the Alexa rank for the collected data was

generated using the Equation 6.1 formula. Both legitimate and phishing URLs col-

lected during the construction of the dataset were passed to PhishTank and GSB to get

the community decision. The value was used if either mentioned a submitted request

as a phishing record. Otherwise, the value zero was used to mention that a data item

was legitimate or not recorded as phishing in PhishTank or GSB.

6.6 Model training

The phishing detection is a continuous task since the agent sees new states until the

process stops. However, during the agent training, the study considered phishing de-

tection an episodic task to measure the agent’s learning ability via the total rewards

achieved at the end of each episode. Since the agent trained with the training dataset,

each episode had 8,700 steps. The total rewards earned were calculated and plotted at

the end of each episode. Figure 6.8 shows the accumulated rewards in each episode

during the agent training. After 55 episodes, the agent learning was converged. There-

fore, the training was stopped in the 55th episode. The used agent during the training

period is available in Appendix A.8. After several experiments with different hyper-

parameters, the used agent was selected as the effective agent in the current study.
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Figure 6.8: Accumulated mean reward in each episode

6.7 Model evaluation

After the successful training step, the RLM was evaluated under two criteria: overall

performance and benchmarking.

6.7.1 Overall performance

The test dataset was used with the trained agent during the first experiment. Then,

the agent’s action and the actual status of the data item were analysed to generate the

relevant confusion matrix, as shown in Figure 6.9. The performance matrices were

then calculated based on the prediction results, and Table 6.2 presents those values.

6.7.2 Benchmarking

The RLM was benchmarked with the DLM to verify whether the enhancement done

with the phase one solution significantly impacted phishing detection ability. Both

models used the test dataset, and the final outputs were manually analysed to find

the correctness of each decision. Table 6.2 presents the results achieved during this

experiment.
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Figure 6.9: Summary of RLM’s prediction results

Table 6.2: RLM and DLM performance with the test dataset

Accuracy Precision Recall f1-score FNR
DLM 87.82% 98.31% 76.96% 86.33% 0.230
RLM 94.11% 93.25% 95.10% 94.17% 0.049

6.8 Results and discussion

According to Table 6.2, the accuracy and f1-score are higher in RLM than in DLM.

Since the DLM was last retrained on July 2021, the DLM was nearly three months

old when used with the experiment. As discussed previously, the main requirement of

an RLM was to control this performance drop up to a certain extent. The experiment

results indicate that if the DLM was involved, it could detect phishing attacks with

87.82% accuracy. However, the RLM could achieve 94.11% accuracy in the same

environment. It shows that the improvement done to the phase one solution was greatly

affected during the phishing detection.

Further, FNR is a significant metric in phishing detection since phishing as legiti-

mate has a high impact on phishing. Table 6.2 shows that FNR is comparatively low

in RLM. It implies that the RLM distinguishes phishing from legitimates better than

DLM. The external information, especially Alexa rank related to a legitimate website

seen by the RL agent, might be the reason for this low FNR.

However, the RLM cannot work along. It always depends on DLM since the DLM

is responsible for providing the phishing probability of a website based on its URL and

HTML content. It is one observation the RL agent sees when deciding on a website.
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The other two are community decision and Alexa rank. Out of those two, one might

argue that the high phishing detection rate is due to the community decision factor used

by the RL agent when making decisions. It should greatly support the agent’s decision,

but the experiment shows that the RLM could detect phishing attacks with high accu-

racy when the community did not identify them before. During the experiment, 919

phishing attacks were not identified by the community before the RLM saw those since

those are not listed either in PhishTank or GSB. However, out of those 919 instances,

817 were correctly detected by the RLM and proportionally, it is 88.9%. It indicates

that the RL agent can detect phishing attacks with a high detection rate without the

community’s support.

Furthermore, 1,203 phishing instances were already known by the community dur-

ing the experiment. The agent used the existing phishing detection knowledge during

the detection, and 1,201 phishing instances out of 1,203 were correctly detected. As

a percentage, it is 99.83%. It highlighted that the agent learned to effectively use the

existing phishing detection knowledge to detect phishing attacks during the training

period. Therefore, whether the community support was received or not, the RLM per-

formed well during the experiment.

Since the RLM was introduced to improve the phase one solution, the phishing de-

tection solution proposed through this study will be the RDLM. In there, the DLM is

responsible for analysing the internal structure of a given website and deciding whether

the website is phishing or not based on internal information like URL and HTML con-

tent. Then, the RLM looks at some of the external features alongside the DLM decision

and takes the final decision. In the current study, those are community decision and

Alexa rank. However, the RLM was implemented in a way that the number of external

features can be increased with minimum engineering effort. Then, the agent could take

the correct decision than the present.

Since the RLM agent is continuously learning by interacting with the natural envi-

ronment, it can identify some slight changes that happen in the DLM-produced phish-

ing probability with the trial-and-error experience. Then, it can dynamically adjust its

policy to make a correct decision in future scenarios. With this support of this trial-and-
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error concept, the RDLM can control the performance dropping problem in the phase

one solution. Table 6.2 also highlighted that the final detection accuracy was improved

by 6.29% with the support of RLM. However, as further discussed, the RLM agent

may misdirect if the DLM knowledge is not updated after a certain period since phish-

ing attacks are constantly changing. The literature highlighted that the performance of

a phishing detection model drops to a reasonable number after two months. Therefore,

as mentioned earlier, the current study planned to update the DLM knowledge about

phishing detection features every three months.

Not only the DLM, the RLM also needs to learn about the present phishing environ-

ment to make better decisions continuously. In RLM, prior learning happens through

the generated rewards, and human feedback is essential in that process. Therefore, a

way to get human feedback continuously to the RLM is also vital for the success of

the proposed phishing detection solution. Therefore, the proposed solution expects

to integrate continuous learning support through a knowledge acquisition process into

the RDLM solutions. It was a future work at this level in this study since the knowl-

edge acquisition process was not yet discussed. However, Chapter 8 will complete the

phishing detection solution proposed here by presenting how continuous learning was

integrated into the RDLM with the support of the knowledge acquisition process.

6.9 Summary

By proposing a strategic approach to control the performance drop of the phase one

solution, this chapter delivered a phishing detection framework named RDLM to detect

phishing attacks effectively. It is an off-policy-based RL architecture that relies on

phishing probability, community decision and Alexa global rank. The RDLM achieved

6.29% more detection accuracy than the phase one solution in the same environment.

However, the study planned continuous learning support as a core part of the proposed

methodology to achieve the study’s aim. As the first step toward that, the next chapter

discusses the proposed systematic way of collecting the latest phishing data to support

the continuous learning of the RDLM delivered in this chapter.

133



7 PHISHING DATA COLLECTION PROCESS

7.1 Introduction

Chapter 6 introduced the RDLM, which is the core phishing detection component of

the proposed solution. After implementing the RDLM, the next phase was the inte-

gration of the continuous learning support to update the existing phishing detection

knowledge. As the first step towards that, a systematic approach was proposed to col-

lect, verify, disseminate, and archive real-time phishing data. This chapter introduces

the proposed phishing data collection approach. In addition, this chapter also discusses

the diversity and effectiveness of the collected phishing data and the usefulness of the

introduced approach when integrating continuous learning support into the proposed

RDLM.

7.2 Overview of the proposed process

The current state of phishing data collection was discussed in Section 3.3. It revealed

that there was no systematic approach to collecting the most recent phishing data.

However, there is some evidence of such an approach called Phisherman in the litera-

ture, but it is not available online. As a result, systematic data collection for phishing

was lacking in the current anti-phishing domain. As a result, this study adopted Phish-

erman’s main concept and implemented a systematic approach to collecting, verifying,

archiving, and disseminating phishing data. It was named as PhishRepo with the idea

of a phishing data repository. PhishRepo is an online phishing data repository initially

built to fill the phishing data gap in the anti-phishing domain. The primary motivation

for this implementation was to have an Oracle to support the active learning process

because machine learning models such as DLM and RLM require labelled data for

learning tasks, and the study chose active learning as the technique to support the la-

134



belled data.

In most cases, the data collection in PhishRepo begins with a phishing URL sub-

mitted by an authentic user. Further, it has introduced five user roles to manage the

access controls of users within the solution since PhishRepo was built with different

intentions like collecting, verifying, and disseminating phishing data. Those are ad-

ministrator, editor, reporter, beneficiary, and guest. The administrator is the root user

with full access to all the services provided by PhishRepo. Then, the editor mainly con-

tributes to labelling phishing data to have a quality output at the end. However, there

are three levels of editors in PhishRepo. These are newbie, competent, and expert. The

expert editor is the chief editor in the proposed solution. He is responsible for the final

decision of incorrect submission, and if required, he can modify any of the available

records in PhishRepo. The other two editors are mainly used in the labelling process.

Except for expert editors, the other two editor levels are automatically updated based

on the points earned by correctly marking submissions. The administrator decides the

expert editors based on PhishRepo’s recommendations. Next, the reporter is also in

two types: individual and corporate. These two types were introduced by thinking

about the future of the anti-phishing domain, where autonomous solutions are widely

practised. The individual reporter type is for general users like humans in that design

consideration. The corporate category supports active anti-phishing tools or humans

willing to submit an automatic submission to PhishRepo.

Since the PhishRepo phishing data collection process is only available for authentic

users, a beneficiary user role was added to PhishRepo to facilitate users who only

need the most recent phishing data from PhishRepo. Therefore, this user can only

access the proposed solution’s data dissemination process described in Section 7.2.3.

Consequently, the guest user can only access the public information available in the

online system and reporting or downloading phishing websites are not allowed for that

category. Figure 7.1 shows the landing page of the PhishRepo solution.

The proposed PhishRepo solution is only available to authenticated users. As a

result, this study used two authentication methods: username-based and application

key-based. Most software systems use the username and password combination to au-
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Figure 7.1: The landing page of PhishRepo

thenticate a user. It is commonly used as the first method in PhishRepo. Then, the

second method only applies to corporate-type reporters and is only used when a cor-

porate reporter sends an automatic submission to PhishRepo. However, that user must

submit the request in the following format to become valid in the proposed solution.

key : ‘ ‘4 b6abb66jd21x4d1a6b00ed231fb377y4 ’ ’ ,

# S t r i n g o f r e l e v a n t a p p l i c a t i o n key

u r l : ‘ ‘ h t t p s : / / p h i s h i n g−example . com ’ ’ ,

#URL o f t h e d e t e c t e d p h i s h i n g w e b s i t e

The primary goal of PhishRepo is to collect quality phishing data for retraining

the RDLM proposed in Chapter 6. PhishRepo achieved this goal primarily through

three processes: data collection, data labelling and data dissemination. The following

sub-sections discuss these processes in detail.

7.2.1 Phishing data collection

Phishing data collection is the first sub-process of the proposed PhishRepo solution.

It includes phishing URL collection, downloading the relevant information sources,

and storing the downloaded sources for dissemination. Figure 7.2 summarises the data

collection process of the proposed solution graphically.

As identified in Section 3.4, the URL, web page, and possible third-party infor-
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Figure 7.2: Workflow diagram of the data collection process

mation sources like Alexa statistics are essential in a phishing dataset to support a

vast range of phishing detection solutions, including the RDLM. However, collecting

such phishing data sources is challenging since 63% of the phishing campaigns last

within the first two hours (Khonji et al., 2013). Therefore, fast collection of relevant

resources by keeping the minimum difference in the detection and reporting time was

crucial when designing the data collection process. Furthermore, automatic submission

of phishing URLs was mainly considered in the solution design process to collect the
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most active and online phishing URLs for the purpose of acquiring the required infor-

mation sources effectively. PhishRepo’s data collection process includes three steps:

submission, accumulation, and deduplication. The followings discuss these steps in

detail.

7.2.1.1 Submission

The first step of the data collection process is the submissions. PhishRepo accepts

only URL submissions, which means a user can only submit a phishing website URL,

and it will not allow the submission of any other information related to the website. It

is one design consideration used by the study to eliminate the missing data from the

collection process and to archive quality data downloaded from the sources. However,

PhishRepo allows using two submission modes: manual and automatic. Although it

has two, PhishRepo always promotes automatic submission since manual submission

may have old phishing URLs, which may cause issues in the accumulation process that

will be discussed in Section 7.2.1.2.

In PhishRepo, submission needs to come from an authentic source. Therefore,

any user willing to submit phishing URLs needs to have an account in PhishRepo.

However, administrator, editor and reporter-type users only can submit phishing URLs

to PhishRepo. The reporter account is especially considered since that user was mainly

linked with the submission step. Since the submission can be manual or automatic,

previously mentioned authentication types are used accordingly to authenticate the

submitter.

A user can use the Figure 7.3 interface to submit phishing URLs manually. The

application key-based submission is only allowed for automatic submissions, and the

format mentioned above is required in such submission. One request can submit only

one phishing record in automatic submissions, and multiple requests are required for

numerous submissions. However, as shown in Figure 7.2, manual and automatic sub-

mission are handled in two different ways in the proposed architecture. Since the

manual submission are made by a login user, it directly passes to the accumulation

step. However, automatic submissions are not like that. Those need to follow a rigid
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Figure 7.3: Manual submission interface

process before coming to the accumulation step. First, the submission source’s authen-

tication will be evaluated in the process. Once it has passed, it checks for duplication

with already collected data through URL string matching. Then, if no duplication is

found, the URL is added to the Initial Phishing Records (IPR) queue, which is a Double

Ended Queue (Deque) that uses First In, First Out (FIFO) logic alongside the submitter

information. Then, a background task is run to pick one record from this IPR and send

it to the accumulation step for further actions. The task works like a loop, and once

the accumulation step returns with a numeric one for the previous record, it will be

removed from IPR and moved to the next IPR record.

7.2.1.2 Accumulation

Once a submission comes from the submission step, the accumulation step is responsi-

ble for the data collection. Since the proposed solution requires the collection of vari-

ous information sources like a web page and third-party information for a submission,

the accumulation step fetches that relevant information from the Internet. However,

it has also been done in a predefined procedure. First, the complete web page of the

submission URL will be fetched. If it could not be achieved, that submission will be

discarded since the web page for a submitted URL is a vital information source in the

proposed solution and since the DLM of the proposed solution requires a URL and

web page in a retraining process. If the web page of the submitted URL is successfully

downloaded, then the other information sources like a screenshot of the web page,

139



a complete view of the web page, and the offline web page, including images, style

sheets and relevant scripts, will be downloaded alongside third-party information like

Alexa statistics and response details of the request.

Although PhishRepo was designed to download all these additional information

sources for a submission other than the web page, except the screenshot, other sources

are not mandatory in PhishRepo since those are not required to retrain the DLM. How-

ever, the screenshot is considered essential alongside the web page in this step since

the next step, the deduplication filter, mainly depends on this. Therefore, if a submis-

sion could not get the complete web page or the screenshot, the submission will be

discarded in this step without further steps.

7.2.1.3 Deduplication

After the accumulation step, a submission enters a specific step that is used to filter

redundant data that could be archived during the data collection process of PhishRepo.

It is the deduplication filter. In phishing data collection, redundant data could be col-

lected on two occasions. First, the same phishing attacks might come from several

users. For example, user A submitted https://phish-attack1.com to the data col-

lection process, and user B also submitted the same. Then, both submissions contain

the same URL, resulting in some redundant data at the end. The second occasion is that

the phishing attack may use different URLs for the same attack, as shown in Figure 7.4.

It is possible since most phishing pages are created using phishing kits and released to

the public (Chiew, Yong, & Tan, 2018). If that happens, it may create redundant data

and cause data leakage in machine learning-based phishing detection processes. Both

these occasions should be avoided to have a quality data collection process.

In PhishRepo, the first chance of collecting redundant data was handled in the

submission step. As discussed in Section 7.2.1.1, newly submitted URLs were initially

checked for URL duplication. Therefore, the initially collected URLs will not pass the

submission step since those are discarded there. However, the second type of redundant

data is not captured previously. Therefore, the deduplication filter was implemented in

PhishRepo to stop such data collection.
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(a) https://cbahospitalar.com.br/
002WG/well-fargo-RD528-detail/

(b) https://mail.cbahospitalar.com.br/
002WG/well-fargo-RD528-detail/

Figure 7.4: Example of a scenario of different URLs for the same phishing target

The primary responsibility of the deduplication filter of PhishRepo is to elimi-

nate duplicate phishing attack submission that comes under different URLs. This was

achieved using the Perceptual Hashing (pHash) technique (Zauner, 2010). The pHash

has already been used by an earlier study in a different domain to handle a similar

situation (D. T. Nguyen et al., 2017). Therefore, after analysing pHash functional-

ity, this study successfully attached the pHash to the phishing data collection pro-

cess. The deduplication filter removes the duplicate phishing submissions as an inline

task. Figure 7.2 shows that this filter is applied before saving any data to the local

storage. Therefore, none of the submissions is identified as duplicate records kept in

PhishRepo’s repository at any time.

The deduplication filter generates its output using the visual level screenshot down-

loaded in the accumulation step. It uses the pHash method to compare two phishing

pages, and PhishRepo is responsible for keeping track of the hash values generated for

previous submissions. As a result, once a new phishing page is captured, its hash value

will be compared with the stored values to determine whether a newly captured one is

a duplicate of a previously collected web page. This comparison primarily depends on

the distance factor (d). If the d becomes zero, it implies that both pages are similar.

Then, one of the records will be deleted from the PhishRepo to eliminate any redun-

dant data. In that case, PhishRepo’s ‘Dedup Action’ setting will determine which one

needs to be removed. The Dedup Action has two values: ‘new’ and ‘old’. If the value

‘new’ is enabled, the deduplication filter saves the new record and deletes the old one

from the repository; otherwise, the old remains. However, it is up to the administrator
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to decide what web page is to keep in the repository, and he has the freedom to change

this configuration anytime through the Dedup Action setting.

Although the deduplication filter can detect duplicate web pages, the used logic

could fail if the relevant web page is not loaded correctly during the screen capturing

time. To avoid such cases, PhishRepo is configured to look for near-duplicates. How-

ever, near-duplicates are not checked for all collected web pages because this hash

values comparison takes time. Therefore, this study considered only the last three days

when checking the near-duplicates. It is mainly because most phishing attacks last

three days or less (Gowtham & Krishnamurthi, 2014; Zeng et al., 2020).

However, the near-duplicates selection should have a systematic method. There-

fore, this study introduced an optimal distance threshold (dα ) to have a meaningful

near-duplicates selection. This threshold is selected based on 1,000 random samples

collected after several months of the data collection. When selecting this threshold,

first, pHash values of these 1,000 records were computed. Then, d values were cal-

culated for each pair available in this sample. After that, a manual investigation was

conducted to check the accuracy. According to this investigation, when d exceeded

10, the accuracy of a pair’s similarity significantly decreased. Hence, dα was selected

as 10, as shown in Figure 7.5. Meanwhile, 0 < d < 10 is considered a range of near-

duplicates in PhishRepo. However, the near-duplicates removal process does not affect

the Dedup Action setting discussed previously, and if a near duplicate is found, the new

submission will be entirely removed from PhishRepo to maintain a diverse phishing

data repository.

After the submission passes from the deduplication filter, it is saved to the local

storage, as shown in Figure 7.2. Since it is unique data collected by the data collection

process, then it should get a proper label. The labelling process is essential in phishing

data collection because if incorrect data were submitted, it might affect the quality of

the data produced by the process. As a result, all the submissions saved to the local

storage initially get the ‘submitted’ flag. However, those are not treated as phishing

data until correctly labelled.
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Figure 7.5: Estimation of distance threshold d for near-duplicate detection

7.2.2 Labelling process

Once the submission process was done, PhishRepo was designed to give a proper la-

bel to the collected phishing data. Since any authentic user, either a human or an

autonomous anti-phishing tool, can submit phishing URLs to PhishRepo, incorrect

phishing data may be collected during the data collection process. Therefore, a quality

labelling process was proposed during the implementation of PhishRepo.

Section 3.3 discussed the available data labelling approaches, and it highlighted

that crowdsourcing is the suitable approach to use when labelling phishing data. There-

fore, PhishRepo was designed to use a crowdsourcing approach when labelling the col-

lected data. However, Section 3.3 emphasised that it is difficult to get quality output

from crowdsourcing due to several challenges. As a result, several strategies were used

to get a quality label for a given data point during the solution implementation.

First, the proposed labelling process divided labelling into two steps. Those were

then named Alpha and Beta labelling. Any collected data point first enters the Alpha

step, and if it could not get a proper label, it then moves to Beta, as shown in Figure

7.6. The Beta labelling process depends on crowdsourcing architecture. However, the
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Figure 7.6: PhishRepo’s submission labelling process
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Alpha labelling step was designed to reduce the workload of the Beta. That design

consideration was taken due to some per-mentioned challenges of crowdsourcing. The

following sub-sections discuss these two steps in detail.

7.2.2.1 Alpha labelling

Alpha labelling was implemented using two popular phishing verification solutions:

PhishTank and GSB. These solutions have free API support to access recorded phish-

ing websites’ details. According to the literature, 47%-83% of phishing URLs are

added to the popular blacklists after 12 hours (Khonji et al., 2013). Therefore, once

a submission is stored in the local storage with the submitted flag, it waits 24 hours

before entering the Alpha step. Then, the submitted URL will be sent to PhishTank

and GSB APIs and waits for their decision. If either one marks the submitted URL as

phishing, the submitted flag of that submission will change to ‘verified’ and label it as

a phishing data item. However, if none of the services marked the URL as phishing,

it might be due to its legitimacy or not being recorded in the verification services. In

that case, the flag is changed from ‘submitted’ to ‘processed’, as shown in Figure 7.6.

It indicates that the Alpha step is already processed on that submission. If submission

gets the ‘processed’ flag, next, it enters the Beta labelling step. Otherwise, the labelling

process will be ended for that submission.

7.2.2.2 Beta labelling

The Beta labelling step was designed to get public support for the labelling process.

Therefore, it is a crowdsourcing approach. The submission with the ‘processed’ flag

enters this step, and the users who joined as editors can label these submissions. How-

ever, the final judgement on an incorrect submission depends entirely on the expert

editor, and he is involved mainly with the labelling process if the majority of new-

bie or competent editors label the submission as legitimate or if the submission stays

‘processed’ state for more than ten days without getting a proper label.

In PhishRepo, the Beta labelling primarily depends on a voting scheme. Therefore,

each ‘processed’ flagged submission appears to the editors to vote, as shown in Figure
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7.6. Then, the editor can select either phishing or legitimate to award points using

the Figure 7.7 voting interface during the labelling process. PhishRepo allows for

labelling a submission multiple times since Zhao et al. (2011) highlighted that it is

an effective technique to get a quality label in a crowdsourcing approach. In that

case, Absolute Cumulative Majority Relabelling (ACMR) strategy is more effective

since this strategy allows relabelling of the same data item multiple times (Zhao et al.,

2011). Furthermore, ACMR is an interesting relabelling strategy which uses a voting

mechanism to select majority voting. In this strategy, if a label achieves more than 50%

voting, it sets that as the correct label for that data item. However, if none of the labels

could earn more than 50%, the data item is discarded in the ACMR strategy. Since

the ACMR strategy seems effective in labelling phishing data, this study inherited it

to implement the Beta labelling step. Therefore, the submission must collect more

than 50 points on the phishing label in the Beta labelling step to becoming a verified

submission. However, in the ACMR strategy, if a data item could not earn more than

50%, it is discarded. It was not practical for this study. Therefore, it was slightly

changed in PhishRepo. In PhishRepo, if a submission could not earn more than 50

points, it will be directed to an expert editor since he is the final decision maker for

submission, as shown in Figure 7.6.

A submission gets points based on editor votes in the Beta labelling step. Since

prior knowledge of the given task and novice workers affect the quality labelling pro-

cess in crowdsourcing, as mentioned in Section 3.3, PhishRepo is designed to have

different impact points in the voting process for expert, competent, and newbie editors.

These levels are maintained based on prior experience in labelling. However, every

time a fresh editor begins his journey with PhishRepo, he gets a newbie level. The

newbie-type editor has a low impact on the labelling process since they do not have

prior experience. PhishRepo controls these impact levels by giving different point

scales for expert, competent, and newbie editors. For example, if a newbie selects one

submission as phishing, then the submission gets 10 points under the phishing label. If

a competent level user selects the same, the submission receives 25 points. Since the

expert editor is the chief editor in PhishRepo, if he selects a submission as phishing,
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Figure 7.7: PhishRepo’s voting interface

that submission gets 100 points.

The Beta step voting is both positive and negative. Suppose that a newbie marked

a submission as phishing. Then, if a competent user legitimates the same, PhishRepo

checks the voting trend in that submission, and since the voting trend is now on the

phishing label, the submission gets a new mark of -25, and the final score becomes

15 on the legitimate side. However, as a general rule in PhishRepo, a submission

containing less than 50 points either in phishing or legitimate remains as a ‘processed’

flagged submission. Any submission with more than 50 points on the phishing label

automatically upgrades to the ‘verified’ flag state.

Further, if a submission achieves more than 50 points on the legitimate side, the

submission is sent to an expert editor for review and is responsible for the final de-

cision. However, after a submission comes to a verified state, PhishRepo welcomes

objections through the objection reporting module in the proposed solution because

Hansen et al. (2013) stated that peer review of the crowd worker work is essential to

having a quality labelling process. Therefore, all the user accounts except guests could

raise objections to a verified phishing submission, and if there are several objections,

the expert editor reviews the submission again. The expert editor could disable future

objections at the review time to avoid misuse of the objection process. However, if a

submission exists in the local storage for more than ten days without being verified, it
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appears in the expert editors’ voting board to get their attention. Figure 7.8 shows the

voting board interface of an editor.

PhishRepo hides the scoring history of submission from all the editor levels and

displays only the final score through a progress bar, as shown in Figure 7.9. Then the

editor does not get to know any past editors. That strategy was proposed to PhishRepo

because Eickhoff (2018) showed that cognitive biases are the main problem in crowd-

sourcing. He further mentioned that the anchoring, bandwagon, and decoy effects oc-

cur in crowdsourcing, and anchoring cause 28% of accuracy losses. PhishRepo’s hid-

den scoring history design consideration limits the cognitive biases since the present

editors do not know who voted before for a submission. Although the history is hidden

in PhishRepo, the expert editor gets an additional detail called impact, which describes

how many negative (i.e., legitimate) and positive (i.e., phishing) votes were earned by

submission when it comes to the current state. It was designed because the expert ed-

itor needs to make his final decision. Figure 7.9 shows how the impact is displayed to

the editors in PhishRepo.

Further, PhishRepo implemented another extra attempt to maintain the quality of

the labelling process. That is by asking for a brief explanation about the submitted

label to avoid doubtful labels. It is done by asking a simple question from the editor.

If the editor marks a submission as ‘phishing’, then PhishRepo asks, can you find the

targeted website? as shown in Figure 7.10. In this case, the editor can submit a yes or

no.

Furthermore, the Figure 7.10 interface contains an optional field to submit the tar-

geted website URL. If the answer is yes, then the optional field becomes required to

collect that information. Otherwise, the submitted label is stored. If the editor votes a

submission as ‘legitimate’, then PhishRepo asks, can you find this website in Google

search engine? as shown in Figure 7.11. If the answer is yes, then the additional text-

area field remains optional. However, if the editor’s answer is no to the question, the

text-area field requires three things that most influenced the editor to mark the record

as legitimate. However, the primary goal of these questions is to provide the editor

with another opportunity to consider the decision before finally making a submission
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Figure 7.8: Editor’s voting board

Figure 7.9: Basic details interface of a submission

Figure 7.10: Commenting pop-up window for phishing votes
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Figure 7.11: Commenting pop-up window for legitimate votes

to PhishRepo.

7.2.3 Data dissemination

Once the collected data are correctly labelled, they are ready for distribution. The

data dissemination process mainly handles that distribution part. PhishRepo’s main

intention was to collect quality phishing data to support the knowledge acquisition

process of this study. Therefore, PhishRepo was designed to distribute only phishing

data.

In PhishRepo, the data dissemination process is only visible for registered ac-

counts. The beneficiary type account was explicitly developed to aid the process of

distribution. PhishRepo provides multimodal information in its raw form for individ-

ual download, as shown in Figure 7.12. These sources of information are the HTML

page, visible level and full-page screenshots, response return for the made request,

Alexa statistics and offline web page. Additionally, the process of disseminating data

within PhishRepo can be accessed via two modules, which are the reporter subscription

module and the user queries module. These methods were explicitly designed to sup-

port the proposed anti-phishing solution. The following discusses these two methods

in detail.
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Figure 7.12: The hierarchical structure of the zip file

7.2.3.1 User queries

The users who have registered can sign in to PhishRepo and request phishing data via

Figure 7.13 interface. The interface seeks the sources of information required by the

user as well as the data duration. The separate menu items contain the complete down-

loadable dataset, and this comprises phishing records that have been verified. The user

queries module can be used for selected or total data downloads. Once the user re-

quests from PhishRepo have been finalised, the dissemination process will lead to the

release of a final output (i.e., zip file), which includes an index file to make it easier

to navigate. Figure 7.12 depicts the hierarchical structure of the zip file that has been

downloaded. Nevertheless, special cases such as sources of information missing in

some folders could arise. This could be a result of exceptions during the process of ac-

cumulation in the course of data collection. In this scenario, the file tagged ‘index.csv’

is essential in locating the missing items since it has eight-digit columns which track

‘index.csv’ file and the dataset folders, the request URL, the response URL, the data

collection date, and attributes indicating the presence of the visible level screenshot,

full-page view, Alexa statistic file, the offline web page, and response header file.

The user queries module is responsible for providing necessary phishing data to the
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Figure 7.13: User query interface

DLM of the proposed solution. After a certain period (i.e., three months), the DLM

can ask PhishRepo to produce the latest phishing records for a particular period. Since

this module is configured to set required resources only, the DLM can only get the

URLs and the relevant web pages from PhishRepo. Then, the DLM can retrain with

new phishing data, and this process will be further discussed in Chapter 8.

7.2.3.2 Reporter subscription

The reporter subscription module primarily aims to provide a special benefit to cor-

porate reporters to appreciate their essential contributions since they are the critical

users who run the proposed solution for extended periods. As a result, PhishRepo is

designed to release feedback automatically on their accounts based on the details sent

to the repository. This is intentionally done to offer a source of encouragement and

assistance to the corporate reporter. In PhishRepo, corporate reporters have a distinct

field referred to as ‘return address’. PhishRepo utilises this field value and delivers

daily feedback to the corporate reporter for their submissions to make things easy for

them.

Nevertheless, PhishRepo did not return the feedback the same day the submission

happened. It first waits until the submission is labelled correctly, and then only the

feedback is sent to the corporate reporter. It is also crucial for PhishRepo to follow up

on the feedback sent by itself to prevent a situation where the feedback is duplicated.

Therefore, PhishRepo usually keeps track of sent records to avoid duplicate feedback.
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In PhishRepo, the feedback report takes the format of a CSV file, as shown below.

r e c o r d _ i d , u r l , l a b e l

18333415 , h t t p : / / p h i s h i n g−example −1.com , 1

18733122 , h t t p s : / / p h i s h i n g−example −2.com , 1

18432149 , h t t p s : / / l e g i t i m a t e −example . com , 2

The reporter subscription module was designed mainly to support the RLM of the

proposed solution. The RLM becomes a corporate reporter and submits the records

to PhishRepo automatically using an application key. Since the reporter subscription

module can send feedback automatically, the RLM can use the feedback given by

PhishRepo to update its knowledge. Chapter 8 will discuss this more.

7.3 Target attack prevention (TAP)

PhishRepo was initially implemented to collect phishing data required for the knowl-

edge acquisition process. Since it mainly supports the proposed anti-phishing solution,

the quality of data it produces and the seamless collection of the latest phishing data

should be protected from external attacks. In actual execution, denial-of-service (DoS)

attacks and false data injections are potential threats to PhishRepo. Nevertheless, the

network architecture depicted in Figure 7.2 improves network-level security to a cer-

tain extent in order to defend against these threats, which cannot be dealt with solely

at the network level. As a result, the TAP component that has been implemented pro-

vides PhishRepo with application-level protection. In addition to the standard security

practices, the TAP component employs four distinct procedures to improve application

security.

1. Application Key-based Authentication: Users who are privileged to have an ap-

plication key are enabled to participate in the automatic records submission pro-

cess.

2. High-volume Restriction Strategy: This strategy restricts the number of submis-

sions from a corporate account.
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3. Maximum IPR Queue Length Strategy: This is to help limit the volume of re-

quests by the accumulation step.

4. False Ban Strategy: The reporters who submit incorrect records are banned ap-

propriately via this strategy.

The submission step, as described in Section 7.2.1.1, further illustrates that an ap-

plication key is owned by the corporate reporters for the purpose of submitting a phish-

ing URL to PhishRepo automatically. This key-based authentication limits the trend of

an attack because an attacker must obtain a valid application key to gain access to the

system. If an attacker has the correct application key, the countermeasures that follow

try to reduce the extent of attacks.

When the number of legitimate URLs is compared to phishing URLs, the like-

lihood of encountering a phishing URL is relatively low (Aassal et al., 2020). This

means that the chances of submitting many records in a short period are limited be-

cause PhishRepo requires real-time submission and does not encourage batch process-

ing. As previously stated, the submissions take the form of requests, usually one per

submission. This implies that the number of submissions equals the number of requests

received by a reporter. Therefore, a limited number of submissions are made possible

in PhishRepo for a specified period via the high-volume restriction strategy. If the

reporter exceeds the defined requests per minute (i.e., ten requests) limit, his account

will be banned for a few minutes (i.e., five minutes), and if this happens frequently,

the account will be blocked by the TAP. TAP also reports abnormal behaviour to the

administrator to take appropriate action.

On a rare occasion, if an attacker avoids the first two countermeasures, the max-

imum IPR queue length will be used to maintain a fixed-length queue to prevent

memory overload. Then, there may be no performance hits, and PhishRepo’s func-

tionality may continue uninterrupted. Meanwhile, the accumulation step pulls URLs

from the IPR queue. This pulling process implies that some submitted records may be

erased without being processed in any significant attack. Although it seems wasted,

PhishRepo does not intend to collect all of the submitted phishing records and will
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instead work only with possible submissions when expanding the available phishing

records.

Furthermore, the false ban strategy is adopted in PhishRepo to eliminate the pos-

sibility of false data injections. False data can alter the proposed solution’s credibility

and lead to the wastage of many resources. Hence, PhishRepo determines the validity

of the phishing records weekly and evaluates the accuracy percentage based on the

submission’s label after the labelling process. If the rate is less than the value of a

defined threshold for an account (i.e. 80%), a suspension will be placed automatically,

and a report will be sent to the administrator for necessary actions.

7.4 Diversity of the collected phishing data

The primary goal of PhishRepo is to provide diverse phishing data to support the

knowledge acquisition process of the proposed solution. As a result, several per-

spectives were used to determine PhishRepo output to know if the proposed solution

achieved a wide data distribution. Section 5.3.4 explained that the varying domains,

varying TLDs, the use of HTTPS, and URL character length distribution are essential

when checking a diversity of a phishing dataset. Although the four criteria could be

a determinant in the assessment of diversity, previous studies have yet to consider the

possibility of data leakage in a specific data set, as discussed in Section 7.4.3. However,

it is considered the fifth criterion because data leakage affects the proposed model’s

final accuracy when checking the diversity of the dataset for the PhishRepo. How-

ever, the PhishRepo dataset’s diversity analysis was compared to two public phishing

datasets recently used to implement high-accurate anti-phishing solutions.

Further, the diversity analysis used two versions of the PhishRepo dataset, PhishRepo

and Ex-PhishRepo, alongside those public datasets to show the effect of the fifth cri-

terion in phishing datasets. Table 7.1 shows the details of those datasets. The Ex-

PhishRepo and PhishRepo datasets were collected using the proposed phishing data

collection process. However, the data in Ex-PhishRepo were not filtered via the dedu-

plication filter since the primary purpose of these two datasets was to show the effect

of the deduplication filter. The PhishRepo data were collected by activating the dedu-
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plication filter. Therefore, the effectiveness of the filter should be visible in those data.

Furthermore, the PhishRepo and Ex-PhishRepo datasets downloaded initial phishing

URLs from PhishTank and OpenPhish communities. As a result, the phishing data in

these two datasets were authentic phishing instances. Moreover, the PhishRepo system

archived the Ex-PhishRepo data from September 29, 2021 to October 17, 2021, while

the data for PhishRepo were gathered from October 23, 2021 to February 02, 2022.

Table 7.1: Used phishing datasets’ details

Name of Dataset
Number of Data

Phishing Legitimate
PhishRepo 5,275 0
Ex-PhishRepo 2,029 0
Web2Vec (Feng et al., 2020) 21,296 24,800
PhishPedia (Lin et al., 2021) 29,048 22,252

When constructing an anti-phishing solution, Feng et al. (2020) utilised the Web2Vec

dataset, which is an online phishing dataset. Web2Vec dataset had 21,303 phishing in-

stances obtained from PhishTank for a period of three months, from September to

November 2019 (Feng et al., 2020). However, this work could not use all phishing

instances because of issues relating to data extraction. Hence, it used only 21,296

phishing instances. Similarly, the PhishPedia dataset was also used recently by Lin et

al. (2021). This dataset comprises phishing web pages of about 29,496, and the pre-

mium account of OpenPhish was utilised in the course of downloading the data. The

dataset is available for download by anyone; this was made possible by the authors who

decided to share it with the public. Due to some issues during the data extraction, the

study used only 29,048 PhishPedia phishing items out of the total phishing instances.

Owning to the fact that the PhishRepo solution distributes only data connected to

the phishing attack, the Ex-PhishRepo datasets and those of the PhishRepo lack legit-

imate data, as revealed in Table 7.1. Nevertheless, Web2Vec and PhishPedia datasets

have been used in anti-phishing studies in recent times. Therefore, these datasets were

linked to the legitimate data utilised by those studies. Interestingly, the legitimate data

source in both these cases was Alexa.

After collecting these datasets, the study examined the diversity of PhishRepo com-
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pared to these datasets. As mentioned above, the Ex-PhishRepo dataset was used only

to show the effect of the deduplication filter under the fifth criterion, and in all other

criteria, the PhishRepo dataset was examined with Web2Vec and PhishPedia. The fol-

lowing sections describe each of these criteria in detail.

7.4.1 Domains distribution and TLDs

A dataset’s domain and TLD distribution depend on the phishing page’s URL. Hence,

the study extracted these domains and TLDs from the individual dataset. Afterwards,

their frequencies were evaluated individually. Then, the top fifty TLDs and domains

were chosen from each dataset. Lastly, the percentage of selected domains related

to dataset size was determined, and those values were plotted in ascending order to

get a meaningful distribution. Figure 7.14 shows the distribution of domains (Figure

7.14(a)) and TLDs (Figure 7.14(b)) in each dataset.

(a) Domain distribution (b) TLDs distribution

Figure 7.14: Distributions of domains and TLDs in the selected datasets

Figure 7.14 shows that the datasets have utilised over fifty different domains and

TLDs. Among these datasets, a high proportion of an equal domain belongs to Phish-

Pedia, and in relation to the whole dataset, this was 20%. 14% of the same domain

belongs to the PhishRepo dataset, while the lowest number of exact domains was

recorded by Web2Vec. However, the occurrence varies differently in regards to the

distribution of TLD, as shown in Figure 7.14. According to Aassal et al. (2020), fa-

mous TLDs such as ‘.com’ are often commonly used for phishing purposes. This
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experiment also reveals that all the whole three datasets have utilised over 50% of the

‘.com’ TLD. Even though ‘.com’ ranked high in all three datasets, more than 50 di-

verse TLDs have been added to PhishRepo, Web2Vec, and PhishPedia datasets. Such

domains and TLDs’ distribution indicate a dataset that is diverse (Aassal et al., 2020).

Hence, the perspective of domains and TLDs’ distribution in relation to PhishRepo’s

dataset is diverse.

7.4.2 Distribution of URL character length and HTTPS

When detecting a phishing attack, if a dataset for phishing has no URL character length

that is distributed in its standard form, as showcased in the work of Li et al. (2019),

it may lead to models that are not adequate for real situations (Verma et al., 2019).

In addition, the HTTPS label is usually present in over 80% of phishing attacks, as

reported in the APWG (2021a) report, depicting that a large proportion of HTTPS in a

phishing dataset is also essential to have a situation that is realistic during a practical

model training. Hence, characters in a URL and the secure phishing URL percentage

corresponding to the dataset size were evaluated, as shown in Figure 7.15.

(a) Distribution of character length (b) Secure phishing URLs’ percentage

Figure 7.15: Phishing URL character length and HTTPS distributions

Figure 7.15(a) shows that the three datasets’ URL character lengths showed a stan-

dard distribution. The dataset with the character length category of about 20 to 40 had

the largest number of PhishRepo URLs. The other two datasets had a high propor-

tion of 40 to 60-character length URLs. However, the three datasets had URLs under
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distinct categories. This distribution indicates that these three datasets are diverse in

relation to the character length of URLs.

On the other hand, the PhishPedia and Web2Vec datasets did not have enough se-

cure URLs. Figure 7.15(b) showed that the PhishPedia dataset had 33% secure URLs

while the Web2Vec dataset had only 3% secure URLs. Nevertheless, recent statistics

indicated that about 80% of phishing URLs utilised HTTPS in the trending context

of phishing (APWG, 2021a). If such context is ignored in a phishing dataset, it may

eventually bring about inadequate models for detecting the latest phishing attacks. As

shown in Figure 7.15(b), this secure URL context does not reflect in the PhishPedia

and Web2Vec datasets, so these datasets could not train fair models to detect the latest

attacks. However, PhishRepo has more than 70% of the used dataset shown and has

displayed a high proportion of secure phishing instances. This distribution indicates

that the phishing nature currently in use is adequately absorbed by the proposed so-

lution, and the dataset of the PhishRepo solution is updated to the present phishing

context.

7.4.3 The tendency of data leakage

Among machine learning errors, data leakage has a leading role. This data leakage of-

ten occurs whenever the model’s train data shows up during the testing time. It brings

about poor prediction outcomes in the end. This data leakage can occur in two ways

within the scope of phishing data collection. The first is that the same set of data is

engaged several times. For instance, the phishing website https://xyz.com is seen in the

dataset on several occasions. Secondly, it could also occur due to different URLs for

equal phishing websites, as depicted in Figure 7.4. In both cases, data leakage could

occur if the duplication pairs are high. As a result, the present study’s data leakage ten-

dency is measured according to the available duplication pairs in the datasets that have

been used. Nonetheless, previous studies have not used that kind of test to determine

the possibility of data leakage, which makes this the first of its kind.

Screenshots captured from phishing web pages were used in the course of the ex-

periment since the phishers are constantly trying to get a fake page that is quite similar
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to the target page. Hence, the present study has the assumption that web pages having

similar visual features also possess the same HTML structure. In addition, the experi-

ment used pixolution Flow19, a commercial tool and an AI-powered search engine to

search and manage visual data when trying to locate near-duplicates and duplicates.

The pixolution Flow possesses a docker image which has the ability to index up to

5,000 images. This docker is used in the course of the experiment. Hence, about 5,000

random samples were thus selected from each of the datasets prior to the commence-

ment of the experiment.

Based on the threshold recommended by the tool, a 1.0 threshold was used in the

experiment when looking out for duplicates, while the search for the near-duplicates

was configured to use a threshold of 0.9. Figure 7.16 presents the percentages of the

duplicates and near-duplicate of the individual dataset. Nevertheless, during the initial

indexing step of the pixolution Flow docker, the dataset of Web2Vec was unable to in-

dex all the 5,000 selected screenshots because twenty-two images had some problems.

Hence, the percentages of the Web2Vec dataset presented are evaluated from 4,978

data items.

The results of the experiment have shown that the deduplication filter of PhishRepo

was well supported to ensure that the duplicate images were reduced to zero while

those of the near-duplicate kept around 20%, as depicted in Figure 7.16. In addition,

the experiment reveals that the remaining datasets, such as Ex-PhishRepo, PhishPe-

dia, as well as Web2Vec, have higher degrees of duplication than PhishRepo. Hence,

this experiment attests that deduplication is vital when eliminating data leakage in

the phishing data collection process, which is effectively used in PhishRepo solu-

tion. However, phishing data like in Figure 7.17 is possible in PhishRepo since the

deduplication filter cannot eliminate all the near-duplicates, as discussed in Section

7.2.1.3. Furthermore, from the aspect of data leakage, the experiment reveals that

the PhishRepo solution collected dataset is well suited for the machine learning-based

anti-phishing tasks.

All these five experiments carried out under the five main criteria mentioned earlier

19https://pixolution.org/
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Figure 7.16: Percentage Distribution of duplicates and near-duplicates

show that the proposed phishing data collection process produces diverse data to sup-

port the knowledge acquisition process of the proposed solution. This has shown that

none of the recent phishing datasets was considered a data leakage issue that highly

impacts machine learning-based anti-phishing tools. However, the proposed data col-

lection process has successfully achieved 0 duplication pairs by eliminating the critical

issue of data leakage.

7.5 Effectiveness of the collected data in machine learning

PhishRepo was mainly implemented to collect diverse phishing data to support the

continuous learning process of the proposed anti-phishing solution via a knowledge

acquisition process. The proposed phishing detection solution was a machine learning-

based solution. Therefore, the collected data through PhishRepo was evaluated with

several machine learning solutions introduced in the literature to show the effectiveness

of the collected data in the machine learning process. Table 7.2 shows the existing

anti-phishing solutions used by the experiment, and when selecting these, the use of
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(a) https://eddservicesupport.weebly.com/
[Submitted on 26 October 2021]

(b) https://edddebitcardre-activate.
weebly.com/ [Submitted on 30 October
2021]

Figure 7.17: Example of a near-duplicate found in the PhishRepo dataset

machine learning and the online availability of the model implementations were highly

considered.

Table 7.2: Details of the used machine learning-based solutions

Solution Description
Desai et al. (2017)
Name*: RFAlgo

Random Forest-based classifier that uses URL and
HTML content features.

H. Le et al. (2018)
Name: URLNet

A deep learning approach to detect malicious
URLs directly from the URL.

Li et al. (2019)
Name: StackModel

Detect phishing attacks with the support of URL
and HTML content features.

Ariyadasa et al. (2020)
Name: HybridDLM

A deep learning model uses direct URLs with
manually extracted HTML content features.

*The names are used only to reference easiness, and some were self-invented.

The experiment was planned with Table 7.1 datasets. However, the Ex-PhishRepo

dataset was a different version of the PhishRepo dataset. Therefore, it was not consid-

ered during this experiment. Web2Vec, PhishPedia, and PhishRepo datasets presented

in Table 7.1 were considered throughout this experiment.

7.5.1 Constructing the datasets

Generally, a machine learning model needs a training dataset and a test dataset during

the learning process. Therefore, first, those datasets were constructed by the study.

This experiment aims to show the effect of the latest phishing data when retraining

machine learning models. In that case, the PhishRepo dataset had the latest phishing
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data since it collected phishing attacks until February 02, 2022. Therefore, first, it was

used to separate phishing samples for the test dataset. As a result, the last ten days of

phishing attacks were separated from the PhishRepo dataset added to the test dataset.

After that, the test dataset had 518 records. Then, the remaining data until January

21, 2022 were selected as PhishRepo’s training dataset. It had 4,757 data. However,

that training sample was reasonable to train a machine learning-based anti-phishing

solution since Opara, Chen, and Wei (2020) also did a successful anti-phishing study

with 4,700 total phishing instances.

In machine learning, the number of training samples always matters. Therefore,

when the experiment was planned, the study wanted to have the same training samples

from the Web2Vec and PhishPedia datasets. However, these two datasets had more

than 20,000 phishing data items. Then, the study randomly selected 4,757 data from

both these datasets and constructed Web2Vec and PhishPedia training datasets.

After phishing data were added to the test and training datasets, the study collected

legitimate data. Since the experiment’s main intention was to check the effectiveness

of the existing anti-phishing models with PhishRepo collected data, the experiment

used the same legitimate data in training and testing. Further, it used balanced phish-

ing and legitimate data samples. Because of that, the test and training dataset collected

518 and 4,757 legitimate data, respectively. However, Web2Vec and PhishPedia were

initially considered when collecting legitimate data since those datasets had legitimate

instances. Although it was considered, the study identified that both of these datasets

collected legitimate data from Alexa. In a previous study, Verma et al. (2019) men-

tioned that if Alexa data samples were mixed with PhishTank data samples, there might

be an issue with URL length since Alexa produces the top domains in most cases by

removing the sub-domains and URL path (Aassal et al., 2020). Therefore, the study

wanted to confirm that such a problem might happen if legitimate data were collected

from Web2Vec or PhishPedia. As a result, the URL lengths of those two datasets’ le-

gitimate parts were plotted. Figure 7.18(a) shows how those lengths were distributed.

Then, it was compared with Figure 7.15(a), where the phishing URL lengths were

plotted. Then, it visualised that the Verma et al. (2019) finding existed, and if these
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legitimate data were used, the URL length might play a significant role when detect-

ing phishing attacks. Hence, those two legitimate data were neglected by the study.

Then, the study plotted the modern dataset’s legitimate part URL’s character length.

It is shown in Figure 7.18(b). When compared Figure 7.18(b) with Figure 7.15(a),

according to Li et al. (2019), it had a reasonable URL character length distribution.

Therefore, the modern dataset’s legitimate part was selected to collect 518 and 4,757

legitimate data for test and train datasets.

(a) Web2Vec and PhishPedia datasets (b) Modern dataset

Figure 7.18: Distributions of legitimate URL character length in selected datasets

After the required dataset was constructed, the training of the selected solution was

then carried out. The following section describes how the training was done during the

experiment.

7.5.2 Training the solutions

The experiment selected four anti-phishing models, as shown in Table 7.2. Out of those

four, the HybridDLM was an output of this study discussed in Section 5.2.4. Several

researchers in the past introduced the other three solutions.

The RFAlgo model is implemented initially as a chrome web browser extension

to detect real-time phishing attacks. The original implementation of the solution is

available online20, and the experiment used that source. First, it required extracting

20https://github.com/philomathic-guy/Malicious-Web-Content-Detection-Using
-Machine-Learning
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features from URL and HTML content, and the downloaded resources had a script to

extract those relevant features. However, some of the Alexa statistics-based features

are not valid for offline training since Alexa produces data based on the last three

months, and most of the phishing data used in training are comparatively old. Further,

some features required some third-party services like the WHOIS service. However,

these services have certain limitations when retrieving data. Therefore, the experiment

did not use five features out of twenty-two features used by the original work. Those

five features are domain registration length, abnormal URL, domain age, web traffic,

and google index. After extracting the remaining features, three datasets trained the

model and constructed three separate models for evaluation.

Next, the URLNet is a deep learning model, and it does not need any feature extrac-

tion step. The original implementation is online21, and the experiment has downloaded

it from the appropriate location. The URLs were directly inputted to URLNet in the

original implementation. However, when passing the URLs to the model for training,

it has a defined format to use. The models were trained after constructing the URLs

in a suitable format. The experiment used the provided execution script, and it trained

the model in different embedding values. Therefore, each dataset had several mod-

els based on the used embedding values. However, all the models were used for the

evaluation task since there is no standard way to filter the most effective model.

After that, the experiment used the StackModel. It is the first stack model-based

phishing detection solution introduced in the literature. However, the original imple-

mentation of the solution could not be found, and a separate implementation22 of the

solution was shared by Lin et al. (2021). That implementation was used by Lin et al.

to benchmark their solution with StackModel. Since it is an accepted work in the liter-

ature, the experiment used Lin et al. StackModel implementation for this experiment.

The StackModel also required a feature extraction as the first step. The experiment

used the feature extraction script to extract training and test dataset features. Then, the

provided training scripts were used and constructed three separate models based on

Web2Vec, PhishPedia and PhishRepo datasets.

21https://github.com/Antimalweb/URLNet
22https://drive.google.com/drive/folders/1T4uHRxbUk5kXcJrq68mZ-ezWSQgse
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Finally, HybridDLM was selected. It is one of the outputs of this study. Therefore,

all the required scripts to extract relevant features were available. However, Hybrid-

DLM did not require URL feature extraction. As a result, HTML features were only

extracted. After the feature extraction was done with all three datasets, three separate

models were trained using three datasets.

Since all the three datasets had phishing data in raw formats, the experiment easily

constructed the required features with the support of the provided feature extraction

scripts. After the models were trained, the evaluation was carried out with the test

dataset. The following section discusses the results achieved by the trained models

with the test dataset.

7.5.3 Performance evaluation

Table 7.3 shows the results achieved by every model with three datasets used during

the experiment. As mentioned in Section 7.5.2, the URLNet experiment had a different

set of models based on the used embedding values. After the evaluation was done with

all those models, the best-performed model during the evaluation process was selected.

It is presented in Table 7.3.

Table 7.3: Performance of the trained models with the selected datasets

Solution Dataset Accuracy f1-Score FNR

RFAlgo
Web2Vec 57.34% 27.30% 0.840
PhishPedia 56.95% 26.16% 0.847
PhishRepo 78.19% 76.80% 0.278

URLNet
Web2Vec 72.20% 70.79% 0.326
PhishPedia 78.09% 77.72% 0.236
PhishRepo 82.24% 83.45% 0.104

StackModel
Web2Vec 58.11% 36.55% 0.759
PhishPedia 75.87% 69.96% 0.438
PhishRepo 89.00% 88.97% 0.112

HybridDLM
Web2Vec 67.18% 51.98% 0.645
PhishPedia 88.22% 87.07% 0.207
PhishRepo 93.92% 93.89% 0.066

As shown in Figure 7.19, the PhishRepo dataset has shown high accuracies and

f1-score with all four existing models compared to the other two datasets. The lowest
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accuracy was recorded with RFAlgo, and the highest was recorded with HybridDLM.

The removal of five significant features from RFAlgo’s original work during the train-

ing might be a reason to have low accuracy of that model.

Further, FNR is a significant metric in phishing detection since phishing as legit-

imate has a high impact on phishing. Figure 7.19 shows that FNR is comparatively

low in all four cases where the PhishRepo dataset was used. It implies that the mod-

els effectively learned most phishing scenarios during training. It also indicates that

the PhishRepo dataset is more effective when presenting phishing examples during the

training than the other selected datasets. Furthermore, the datasets size, legitimate ex-

amples, and test dataset were constant in all cases during the experiment. Therefore, it

is clear that the phishing examples made a performance difference in each case. It indi-

cates that the PhishRepo data are well-suited for machine learning-based anti-phishing

studies since it presents more diverse phishing examples during the training time to

have a high detection rate. It guaranteed that the proposed phishing data collection

approach succeeded in collecting phishing data to support the knowledge acquisition

process of the proposed solution.

7.6 Discussion

The main idea behind this phishing data collection process was to support the proposed

knowledge acquisition process. Since the study primarily identified phishing data col-

lection as a challenging task, a systematic approach was designed. According to the

literature, there was no suitable solution to support systematic phishing data collec-

tion. However, Phisherman was one such attempt that did not succeed in the past. The

study analysed the Phisherman project and implemented a systematic process called

PhishRepo by going beyond the Phisherman. Therefore, PhishRepo is conceptually

better than Phisherman in many design considerations, as summarised in Table 7.4.

PhishRepo is especially getting the support of automated submission architecture,

and it produces diverse information sources in raw format due to its design which is

essential to the proposed anti-phishing solution. Further, the deduplication filter that

guarantees diverse data collection and the elegant labelling process used in PhishRepo

167



(a) RFAlgo Accuracies (b) RFAlgo f1-score (c) RFAlgo FNR

(d) URLNet Accuracies (e) URLNet f1-score (f) URLNet FNR

(g) StackModel Accuracies (h) StackModel f1-score (i) StackModel FNR

(j) HybridDLM Accuracies (k) HybridDLM f1-score (l) HybridDLM FNR

Figure 7.19: Distribution of Accuracy, f1-score, and FNR for the selected solutions
under different datasets
The graphs display the performance metrics (Accuracy, f1-Score, and FNR) for multiple solutions
(RFAlgo, URLNet, StackModel, and HybridDLM) on various datasets (Web2Vec, PhishPedia, and
PhishRepo). Each graph represents the corresponding metric’s values for a specific solution across
different datasets. The x-axis shows the dataset names, while the y-axis represents the metric values.
The color-coded bars help differentiate the solutions for easy comparison. The graphs provide insights
into the relative performance of each solution on different datasets for the selected metrics.
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Table 7.4: Comparison of Phisherman and PhishRepo

Criteria Phisherman PhishRepo Remarks

Initial data sub-

mission

Manual + Automatic Manual + Automatic Phisherman’s data submission is primarily anonymous and multi-format, but PhishRepo has a standard format for

automatic submissions, and the submitter is easily traceable due to application key authentication.

Initial Input Email URL Phisherman has different data workflows due to the multi-format emails it gets, but PhishRepo uses URLs at the

initial level, so the data workflow is standard for all submissions.

Data format Preprocessed Raw Phisherman converts every submission into IODEF report format, but PhishRepo archives in raw format.

Missing features High Low Phisherman saves inactive phishing website data to the database, but PhishRepo stops processing such submissions.

Deduplication fil-

ter

Not available Available Deduplication filtering is an important component of eliminating redundant data collection, and PhishRepo has

integrated it effectively into the data collection process.

Verification Two-step Two-step Phisherman’s first verification is for selected submissions, and the second depends on a set of heuristic rules.

PhishRepo uses two well-known verification services first and crowdsourcing second.

Objection report Not available Available Objection report is essential to report incorrect labels since both use automatic verification.

TAP Depends on network

architecture

Network-level +

application-level

PhishRepo introduces a layered architecture at the application level to prevent targeted attacks.

Malicious sub-

mission detection

Not available Available PhishRepo tries to avoid users who frequently submit erroneous submissions, but Phisherman does not mention

such a constraint in their architecture.

Data distribution Web view and XML

file

ZIP file and CSV file Phisherman data could be viewed on a web interface or downloaded as an XML file. PhishRepo distributes data via a

ZIP file. It includes all raw data for regular users, and corporate users get additional CSV for their submitted records.
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produce quality data at the end. The objection reporting supports maintaining the qual-

ity further. Moreover, the innovative data distribution structure is purposely designed

to attract users, primarily autonomous anti-phishing tools, to live the solution long-

term. Further, from the security perspective, the proposed network architecture and

TAP strategies are vital for the smooth running of the solution.

PhishRepo provides multi-modal information sources in raw format. It was de-

signed like that since the proposed solution used representation learning. Therefore,

raw data are essential during the knowledge acquisition process. The experiment in

Section 7.5 also highlighted the benefit of raw data when PhishRepo data was used with

different existing solutions. One goal of PhishRepo was to collect diverse phishing data

to use in the knowledge acquisition process. The deduplication filter introduced in the

data collection process is vital since the Section 7.4.3 experiment highlighted that the

PhishRepo data did not contain any duplication pairs.

Further, Section 7.5 experiment also highlighted the importance of the deduplica-

tion filter from a different perspective. According to that experiment, the amount of

learning a model can gain through the training set becomes lower if high duplicate

phishing instances are available since several data items produce the same knowledge

during the training. Therefore, the PhishRepo data produce more knowledge than the

other two datasets used during the experiment, and it might be a reason for such ac-

curacy recorded by all the existing models with PhishRepo since all the other datasets

reported more than 50% duplication pair rate in a similar amount of training samples.

Although the used models got the deduplication filter support, one might argue that

high accuracy was due to the latest phishing examples the PhishRepo data contained.

In that perspective, PhishRepo is aligned with its goals because the main objective of

PhishRepo was to collect the latest phishing data to support the proposed knowledge

acquisition process since such an approach was lacking in the literature. The exper-

iment results showcase that if a model is trained with old phishing data, that model

may not perform well with the latest phishing attacks. The main reason behind this

conclusion is the constantly changing nature of phishing attacks that change signifi-

cant phishing detection features over time. That was what exactly happened during
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the performed experiment in Section 7.5. Since the test dataset contained the latest

phishing attacks and both Web2Vec and PhishPedia had old phishing examples, cur-

rent significant phishing detection features might not be captured during the training.

However, PhishRepo is constantly collecting these phishing examples. Therefore, it

contained the latest phishing examples, and more significant characteristics existed in

PhishRepo examples to detect the latest phishing attacks. Thus, the models trained

with the PhishRepo dataset captured these new characteristics to perform well during

the experiment.

Although PhishRepo inherited some of the concepts from the Phisherman project,

PhishRepo is a unique solution, and it has introduced innovative design concepts

throughout the process of achieving its goal:

1. The unique auto submission system is introduced by thinking about the future

of anti-phishing tools since anti-phishing is more towards the autonomous side,

and the data requirement is high in those solutions to work independently. How-

ever, it directly assists the RLM in getting feedback from human users’ about its

actions.

2. The design considerations used by the data collection process, especially the

deduplication filter, which was introduced the first time in the phishing domain

when collecting data, support PhishRepo to produce a diverse dataset with zero

tendencies of data leakage. Since the proposed solution was a machine learning

approach, zero tendencies of data leakage are essential to visualise the reality of

the solution.

3. The labelling process used in PhishRepo uses the crowdsourcing technique ef-

fectively by addressing some of the limitations in crowdsourcing, like cognitive

biases in personal impression collection. It ultimately produces quality data for

the knowledge acquisition process.

4. The two-step labelling process reduces human users’ workload and requests ex-

pert involvement only once required. It is essential in the phishing domain since

experts are scarce.
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5. The interactive data distribution module introduced by PhishRepo helps dissem-

inate the collected data to support continuous learning of both DLM and RLM.

Consequently, according to Section 7.4 experiments, the PhishRepo data are more

diverse and absorb the current phishing nature. Further, PhishRepo proposed a high-

quality labelling process that guaranteed the quality of phishing data distribution. More-

over, PhishRepo data are more effective in machine learning-based studies, as shown

in Section 7.5 experiment. Therefore, it is clear that the proposed PhishRepo architec-

ture could produce quality diverse phishing data for the planned knowledge acquisition

process to support continuous learning of the proposed anti-phishing solution.

However, the reliability of PhishRepo mostly depends on the submissions it gets.

Therefore, the reporters are vital in the proposed architecture, and corporate reporters

are essential since PhishRepo promotes real-time submissions rather than manual ones.

The editor, especially the crowd user, plays another crucial role in PhishRepo and is

always essential to the success of the beta labelling process. However, Alpha reduces

the need for a beta. Therefore, PhishRepo assumes that a few editors can manage

the beta labelling if Alpha works as expected. However, the reporters’ and editors’

contributions are vital in PhishRepo to continue the phishing data collection process.

7.7 Summary

As the first step towards a systematic knowledge acquisition process, this chapter in-

troduced a phishing data collection process named PhishRepo. Generally, legitimate

data are common on the Internet, but collecting phishing data is challenging due to the

lift-time of these attacks. Therefore, PhishRepo uses a systematic approach to collect,

verify, archive and disseminate phishing data to support the planned knowledge acqui-

sition process. PhishRepo was only the first step of the proposed knowledge acquisi-

tion process, which was mainly implemented to provide the data needs. At the same

time, the next chapter discusses the other essentials for a successful knowledge acqui-

sition process. In addition, the next chapter also introduces the outcome of this study

by integrating the knowledge acquisition process with RDLM for effective phishing

detection.
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8 PROPOSED ANTI-PHISHING SOLUTION

8.1 Introduction

This study aimed to implement an autonomous anti-phishing solution that automati-

cally updates existing phishing detection knowledge through a systematic knowledge

acquisition process. As a first step towards that, Chapter 6 introduced the RDLM, the

core component used to detect phishing attacks in the proposed architecture. Following

that, Chapter 7 introduced PhishRepo to generate the data required for the knowledge

acquisition process, which is the next step in achieving the study’s aim. However,

PhishRepo is only one step in this knowledge acquisition process. Therefore, this

chapter first introduces the complete knowledge acquisition process proposed in this

study. Following the introduction of that process, this chapter presents the study’s out-

come: the integration of RDLM and the knowledge acquisition process. The chapter

then discusses some of the proposed solution’s challenges in real-world execution and

the enhancements made to address those challenges.

8.2 Knowledge acquisition process

This study identifies knowledge acquisition as an integral part of a successful phishing

detection approach since phishing attacks continuously change. Therefore, the study

proposed a five-step process to acquire the relevant knowledge to update the existing

phishing detection features used by the proposed phishing detection approach. The

following sub-sections introduce these steps in detail.

8.2.1 Data production

Data is the main ingredient for successful knowledge acquisition. Therefore, the pro-

posed knowledge acquisition process also starts from a data production step. Since
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this process intends to support the proposed anti-phishing solution, the study wanted

to produce phishing and legitimate data in this step. The study identified that the RLM

is the key component to producing this required data since it interacts with the natural

web environment. Therefore, the RLM is given the key responsibility of producing

phishing and legitimate data.

According to the RLM architecture, it always gets a website URL from outside.

It can be either legitimate or phishing. Once a new URL comes to the RLM, it sees

additional observations of this URL: phishing probability, community decision, and

Alexa rank. Then, it produces a new state for the RL agent, as discussed in Section

6.3. Once the new state appears, the RL agent acts on it with the existing knowledge

and takes some action. After that step, the RLM is configured to save both the state

and the URL into local storage for future use. The data production for the proposed

knowledge acquisition process happened at this level. There are two database tables

named ‘data’ and ‘states’ in the current implementation, as shown in Figure 8.1. The

RLM saves the URL and metadata like the active label of the URL and submission date

to the ‘data’ table. It saves the state and RL agent’s action to the ‘states’ table. Since

the agent’s action is not yet verified, the active label of the ‘data’ table always fills with

the community decision value in the initial saving step. Figure 8.1 shows that these

two tables keep the data required to train the DLM and RLM of the proposed solution.

However, the data saved in this step are not correctly labelled by an external party.

Since those are not reviewed externally, and wrong labelled data might affect the learn-

ing process, those data cannot be directly used for the future steps of the knowledge

acquisition process. Therefore, once data is produced in this step, it is submitted to

two external services to get a proper label. The data submission step discusses these

services in detail.

8.2.2 Data submission

The proposed process labels the first step data through PhishRepo and Google Search.

PhishRepo is the phishing data collection process introduced in Chapter 7, and it han-

dles the main labelling process of the proposed solution. Google Search is a simple
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Figure 8.1: Proposed knowledge acquisition process

pythonic script (see Appendix B - Google Search script) that executes a simple Google

search on a provided URL. The main intention of this script is to verify whether a

given URL is legitimate. Therefore, it is configured to return whether the given URL

is available in the first five search results it received from ‘google.com’. This approach

was proposed to label legitimate data because some of the previous studies (Zhang et

al., 2007; Dunlop et al., 2010) have used a similar approach when finding legitimate

websites. Although it was practised previously, the literature has shown that the web-

site’s popularity highly affects the final result of this approach (Jain & Gupta, 2017).

However, that limitation will not affect the proposed solution since PhishRepo feeds

such samples if the RL agent misclassifies those.

Once the RLM saves data in the previous step, the current step checks two condi-

tions: the agent’s action and entropy value. If the agent decides the saved URL is a

phishing one or if the entropy value is high (i.e., > 0.8), the submission step submits the

URL to PhishRepo since it has a high possibility of becoming a phishing attack. If both

mentioned conditions are not fulfilled, the URL will be submitted to Google Search.

As mentioned in Chapter 7, PhishRepo submission takes more than 24 hours to get a
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proper label. Therefore, once a URL is submitted to PhishRepo, the proposed knowl-

edge acquisition process needs to wait for a minimum of two days to get a response.

Therefore, the proposed process introduced another database table named ‘review’ to

keep track of PhishRepo submissions. The ‘review’ table is responsible for keeping

track of data items submitted to the PhishRepo.

However, Google Search does not need such storage since it can send instant re-

sponses for the submitted URLs. Therefore, once the proposed process responds, it

directly updates the active label of the ‘data’ table. After the data submission step, the

data enters into the labelling step.

8.2.3 Labelling

The labelling step was introduced to visualise the labelling process of the submitted

URL. However, the labelling is done by either PhishRepo or Google Search. Chapter

7 explained PhishRepo’s labelling procedure for a submitted item. Google Search is

labelling the submissions using the Google search results as explained earlier. Once

these defined procedures are followed, the submitted submission is labelled. However,

if unlabelled data exists in the legitimate category and is later found as a phishing web

page via community decision, then such data is moved to a separate database table

called ‘logs’ during the knowledge acquisition process. This scenario is possible in

the proposed approach since active learning will not label all the produced data. In

such a scenario, the SmartiPhish administrators can investigate and label these records

manually.

8.2.4 Data construction

Once the labelling is done, the relevant label for the submitted data will return to the

knowledge acquisition process. It can be instant or delayed, as discussed previously.

Once the label is received, the data construction step updates the ‘data’ table’s active

label field. However, that is not the main functionality of the data construction step.

The data construction step is to collect required data sources for retraining DLM and

RLM. As discussed in Chapter 6, the DLM requires the URLs and the relevant web
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pages. The RLM requires a state and feedback, which means the correct label since

the reward function depends on the agent’s correctness.

The data construction step maintains a specific flag called ‘retrain’ with 0 as the

default value to filter the eligible data items for the learning process. This flag is

available in the ‘data’ and ‘states’ tables and has three values: 0, 1, and 2. Once a

record is saved in local storage in step one, this flag sets to 0. Then once the data item is

properly labelled, the step updates the flag value to 1 in the ‘state’ table since the value

one denotes the item’s eligibility for the next learning cycle. However, the ‘data’ table

retrain flag updates only if the item is appropriately labelled, and required information

sources for DLM learning are fully collected since the web page is required when

training the DLM. After the data item’s knowledge is acquired within the process, the

flag is automatically updated to 2.

Once a response is received by a service, if it is from Google Search, the data

construction step downloads the relevant web page and updates the ‘retrain’ flag ac-

cordingly. However, if it is from PhishRepo, the process is slightly changed. Since

the knowledge acquisition process access PhishRepo as a corporate user, the response

is received from PhishRepo’s reporter subscription module (Section 7.2.3.2). Then,

the process gets a CSV file with several past submissions. Generally, the CSV file

contains PhishRepo’s record identification number, submit URL, and the given label.

The PhishRepo’s record identification number is saved under the ‘review’ table for fu-

ture use, and both the ‘data’ and ‘states’ tables update the ‘retrain’ flag based on the

label. Since PhishRepo is configured to collect multi-modal information sources, in-

cluding the web page, the data construction step collects the relevant web pages from

PhishRepo using the ‘review’ table support. PhishRepo’s user query module (see Sec-

tion 7.2.3.1) is used in this task.

In the proposed knowledge acquisition process, steps one to four are repeated every

time a new submission enters the RLM. Therefore, these four steps come under an

interactive process. However, the final step of the proposed process is not an interactive

one. It is a batch processing step. It waits for a particular period until the first four steps

collect a certain amount of data and then process those at once.
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8.2.5 Automatic knowledge acquisition

The primary responsibility of the automatic knowledge acquisition step is to help both

the DLM and the RLM to acquire new knowledge from newly collected data. As shown

in Figure 8.1, the ‘data’ table provides data required to train the DLM, and the ‘states’

table is responsible for training the RLM. In the proposed process, both these training

happens in batches. Therefore, a set of data collected through the first four steps of this

process will be used to train the DLM and the RLM in the fifth step. Therefore, this

step is mainly associated with how the RLM and the DLM continuously learn from the

latest data to have an up-to-date phishing detection solution. The following sections

discuss the learning of DLM and RLM in detail.

8.2.5.1 DLM learning process

According to Chapter 5, the DLM uses representation learning when extracting the sig-

nificant features during the learning process. In that situation, the responsibility of the

knowledge acquisition process is to provide data. As mentioned in the previous sec-

tion, the ‘data’ table proposed in this study is directly linked with the DLM’s learning

process. Therefore, once the DLM learning cycle is planned, the ‘data’ table produces

the required data.

The DLM learning is not frequent, and the study was decided nearly three months

between two learning cycles. However, that interval was decided based on the DLM’s

initial retrain experiment done during the study. That experiment affected several fac-

tors. First, the literature has highlighted that the performance of a phishing detec-

tion model is degraded after two months (W. Chen et al., 2018; Opara, Chen, & Wei,

2020). However, the DLM is a deep learning model. Therefore, it needs a consid-

erable amount of data to execute a learning cycle. The study faced some difficulties

when collecting new data within two months.

Furthermore, the DLM requires high computational power due to the used architec-

ture, and it runs for several days once the learning cycle starts. Therefore, two months

is not practical for the study to achieve such high-end resources due to the resource

constraints of the study. However, after three months, the study executed a learning
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cycle on DLM. After the experiment, it was discovered in the study that the DLM

performance was decreased. Further, that experiment has shown that the new learn-

ing cycle has improved the model performance. Since the three-month interval seems

practical, the same frequency was followed several times by the study. Then, similar

behaviour, decreasing and increasing performance was noticed, as shown in Figure 8.2.

The October retrain23 has shown that the performance has dropped in percentage com-

pared to previous terms. However, after the learning process was executed, the DLM

retained the normal accuracy level, as shown in Figure 8.2. Since the three-month in-

terval was succeeded several times during the study, it was defined as a feasible interval

to execute the DLM’s learning cycle.

Figure 8.2: DLM’s performance during the continuous learning process

After every three months, the performance of the DLM was reduced by a few percentages. However,
after retraining, the model regained its performance.

The DLM learning happens as a batch processing task. First, the eligible data

is selected from the ‘data’ table to construct the batch. That could include only the

new data. However, the DLM learning process always requires new and old data to

23The October scheduled retrain was executed on November. However, it used phishing data col-
lected until October 31, 2021.
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avoid catastrophic forgetting phenomena associated with deep learning environments.

Therefore, once the newly collected data is selected, several old data are mixed with

those representing the batch’s present and past knowledge. However, the learning pro-

cess always maintains balanced phishing and legitimate data since Aassal et al. (2020)

mentioned that imbalanced phishing datasets might affect the final performance of the

model.

Once the dataset for the learning cycle is finalised, first, the data is preprocessed

by the process. Then, the preprocessed data will be forwarded to a new learning cycle.

Once the new learning is done, the process evaluates whether the new model is better

than the past. If the new DLM is improved, the old DLM will be replaced by the new

one. Otherwise, the old model continues its service until the next learning cycle. Table

8.1 summarises the proposed DLM’s learning process.

8.2.5.2 RLM learning process

RLM learning is not occasional like DLM. It happens every midnight. As mentioned

earlier, the learning process is linked with the ‘states’ table that stored previously seen

states and the correct label acquired through the knowledge acquisition process. Since

the RLM learning happens as batches, a batch of eligible data from the ‘states’ table

is selected every night. However, the number of phishing data that could be collected

within a day is lower compared to the number of legitimate data (Aassal et al., 2020).

Therefore, a batch might contain many legitimate data compared to phishing data.

Then, it results in many legitimate instances compared to phishing in the buffer main-

tained by the RLM. Since the study uses a limited buffer due to resource constraints,

it might affect the ultimate goal of the experience replay technique. Therefore, the

study proposed a 1:1 legitimate to phishing ratio when constructing the batch. It was

achieved using the number of phishing data collected within a day.

When constructing a batch for the RLM learning, first, the process calculates the

number of eligible phishing data. Then, the batch is constructed by adding the phishing

data with the same amount of eligible legitimate data. Once the batch is constructed,

the RLM processes the batch to train the DQN with new data. Finally, the newly
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Table 8.1: DLM’s learning process

Step 1: Construction of the dataset for the next learning cycle

• Filter eligible data for the current learning cycle from the ‘data’ table

• Randomly collect a set of old data from the ‘data’ table

• Balance the legitimate and phishing instances using the ‘data’ table

• Split the dataset randomly into two sub-datasets as training and testing in 4:1
ratio, and 10% of training data are again randomly split as the validation dataset

Step 2: Preprocess the datasets to have DLM compatible data format

• Convert URLs to have the required numeric format

• Convert HTML pages to graphs

Step 3: Training the DLM

• The training and validation dataset is used to retrain the DLM

• The early stopping technique is configured to avoid overfits during the retraining

Step 4: Performance evaluation

• The test dataset is used with old DLM and new DLM

• Compare the performance of the old DLM and new DLM

Step 5: Deployment

• Backup old DLM into a backup location

• If the new DLM has improved the performance, a new DLM is deployed to
continue the service

• Otherwise, the old DLM continues the service

• Restart RLM to integrate the DLM changes
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trained DQN is saved to be used in real-time. Once the learning cycle is completed,

the ‘retrain’ flag of the data used during the training is updated to the next level. Then,

the same data will not be available for the next learning cycle. However, those data

are now in the buffer. Therefore, those will be used several times randomly in RLM’s

future learning cycles. Table 8.2 summarises the proposed RLM’s learning process.

8.3 Autonomous anti-phishing solution

To challenge the identified research problem, the study aimed to implement a contin-

uously learning phishing detection solution to detect phishing attacks with high accu-

racy. It was achieved mainly in two steps. First, a new phishing detection approach

was implemented. Then, a knowledge acquisition process was integrated with the pro-

posed solution to have continuous learning support. Finally, it became an autonomous

phishing detection solution that can automatically acquire the newer phishing detection

knowledge to adjust the model accordingly when detecting the latest phishing attacks.

However, for referencing ease, the final output of the study was named SmartiPhish.

8.3.1 SmartiPhish

Figure 8.3 shows the overview of the SmartiPhish solution. It combines the DLM, the

RLM and the knowledge acquisition process. The primary input to the SmartiPhish

is a URL. Once the SmartiPhish receives a URL, it starts its process to make a final

decision on it. Since the RLM is the decision-maker in SmartiPhish’s process, the

SmartiPhish produces three outputs: ‘Allow Access’, ‘Stop Access’, and ‘Ask User’.

When a URL reach SmartiPhish, it executes three parallel processes: DLM, Com-

munity Decision (ComD), and Alexa. The DLM produces the phishing probability for

the given URL and sends it to the RLM. The ComD accesses PhishTank and GSB APIs

to check the status of the submitted URL and then processes these results to return the

final decision about the URL. The Alexa service generally sends an XML file with

available statistics, and the process itself extracts the website’s global rank from the

file and converts it into a standard format using Equation 6.1 formula and sends the

value to the RLM. After all these processes return the relevant values, the SmartiPhish
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Table 8.2: RLM’s learning process

Step 1: Construction of the dataset for the next learning cycle

• Filter eligible data for the current learning cycle from the ‘states’ table

• Count the number of phishing instances available in the dataset

• Balance the legitimate and phishing instances using the ‘states’ table

Step 2: Train the RLM

• Acts on the available states in the dataset

• Generate rewards according to the agent’s actions

• Train the DQN based on the agent’s correctness

Step 3: Deployment

• Save final DQN to the local storage once the agent acts on all the states available
in the dataset

• New DQN continues the service

constructs the state as defined in Chapter 6. Then, the state appears to the RLM, and

the agent acts on it and produces action. The action returns to the SmartiPhish, and

it then passes to the appropriate location as SmartiPhish’s decision for the submitted

URL. At the same time, the SmartiPhish invokes the proposed knowledge acquisition

process to construct data for the next learning task.

Further, the RLM learning process is executed by SmartiPhish every midnight,

and the DLM learning process runs after three months. Figure 8.4 summarises Smar-

tiPhish’s information flow.

8.3.2 Defense against adversarial attacks

As highlighted in Chapter 3, adversarial attacks are a key challenge for an anti-phishing

solution since such attacks can break the trustworthiness of a solution. Therefore, the

study extended the SmartiPhish solution to defend against adversarial attacks. The

study proposed a GAN-based approach in this case to minimise the effect of adver-
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Figure 8.3: SmartiPhish solution

sarial attacks. However, the proposed approach could not defend against all types of

adversarial attacks mentioned in Chapter 3. It was trained to detect specific inputs

designed to get wrong results from SmartiPhish. However, it did base on certain as-

sumptions. Mainly, the study assumed that the adversarial attacks are generated from
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Figure 8.4: SmartiPhish’s information flow diagram

non-popular sources and challengeable to DLM to produce a fair decision.

Based on these assumptions, the study proposed a GN to produce adversarial at-

tacks to the SmartiPhish to train the solution against such attacks. The GN was built

using the GAN theory (Creswell et al., 2017). In this approach, first, a GAN was

implemented. As shown in Figure 8.5, generally, a GAN has a discriminator and gen-

erator (Creswell et al., 2017). Therefore, the study first implemented discriminator and

generator networks. The discriminator was a feedforward network. It had three hidden

layers with a ReLU activation function. It used binary cross-entropy as the loss func-

tion and adam optimiser. The discriminator was configured to accept 64-size inputs,

and the output layer used a sigmoid activation function.

Similarly, the generator is also a feedforward network. It had four hidden lay-

ers with a ReLU activation function. Figure 8.5 shows that a latent space produced

the generator input. The space was used to generate a random input with 128 sizes.

Therefore, the generator’s input size was 128. Since the study planned to plug the GN

network into the concatenation layer of the DLM, the generator’s output layer was con-

figured as a 64-size dense layer. It also used the ReLU activation function. After both

discriminator and generator were finalised, the study implemented the GAN network.
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Figure 8.5: Overview of a GAN network

Appendix A.9 presents the implemented GAN network24. Then, the GAN network

was trained for 10,000 epochs. Then, the generator was unplugged from the original

GAN network and plugged into the SmartiPhish solution.

Then, GN is configured to pass some adversarial attack inputs to the DLM con-

catenation layer to produce a challenging phishing probability. Then, the SmartiPhish

collects that probability and randomly produces a zero or lower Alexa rank value to

generate a state. The zero or lower Alexa rank value is configured because, as men-

tioned earlier, the study assumed that the adversarial attacks are generated from non-

popular sources. Further, the study assumed that this attack is not reported in any of the

phishing verification systems used by the ComD component. Therefore, the commu-

nity decision for all adversarial attacks is generally zero. After the state is generated,

it passes to the RLM to decide.

The study expected the RLM to learn this behaviour through the trial-and-error

24The GANInputGenerator class required to execute GAN network is available in SmartiPhish code-
base (see Appendix B)
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concept. Therefore, there was no particular experiment to train the RLM. Every day,

the GN is configured to generate several adversarial attacks. Then, the RLM acts on

those and learns about adversarial attacks from these examples. After this procedure

was executed for several months, the study verified the progress of the proposed so-

lution by checking the rewards generated by the adversarial attack examples. Figure

8.6 shows the mean reward values accumulated by the agent for a week from February

22, 2022, to March 01, 2022, by defending the generated adversarial attack examples.

The positive mean reward was reported during the evaluated period, and it emphasises

that the RLM could detect adversarial attacks generated by the GN most of the time.

Therefore, the study assumed that the agent learned the appropriate behaviour against

pre-planned adversarial attacks to minimise the adversarial attack impact of the pro-

posed SmartiPhish solution. However, due to the time and resource limitations, the

study did not get a chance to validate the reliability of the proposed adversarial attack

defence mechanism in a natural environment.

Figure 8.6: SmartiPhish’s daily performance against adversarial attacks
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8.3.3 Real-time phishing detection

After the SmartiPhish solution was proposed, the study wanted to demonstrate its func-

tionality at the Internet user level since it aimed to minimise the impact of phishing

threats on Internet users. Therefore, the study planned to integrate SmartiPhish into a

web browser since the web browser is the standard software a user uses to browse the

Internet. As a result, the study analysed a web browser’s functionality and architecture.

Generally, a user requests a page from a web browser by entering a URL into the

address bar, clicking a link, or submitting a form. Whenever a user makes such an

action, the browser calls the navigator function to invoke a web page loading task25.

This navigator function is mainly implemented in the browser engine, and changing

its behaviour requires complex engineering effort. A specific processing pipeline is

used once the browser downloads the requested web page, as shown in Figure 8.7, to

display the HTML content to the user. The study found that the browser must send a

request to SmartiPhish after constructing the rendering tree to get an effectual output.

It is because then only the effects of JavaScript is visible on the HTML content page.

However, this processing happens inside the browser engine. The study found it dif-

ficult to break this pipeline to call SmartiPhish solution due to the time and resource

constraints associated with such work because of the engineering complexity. There-

fore, the study decided to get SmartiPhish’s decision before invoking the navigator, and

if SmartiPhish sends the ‘Allow Access’ action to the browser, it asks the navigator to

load the web page. Otherwise, it is configured to display a pre-defined message to the

user.

However, the new design requirement slightly changed SmartiPhish’s initial archi-

tecture. The study was planned to accept web pages and URLs both at the beginning

to avoid downloading the relevant web page within SmartiPhish since it causes several

problems. However, due to the problem that occurred on the browser end, SmartiPhish

was configured to accept URLs only, and the responsibility of downloading the web

page was handed over to the DLM. Although it could manage the browser side issue,

25https://developer.mozilla.org/en-US/docs/Web/Performance/How\_browsers\
_work
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Figure 8.7: Browser processing pipeline
Source: https://hpbn.co/primer-on-web-performance/

the new change added two limitations to the study’s final solution. The first one is

that SmartiPhish will not respond to dynamic changes in the web page content after

the web page is loaded. For example, if a scripting technique (i.e., JavaScript) modi-

fies the content dynamically, it will not affect the decision since SmartiPhish decided

based on the initial web page structure. The next one is that if a web page contained

the geographical location-based content, it might not be correctly reflected in the web

page during the decision-making since the request was made from a different location.

Generally, a web page can be downloaded using the request function available

in the Python environment. If such an approach is used, the web page is not going

through Figure 8.7 presented pipeline since the browser is not involved in this down-

loading process. Then, some script-based modifications like JavaScript might not be

reflected on the web page. It becomes a problem when making the final decision since

real content may be hidden from the DLM. Therefore, the study used an innovative

web page downloading functionality to download a requested web page. It was im-

plemented using geckodriver26, Selenium27, and Firefox browser’s headless mode28.

The geckodriver was used to link Selenium tests and the Firefox browser to have an

automated web page loading facility. Once the page is completely loaded in the Sele-

nium environment, SmartiPhish uses Selenium architecture to download the web page.

Although it was not direct like the request function, the study could compile all script-

ing technologies before downloading the web page. Therefore, it was adapted to the

SmartiPhish environment. Appendix A.10 shows SmartiPhish’s web page download-

26https://firefox-source-docs.mozilla.org/testing/geckodriver/
27https://www.selenium.dev/
28https://hacks.mozilla.org/2017/12/using-headless-mode-in-firefox/
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ing functionality.

However, the SmartiPhish solution required a high computational power since it

runs the DLM, the RLM and the knowledge acquisition process. Therefore, deploying

it on the client-side was not feasible. Hence, the study planned to deploy the Smar-

tiPhish as a RESTful web service (see Figure 8.8). Then a web browser could pass a

URL to the SmartiPhish service and get its decision. Appendix A.11 and 12 show the

implemented RESTful service to access the SmartiPhish solution.

Figure 8.8: A REST API-based architecture
Source: https://ahmetozlu.medium.com/mastering-rest-architecture-rest-architecture-

details-e47ec659f6bc

After the SmartiPhish solution was deployed, the study wanted to have an interface

to access that solution. As mentioned earlier, the web browser is the appropriate soft-

ware to use in this case. However, integrating the SmartiPhish service into a browser

was difficult since modifying a browser engine-defined procedure is not easy, as it takes

more time and resources. However, for the demonstration purpose, the study wanted

to have an application that works with SmartiPhish to check the real-time phishing de-

tection ability of the proposed solution. Therefore, the study planned to implement a

lightweight web browser with SmartiPhish support. As a result, the study introduced a

MORA browser.

MORA browser is a lightweight browser implemented using the electron frame-

work29. Electron framework is an open-source software framework developed and

29https://www.electronjs.org/
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maintained by GitHub. It is top of the Chromium rendering engine and the Node.js

runtime. Building a browser with the electron is challenging, but it could be done

quickly. The study’s main intention was to implement a browser for demonstration

purposes. Therefore, the MORA browser was implemented with minimum features.

Figure 8.9 shows the home page of the MORA browser.

Figure 8.9: MORA browser interface

MORA browser was configured to work with the SmartiPhish service. If the ser-

vice is not online, the browser will not work correctly. When a user opens the MORA

browser, he can enter a URL into the address bar or click a link to start browsing. Any

action first calls to the SmartiPhish service, and if the service sends the ‘Allow Access’

action, the browser calls to the navigator to load the relevant web page. If the service

sends ‘Stop Access’, Figure 8.10 interface will be displayed to the user. However, if

SmartiPhish responds with ‘Ask User’, Figure 8.11 interface will be visible to the user

and ask for the legitimacy of the requested web page. Then, the user can submit his

feedback and the feedback ultimately helps RLM improve its learning process.

The study used the MORA browser only for demonstration purposes, and it was

not tested with the end-users due to resource constraints associated with concurrent

usage of the browser. Therefore, the implemented browser was not promoted during

the study. However, the MORA browser is available for Windows and Linux platforms,

and anyone can install it to get the experience of the SmartiPhish solution. This study
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shared an online video30 to demonstrate how the browser functions in Windows and

Linux platforms to safeguard Internet users from phishing attacks. This demonstration

used actual phishing attacks that were active while recording the video.

Figure 8.10: MORA browser’s ‘Stop Access’ interface

Figure 8.11: MORA browser’s ‘Ask User’ interface

After integrating the MORA browser and adversarial attack prevention into the so-

lution proposed in Section 8.3.1, SmartiPhish architecture was slightly changed. Fig-

ure 8.12 shows the final architecture of the proposed solution implemented by the

study to achieve the study’s aim. After finalising the implementation, SmartiPhish was

deployed to the university-owned server for real-time phishing detection.
30https://youtu.be/_MddiKIFvXM
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Figure 8.12: Proposed phishing detection solution

8.4 Summary

A systematic knowledge acquisition process was introduced at the beginning of this

chapter. Then it was integrated with RDLM proposed in Chapter 6 to have the outcome
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of this study named SmartiPhish. However, the solution has opened up several chal-

lenges when executed in the real environment. Therefore, SmartiPhish architecture was

improved from different perspectives to address those. Furthermore, a browser called

MORA Browser has been introduced here, which was implemented to demonstrate an

example usage of SmartiPhish. After finalising the proposed solution, this SmartiPhish

solution underwent different experiments to evaluate its performance. The next chapter

presents these experiments by discussing their results.
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9 EXPERIMENTS AND RESULTS

9.1 Introduction

Chapter 9 introduced the proposed SmartiPhish solution. It is an autonomous anti-

phishing solution that can update the existing phishing detection knowledge via a sys-

tematic knowledge acquisition process. However, the effectiveness of this solution

when detecting phishing attacks and the impact of the knowledge acquisition process

is yet to be evaluated. This chapter focuses on that aspect. Therefore, this chapter first

introduces different types of experiments conducted when evaluating the performance

of the SmartiPhish. Then, the results achieved by these experiments will be analysed

to show that the SmartiPhish is able to solve the identified research problem.

9.2 Experiments

SmartiPhish mainly initiated its duty at the university server on November 12, 2021.

After that, SmartiPhish was trained with real-world phishing and legitimate websites

until December 31, 2021. Since SmartiPhish did not interact with the public, a sim-

ulated web environment was implemented using three scripts31 (i.e., Legitimate data

extractor, PhishTank data extractor and OpenPhish data extractor) to send phishing and

legitimate samples. These scripts were invoked via a cronjob32 in every hour, and the

number of samples varied based on the script.

Moreover, during the training period, the RLM directly interacted with the real

phishing and legitimate websites, and it learned through the knowledge acquisition

process every midnight. Since the RLM learning process should be visualised to jus-

tify the effect of the knowledge acquisition process, three RLM instances were down-

31The implementations of these scripts can be obtained through Appendix B - Specific code samples.
32A cron job is a Linux command used to schedule a job that is executed periodically.
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loaded in different time frames. Table 9.1 shows the details of those RLM instances.

Similarly, the DLM was also retrained three times during the study, as shown in Figure

8.2. After the training period ended, SmartiPhish performance was evaluated under

different criteria described in the following sections.

Table 9.1: RLM instances

Downloaded date Instance name Remarks

November 11, 2021 RLM1
This is the initial RLM model constructed
via the Chapter 6 training process.

November 27, 2021 RLM2
Once the RLM1 trained for two weeks via
the knowledge acquisition process, RLM2
was downloaded.

December 28, 2021 RLM3
After a month from the RLM2, RLM3 was
downloaded.

9.2.1 Overall performance

After the initial training, SmartiPhish’s overall performance was evaluated using the

RLM3 instance. In this experiment, the phishing data was mainly collected from

PhishTank and OpenPhish. Since the SmartiPhish training period ended on Decem-

ber 31, 2021, 2,595 phishing data that PhishTank or OpenPhish verified from January

1, 2022, to February 28, 2022, were collected to evaluate SmartiPhish’s overall perfor-

mance. Since legitimate data is also essential to evaluate the solution effectively, 2,595

legitimate data were collected using Section 5.3.2 legitimate data collection procedure.

However, the legitimate data collection was carefully done and skipped Section 5.3.2

selected data to have unseen legitimate data sample during the experiment. Table 9.2

shows the results of the experiment.

Table 9.2: SmartiPhish overall performance

Precision Recall f1-score Accuracy FNR
95.71% 97.15% 96.42% 96.40% 0.029
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9.2.2 Continuous learning ability

The primary aim of this study is to implement a phishing detection solution that can

learn newer phishing detection features over time via a knowledge acquisition process

to minimise the performance drop that exercises in similar solutions. Therefore, it is

essential to evaluate the learning ability of the DLM and RLM to verify whether the

proposed solution has these characteristics.

The DLM mainly controls the selection of significant phishing detection features,

and it is a black-box environment. Therefore, the DLM selected phishing detection

features cannot be visualised after a training process. However, it could be present

via new and old DLM performance. Since phishing attacks are constantly changing,

theoretically, the old model could not perform well with newer phishing attacks. How-

ever, once the model is trained with newer phishing attacks, it should perform better

than the old model if it acquires the newer phishing detection features. Therefore, in

this experiment, the DLM’s learning ability was evaluated in different time frames by

comparing the old and new DLM performances. Figure 8.2 shows the results of this

evaluation.

The RLM is different compared to the DLM. It is the leading decision agent in

SmartiPhish, and the learning ability of RLM mainly depends on the decisions it

makes. The RLM learns every midnight via the knowledge acquisition process, and if

it is learned as planned, the performance of the RLM should be increased over time.

Therefore, in this experiment, the Section 9.2.1 dataset was evaluated with RLM1,

RLM2, and RLM3 instances to show its performance changes over time. Figure 9.1

shows the results achieved by the experiment.

The RDLM performance fluctuation with a new DLM was also evaluated sepa-

rately under continuous learning ability criteria to check the effectiveness of the new

DLM deployment. In there, July and October trained DLMs (see Section 8.2.5.1) were

used. This experiment was conducted from January 25, 2022, to February 08, 2022.

Initially, this experiment used July trained DLM, and on February 01, 2022, the Oc-

tober trained DLM was deployed to the SmartiPhish environment, and this DLM was

used after that. Then, the RDLM accuracies for January 25-31, 2022 and February
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Figure 9.1: SmartiPhish performance change overtime

RLM’s F1-score and detection accuracy significantly improved after integrating the automated knowl-
edge acquisition process.

01-07, 2022 were separately evaluated, and these results are presented in Table 9.3.

Furthermore, the performance of the July DLM during February 01-07, 2022, was also

evaluated, as shown in Table 9.3, to check the RDLM performance in the absence of

the new DLM.

Table 9.3: Performance fluctuation during a new DLM deployment

According to the results available in this table, it is clear that if the DLM is absent, the accuracy of
the solution will be below 90%. However, once a newly trained DLM is used, the accuracy improves
significantly, demonstrating the impact of retraining the DLM.

Duration Number of Data DLM Instance

From To Legitimate Phishing July October

January 25 January 31 279 279 86.20% -
February 01 February 07 240 240 87.29% 95.83%

198



9.2.3 Zero-day protection

Zero-day detection is essential in any anti-phishing solution. Therefore, SmartiPhish’s

zero-day protection ability was evaluated using the phishing attacks collected by Sec-

tion 9.2.1. The zero-day attacks were collected based on the SmartiPhish community

decision that mainly depended on PhishTank or GSB phishing verification systems. If

SmartiPhish receives a zero value for community decision, it means the community

(i.e., PhishTank and GSB) has not seen this attack before. Such attacks were consid-

ered zero-day attacks during this experiment. Then, the number of zero-day attacks

was filtered from the dataset and SmartiPhish’s decision on those attacks was evalu-

ated. Table 9.4 shows the results obtained by this experiment.

Table 9.4: SmartiPhish’s zero-day detection results

Total attacks Detected attacks Accuracy
1,545 1,473 95.34%

9.2.4 Benchmarking

SmartiPhish was benchmarked with DLM, HybridDLM, StackModel, and URLNet.

All the benchmark solutions were initially trained with the modern dataset. Table 9.5

shows the performance of these solutions after the initial training. Then, the perfor-

mance was evaluated using the Section 9.2.1 collected dataset. Table 9.6 presents the

performance achieved by these solutions during the experiment. As illustrated in Fig-

ure 9.2, the performance of all solutions declined after three months’ time.

Table 9.5: Initial performances of the benchmark solutions

Solution Precision Recall f1-score Accuracy FNR

StackModel 93.18% 94.58% 93.87% 93.83% 0.054
URLNet 92.62% 90.64% 91.62% 91.71% 0.094
HybridDLM 97.96% 95.82% 96.88% 96.91% 0.042
DLM 96.4% 96.44% 96.42% 96.42% 0.036
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Table 9.6: SmartiPhish comparison with selected phishing detection solutions

Solution Precision Recall f1-score Accuracy FNR

StackModel 92.50% 78.88% 85.15% 86.24% 0.211
URLNet 92.50% 83.43% 87.73% 88.25% 0.166
HybridDLM 96.44% 84.66% 90.17% 90.77% 0.153
DLM 97.31% 89.13% 93.04% 93.33% 0.109
SmartiPhish 95.71% 97.15% 96.42% 96.40% 0.029

(a) Starting performance (b) Performance after three months time

Figure 9.2: Performance trends of benchmark solutions over 3 months
The bar chart illustrates the performance trends of benchmark solutions over a period of three months.
The metrics considered are Precision, Recall, F1 Score, and Accuracy, measured in percentage values.
The solutions examined include StackModel, URLNet, HybridDLM, and DLM. It is evident from the
chart that all benchmark solutions experienced a decline in performance in accuracy and f1-score during
the three-month period. This decline is observed in Precision, Recall, F1 Score, and Accuracy, indicating
that the solutions’ performance diminished over time.

9.2.5 Detection time

The detection time experiment was performed on an Intel Core i5-7200U machine with

8 GB of memory. It used 5,000 randomly selected websites from the Section 9.2.1 used

dataset, including an equal amount of phishing and legitimate samples. Figure 9.3

shows SmartiPhish detection time over each website, and it was 4.34 seconds mean

value per request. However, during this experiment, the detection time was calculated

by omitting the network transfer times to better understand the SmartiPhish detection

time.
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Figure 9.3: SmartiPhish detection time curve

9.2.6 Imbalanced test

On the natural Internet, phishing websites are much less than legitimate websites.

Therefore, an imbalanced dataset is the most successful approach a study can use to

conduct a more realistic evaluation of a proposed anti-phishing solution (Aassal et al.,

2020). However, the literature lacks a well-defined legitimate-to-phishing ratio when

developing an imbalanced environment (Aassal et al., 2020). Therefore, this study

used different legitimate to phishing ratios during the experiment, and the study main-

tained the ratio from 1:1 to 1:10 by taking the idea of Aassal et al. (2020). In this

experiment, the phishing counts were always constant, and the mentioned ratios were

maintained using the legitimate data count.

The experiment used 1,000 random phishing data from the Section 9.2.1 dataset.

Further, it selected 11,000 legitimate data by following the Section 5.3.2 procedure.

However, that 11,000 included 2,500 data that was used in Section 9.2.1. The im-

balanced experiment was planned not only for SmartiPhish. It used Section 9.2.4 ex-

perimented benchmark solutions to compare SmartiPhish’s performance with similar

solutions in an imbalanced environment. Figure 9.4 demonstrates the performance

of these solutions alongside SmartiPhish. The f1-score was used to measure the per-
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formance during this experiment instead of accuracy since it is the most appropriate

metric for an imbalanced environment.

Figure 9.4: Performance comparison with different legitimate to phishing ratios

9.2.7 Real-time phishing detection

SmartiPhish is a real-time phishing detection solution. Therefore, it is essential to eval-

uate how it behaves in a natural web environment since all the above experiments were

done with offline datasets. Since the study simulated a natural environment for Smar-

tiPhish, an experiment was conducted from November 12, 2021 to November 30, 2021,

to collect the daily performance of the SmartiPhish. Meanwhile, the detection time of

each of these requests was also recorded to arrive at the correct conclusion about Smar-

tiPhish’s real-world detection time. Since the legitimate to phishing ratio is not equal

in the natural environment, the f1-score was used to measure the daily performance

of the proposed anti-phishing solution. Figure 9.5 illustrates the daily performance of

SmartiPhish, while Figure 9.6 shows the detection times of 5,000 randomly selected

web requests received by SmartiPhish during the experiment period, and it was 16.65

seconds mean value per request. However, this experiment’s detection time is differ-
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ent from Section 9.2.5 detection time because this experiment included the network

transfer times in the calculation to illustrate the real-world scenario.

Figure 9.5: SmartiPhish’s daily performance

Figure 9.6: SmartiPhish’s real-world detection time curve
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9.3 Results analysis

Present anti-phishing solutions are faced with performance decreases over time due

to constantly changing phishing detection features. The literature also highlighted

that machine learning-based anti-phishing solutions recorded significant performance

drops two months after the initial training. SmartiPhish is proposed in such a back-

ground as a differentiated anti-phishing solution. It has an integrated knowledge ac-

quisition process that enables the solution to learn newer phishing detection features

over time. Therefore, in the previous section, SmartiPhish performance was evaluated

using different criteria. Although SmartiPhish is a new approach to the anti-phishing

domain, it has shown some favourable results during the experiments.

As tabulated in Table 9.2, SmartiPhish achieved 95.71% precision, 97.15% recall,

96.42% f1-score, 96.40% accuracy and 0.029 FNR. More importantly, SmartiPhish’s

accuracy and f1-score were increased over time, and Figure 9.1 shows that SmartiPhish

improved its accuracy from 90.75% to 96.40% during six weeks. This is mainly due

to the continuous learning process integrated into the solution, and both DLM and

RLM updated the existing phishing detection knowledge via this implemented learning

process.

Furthermore, Table 9.3 also presented that the latest DLM deployment increased

the SmartiPhish performance by 8.54%. Since the old DLM was trained in July and

was nearly six months old, it was ineffective during January and February. Therefore,

the overall performance of the July DLM was around 87%. However, SmartiPhish’s

performance was noticeably changed once the October trained DLM was deployed

to the solution. This indicates that the October or latest DLM updated its phishing

detection knowledge through the knowledge acquisition process to handle many latest

phishing attacks than July DLM. This experiment further illustrates the importance of

continuous learning when detecting the latest phishing attacks.

In Section 9.2.4, SmartiPhish was benchmarked with several anti-phishing solu-

tions introduced through this study and state of the art. Table 9.6 clearly shows that

SmartiPhish’s recall value is well over other solutions, and it indicates that SmartiPhish

can identify phishing instances correctly during the detection process. It is an essential
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factor when implementing an anti-phishing solution since incorrect marking of phish-

ing instances may have a high impact on potential users.

The experiment further illustrates that SmartiPhish performed impressively in the

used dataset than the existing anti-phishing solutions. However, according to Table 9.5,

the benchmark solutions have shown good performance after the initial training, but

those performances significantly decreased once they came to the experiment dataset.

This may be due to the newer phishing attacks in the Section 9.2.1 dataset since these

benchmark solutions were trained a few months ago with a modern dataset. However,

SmartiPhish, which also had the initial training with the benchmark solutions, has not

decreased its performance over time and has shown its best two months after the initial

deployment. This proves that SmartiPhish controlled the performance dropping issue

that exists in similar solutions due to the constantly changing phishing attacks.

Furthermore, according to the Section 9.2.3 experiment, SmartiPhish’s zero-day

phishing detection ability is also high. This shows that out of 1,545 zero-day phish-

ing attacks, SmartiPhish correctly detected 1,473 attacks, and this is proportional to

95.34%. Since SmartiPhish uses community decisions as an observer for RLM, one

might argue that SmartiPhish’s high phishing detection ability is due to this existing

knowledge. However, SmartiPhish’s zero-day attack detection results falsify this argu-

ment because this experiment only considered phishing attacks that were not known

by the community (i.e., PhishTank and GSB) before. This indicates that SmartiPhish

can detect phishing attacks at a high rate without community support.

Detection time plays a significant role in phishing detection since delayed response

makes unsatisfied users. Generally, SmartiPhish first gets a request from outside, and

then fetches relevant resources like a web page, Alexa rank, PhishTank decision, and

GSB decision to process the request. Once the required resources are downloaded

from suitable locations, the final decision is processed. After that, the decision needs

to be transferred to the client-side. In each of these tasks, except decision processing,

significant network time is used by SmartiPhish. However, that time depends entirely

on the Internet connectivity, the solution and the user use. Therefore, SmartiPhish’s

detection time was evaluated in two ways to have a correct conclusion. Section 9.2.5
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calculates the detection time only considering the decision processing time. Figure 9.3

shows the output of that experiment. The average detection time recorded in Section

9.2.5 experiment is 4.34 seconds. This means that under the mentioned machine con-

figurations, SmartiPhish needs 4.34 average seconds to make one decision. This looks

like a reasonable value since the Yang et al. (2019) solution also took 3.5 seconds when

detecting phishing attacks.

However, Section 9.2.7 considered the real scenario and calculated the average de-

tection time, including the network transfer times. In that experiment, a user to Smar-

tiPhish and SmartiPhish to a user network transfer times were not captured because

the requests were made on the same machine where the SmartiPhish was deployed. In

there, the average detection time was recorded as 16.65 seconds. This indicates that

in the actual execution, a user needs to wait a 16.65 average seconds to get a decision

from SmartiPhish. However, that time will increase or decrease based on the solu-

tion’s Internet connectivity. Although it shows some high detection time, Figure 9.5

shows that SmartiPhish’s real-time phishing detection was high, and it visualised that

SmartiPhish’s f1-score was increased over time via the knowledge acquisition process.

This was a significant achievement of SmartiPhish since it proves that SmartiPhish can

maintain a high detection rate for an extended period.

Even though SmartiPhish’s performance is good in a balanced dataset, Figure 9.4

illustrates its performance declines in an imbalanced dataset. Further, the f1-score was

downgraded from 97.15% to 84.90% when the phishing to legitimate ratio changed

from 1:1 to 1:10, and this is proportional to a 12.25% decline. However, that pattern

is not only for SmartiPhish. All the benchmark solutions also show similar behaviour.

However, in most cases, SmartiPhish shows the highest f1-score among other solu-

tions, and it is a considerable achievement of SmartiPhish since the literature also

mentioned that the classifier performance declines when the dataset becomes more

and more imbalanced (Aassal et al., 2020). Although that factor is mentioned, the lit-

erature lacks a well-accepted legitimate phishing ratio to have a realistic imbalanced

experiment. However, SmartiPhish averagely maintained a 90.81% of f1-score with

the experimented dataset.
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9.4 Summary

SmartiPhish performance was evaluated with different experiments in this chapter. The

result of these experiments was then analysed to arrive at a conclusion about its real-

time phishing detection ability. According to these experiments, SmartiPhish achieved

96.40% detection accuracy and outperformed all the benchmark solutions exercised

during the experiments. It has recorded a realistic detection time and an interesting

zero-day performance. Furthermore, the knowledge acquisition process used in this

proposed solution has shown the impact of continuous learning when detecting phish-

ing attacks. Therefore, the proposed solution has experimentally shown that it achieved

the study’s aim. However, the achievement should be critically evaluated before mak-

ing the final remarks of this study. Therefore, the next chapter evaluates the proposed

solution aligned to the defined objectives of this study to justify that this study has

achieved its aim with this SmartiPhish solution.
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10 EVALUATION

10.1 Introduction

This study aimed to find a better way to detect phishing attacks by addressing limita-

tions in the anti-phishing domain. As a result, Chapter 8 introduced the SmartiPhish

solution as the outcome of this study and the previous chapter experimentally evalu-

ated its performance in a simulated web environment. This chapter focuses on a critical

evaluation of the conducted study when it comes to achieving the study’s aim. As a

result, this chapter first provides an overview of the study and then discusses how the

defined aim was successfully achieved by attaining the study’s objectives. Following

that, the resolved research problem, the novelty, and contributions to the current anti-

phishing domain are discussed. The limitations of the proposed solution are reviewed

in the latter part of this chapter to highlight potential improvements.

10.2 Research overview

This research was mainly motivated by the increasing number of phishing threats in

present cyberspace. After a successful background study, this research identified that

the existing anti-phishing solutions are ineffective against the changing nature of phish-

ing attacks since they were not planned for frequent knowledge acquisition to update

existing phishing detection features. As a result, when phishing attacks change, many

solutions suffer performance degradation. It is a problem in the current anti-phishing

domain since the newly introduced solutions are becoming useless after a few months,

and a similar effort is required again to retain the performance of these solutions. As

a solution to this problem, an autonomous anti-phishing solution with a systematic

knowledge acquisition process was proposed to reduce the impact of phishing attacks

on Internet users.
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According to the research nature, positivism research philosophy was initially se-

lected. Therefore, the existing knowledge of phishing detection was analysed. As a

result, machine learning was selected as the phishing detection technique based on the

previous evidence to construct the implementation process. Since machine learning

was categorised under a quantitative research approach, the collected data was primar-

ily used when finding patterns, making predictions, and generalising results during the

study. However, the data collection was not a one-time task since the followed method-

ology required time-series data to achieve the study’s aim. As a result, several datasets,

such as the classic and modern datasets, were utilised.

According to the proposed methodology, the solution implementation was not straight-

forward. It included three separate phases. The first two belonged to the implementa-

tion of the phishing detection solution. The next was developing the knowledge acqui-

sition process, which integrated the phishing detection solution to facilitate continuous

learning support. After completing these three phases, the proposed solution named

SmartiPhish was implemented. Then, a web browser named MORA Browser was

implemented to demonstrate the actual usage of the proposed solution. After these im-

plementations, SmartiPhish was evaluated from different perspectives, and the results

were thoroughly analysed to show that the mentioned aim was successfully achieved.

10.3 Achieving the aim and objectives of the study

This study aims to develop an autonomous anti-phishing solution that can update the

existing phishing detection knowledge via a systematic knowledge acquisition process

to reduce the impact of phishing attacks on Internet users. This aim was succeeded by

following three research objectives defined at the beginning. The following explains

how these objectives were achieved.

RO1 – To identify the phishing detection features and detection techniques utilised

by the anti-phishing domain in effective phishing detection

RO1 is primarily linked to the literature on phishing attack detection. Therefore, the

existing anti-phishing studies were first analysed to collect phishing detection features
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already used. After this analysis, these features were classified as URL-based, HTML-

based, and third-party features, as shown in Table 3.1. Out of these, the third-party

features can increase the detection time of a solution because most of them rely on ex-

ternal services. However, external features such as Alexa and Google ranking have sig-

nificantly contributed to phishing detection in the past. Besides detection time, service

limitations and costs associated with some of these services have also caused issues

when using third-party features in phishing detection. Furthermore, earlier solutions

that only used URL-based features had some limitations, and phishing detection fea-

tures gathered from all these categories were mentioned as beneficial in a successful

phishing detection strategy. Despite these feature categories, the literature has men-

tioned that the features that take longer to mine are not ideal for real-time phishing

detection because they contribute to a higher detection time and create dissatisfied

users.

After analysing the phishing detection features, feature extraction techniques were

also analysed under this objective since feature extraction was also essential when

achieving the study’s aim. Therefore, the feature extraction techniques were examined

during the literature analysis and mainly identified manual and representation learning

techniques. However, the manual feature extraction techniques had several limitations,

while representation learning techniques automatically extracted significant phishing

detection features by traversing the raw data. Further, representation learning tech-

niques like deep learning are black-box techniques where the selected phishing detec-

tion features were not visible to the outside. This is also another advantage for phishing

detection solutions because attackers cannot use the selected attributes to circumvent

these solutions. Additionally, representation learning provides better support when up-

dating the present significant features that could be used to detect phishing attacks.

It is essential in phishing detection because phishing attacks are constantly changing.

Therefore, representation learning techniques are more suitable when detecting phish-

ing attacks than manual techniques.

Moreover, phishing detection techniques have mainly been classified into user ed-

ucation and software-based detection techniques in Chapter 3. Among these, software-
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based techniques seem to be practical since phishing attacks are constantly changing,

and user education is identified as an impractical approach due to the cost incurred and

the readiness of the trainees. Therefore, machine learning techniques that come under

software-based techniques have shown significant achievement in the past decade due

to their ability to manage frequent data changes and unique learning processes. As a

result, many contemporary phishing detection interests are toward machine learning.

Deep learning is the most popular because it is a representation learning technique

with many advantages in phishing detection, as previously described. Further, Table

3.3 also visualises the use of deep learning techniques in recent phishing detection and

their achievements.

After a successful literature analysis, this study made the following conclusions to

construct the foundation for the RO2.

• URL-based and HTML-based phishing detection features are considered internal

features, and phishers have more control when creating new phishing attacks.

• Even though third-party phishing detection features have some limitations, these

are effective when detecting phishing attacks since the phishers’ impact on these

features is less than the internal features.

• Representation learning is the most appropriate technique to be followed when

extracting phishing detection features because these significant features need to

be updated frequently due to constantly changing phishing attacks.

• Representation learning is responsible for extracting the relevant phishing detec-

tion features from the raw data during the learning process, which eliminates the

separate feature extraction process required in many other techniques.

• Deep learning is a representation learning technique that is effective in phishing

detection due to its ability to manage frequent data changes, unique learning

processes and previous success in phishing detection.

With these critical findings, RO1 was successfully achieved. As a result, the main

consequence of RO1 was the knowledge gained about current phishing detection fea-
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tures and techniques. This knowledge was then applied to achieve RO2 and RO3 in the

following stages.

RO2 – To implement an effective anti-phishing solution by overcoming the iden-

tified phishing detection challenges

RO2 is primarily linked with the research question RQ1, which is one main implica-

tion of this study. It mainly targeted the implementation of an effective anti-phishing

solution. Therefore, when solving RQ1, this study first found an anti-phishing solution

overcoming the identified challenges and then the performance of this solution was ex-

perimentally evaluated to demonstrate its effectiveness. The following section presents

the implementation of the proposed anti-phishing solution and its performance evalu-

ation conducted in a simulated web environment.

RQ1: How can an effective anti-phishing solution be implemented while over-

coming the identified challenges?

A comprehensive literature analysis of present phishing detection challenges was

conducted as the first step in answering this question. It was mainly to design a bet-

ter solution by overcoming the present phishing detection challenges. This analysis

identified six main challenges that should be addressed when achieving the study’s

aim. They were mainly discussed in Section 3.7. After finding some positive ap-

proaches to overcoming these challenges, an effective anti-phishing solution was

proposed.

Proposed solution: This solution had two main phases, as mentioned in Chapter

4. The objective of phase one was to implement a phishing detection solution that

could extract phishing features from internal features because these features could

frequently change with the phishers’ impact, as identified under RO1. Therefore,

these internal features need to be retrained occasionally to detect the latest phish-

ing attacks so as to overcome the one and fourth challenges mentioned in Section

3.7. Therefore, as identified under RO1, a deep learning-based phishing detection

solution was initially planned with the support of URL and HTML content features.
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As a result, DLM was implemented to oversee the URL and HTML content of the

website.

According to the explored literature, DLM could be considered the third phish-

ing detection approach, which uses representation learning to detect phishing at-

tacks using URL and HTML content features simultaneously. However, this would

be the first phishing detection solution which employs GNN in phishing detection.

Even though two similar existing solutions are available, they used LSTM and CNN

to build their deep networks. However, the literature has mentioned that GNN is an

effective technique for analysing HTML content to detect phishing attacks due to

the graph representation of HTML content.

Also, no one in the available literature has used GNN efficiently to analyse

HTML content. This may be due to the dynamic content of HTML pages, which

generate different structures and lengths from page to page. This dynamic behaviour

causes problems when generating a GNN-compliant graph in an automatic process

like DLM. As a solution for this problem, a new HTML page traverser was de-

veloped during this study to go through HTML pages level by level to produce a

GNN-compliant graph. Therefore, the DLM could use the powerful GNN-based ar-

chitecture to analyse the HTML contents, and LSTM/CNN-based architecture was

only used with URL analysis.

DLM achieved 96.42% detection accuracy and 0.036 FN rate. However, com-

pared to Table 3.3, this detection accuracy is slightly lower. Therefore, a bench-

marking experiment was used to re-evaluate the DLM performance. According

to the benchmarking experiment, the DLM detection accuracy was recorded as

99.57%, which is the best among the other accuracies in Table 3.3. When compar-

ing these two results, the impact of the diversity of the used dataset was visualised.

According to Section 5.3.4, the benchmark dataset is not diverse, and 99.57% accu-

racy might be due to that cause. However, the modern dataset exercised in the first

experiment was diverse. Therefore, this study has decided to consider 96.42% as

the detection accuracy of the proposed DLM.

Even though there was no solution like DLM at the beginning of this study, two
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similar solutions were introduced later, as discussed in Section 3.5. Both solutions

used the same strategies when downloading data for these studies. The Web2Vec

showed the highest performance, and the benchmark dataset was employed there.

Therefore, this study also evaluated the DLM with the benchmark dataset as dis-

cussed previously. This measured accuracy is 0.57% higher than the Web2Vec

recorded accuracy. It indicates that the DLM has outperformed similar solutions

by proving the effectiveness of the novel architecture presented in the proposed

DLM.

Further, the DLM was highly effective against zero-day attacks. It recorded

96.43% detection accuracy with zero-day attacks, and the overall accuracy was

90.12%. It is well above the GSB, which recorded 49.88% detection accuracy in the

same experiment. Like zero-day attacks, the DLM detection time is also interesting.

It took only 1.8 seconds to give a decision for a given webpage. This reported de-

tection time is quick compared to the literature because, in a similar solution, Yang

et al. (2019) completed one webpage within 3.5 seconds, which is twice the DLM

detection time.

Although the DLM has shown a reasonable detection accuracy, time, and zero-

day attack detection, it could not properly overcome the main research problem

identified in this study. The performance degradation of an anti-phishing solution

occurs due to constantly changing phishing attacks. The impact of this has been

experimentally demonstrated in Section 5.5.2.1. According to that, the DLM had a

9.35% low performance after one year. However, after following a successful re-

training step, the DLM regained its typical behaviour. This indicates that retraining

is a successful strategy for retaining the performance of anti-phishing solutions.

Even though this strategy could maintain the performance of the DLM, it could

not be frequently performed due to the data challenges mentioned as the second

and third in Section 3.7. In general, a deep learning solution like DLM requires

large data to perform a successful learning step. However, due to the previously

mentioned data collection challenges, collecting a large volume of data in a shorter

period is not easy in the phishing domain. As a result, phase two implementation
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was proposed to control this performance drop until a retraining step was met.

Phase two output was the RDLM, which is a phishing detection framework. It

primarily depended on RLM, with the DLM as an observation of the RLM. Since

the RO1 identified that the phishers’ impact is less in third-party features, the DLM

output with third-party features was used to control the performance drop of the

phase one solution. As a result, the community decisions and Alexa ranking were

selected by considering their feasibility. The Alexa ranking provides information

about a website’s reputation, which highly supported decreasing FP rate and the

community decision, which supported decreasing FN rate.

The RLM implementation initially faced two challenges identified in Section

3.7. One was the data collection problem, and the next was the third-party feature

limitations. Generally, RL does not require much data. It can work with zero or less

data because it is a trial-and-error concept learned through experience. Therefore, a

small amount of data was enough for RLM to train the model. As presented in Table

6.1, the study could collect 8,700 data during the RLM implementation to overcome

this data challenge. The next challenge encountered in this implementation was the

detection time because the other identified third-party feature limitations like cost

and service constraints do not apply to the selected external services (i.e., Phish-

Tank, GSB and Alexa).

As described in Chapter 6, the DLM implementation was designed as a service

for the RLM. Therefore, the RLM calls DLM and other external services simul-

taneously. As a result, both Alexa and ComD features could construct their values

during the DLM decision processing time. This strategy did not consume additional

time for the third-party feature construction because, in most cases, the DLM took a

longer time (see Figure 5.23), and the external features could be constructed within

that period. Otherwise, if the RDLM is built as a sequential process solution, as

Yang et al. (2019) proposed, the RLM must wait until the DLM has completed its

duty before calling external services. Then, additional time will be calculated, and it

directly affects the detection time of the final solution. However, the detection time

of the RDLM always depends on the network transfer time because of the external

215



services.

The ultimate solution found for RQ1 was the RDLM. It was introduced as a

phishing detection framework. This indicates that RDLM is a structure which can

be changed to have differentiated solutions. Therefore, other researchers can use

the RDLM concept to try out different observations when finding effective solu-

tions against phishing attacks. Even though this work used three observations in the

RDLM, the RLM can incorporate many different observations with little engineer-

ing effort. For example, suppose a visual similarity-based value could be calculated

for phishing web pages using some visual component. In that case, this visual sim-

ilarity value can be added as a separate observation to the RLM. Then, with a little

engineering work, this new observation might be configured with the RDLM for

effective phishing detection.

Section 6.7.2 evaluated the performance of RDLM over DLM via a specific

experiment. This experiment shows that the main objective of RDLM was ac-

complished because the DLM achieved only 87.82% detection accuracy, while the

RDLM achieved 94.11%. This observation is due to the declining performance of

the DLM because the used DLM was retrained in July 2021, and it was more than

three months old when conducting this experiment. Therefore, as mentioned in the

literature, the DLM should expect a performance drop. In this case, it was recorded

as 8.2% since the DLM had a detection accuracy of 96.02% at the beginning. It

indicates that if the DLM were the only solution offered against phishing, it would

detect phishing attacks with an accuracy of 87.82% after three months. However,

the level two implementation maintained overall solution accuracy at 94.11% while

reducing performance drop to 1.91% compared to the initial accuracy of the DLM.

In conclusion, the experiment demonstrated that the level two implementa-

tion delivered a reasonable solution to the identified problem, reducing performance

drop from 8.2% to 1.91% during the experiment. However, these numbers only be-

long to this experiment because RDLM expects to improve its detection ability once

it is exposed to more examples since RDLM learns through experience. This was

visible in Section 9.2.4, where RDLM achieved 96.4% accuracy after six weeks of
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exposure to the real world. Furthermore, Section 9.2.4 empirically demonstrated

that, after several months of initial training, while all of the benchmark solutions

recorded a dropping performance, the RDLM recorded a rising performance. This

observation indicates that the RDLM is capable of controlling this decreasing per-

formance. It is also a practical phishing detection approach that has addressed the

relevant challenges identified by the initial literature analysis. Therefore, with the

RDLM, this study found a successful answer to RQ1 to detect phishing attacks that

support the study’s aim. Next, the effectiveness of this solution is evaluated to jus-

tify that the proposed solution is an effective anti-phishing solution.

Solution evaluation: The RDLM performance was critically evaluated in Chapter

9 under SmartiPhish experiments. Since the RDLM is the main phishing detection

component of the SmartiPhish solution, these experiments demonstrated critical as-

pects of RDLM to uplift it as an effective anti-phishing solution. These aspects can

be presented below to justify the effectiveness of the RDLM in phishing detection.

1. High-accurate phishing detection

The RDLM achieved a detection accuracy of 96.40%, an f1-score of 96.42%,

and an FNR of 0.029, as shown in Section 9.2.4. It outperformed all the bench-

mark solutions in this experiment, and the DLM recorded the closest accuracy

to the RDLM, which was 93.33%. These results indicate that the accuracy

recorded by the RDLM is much better than other solutions employed in this

experiment. Additionally, the recall value of SmartiPhish in this benchmark

experiment was comparatively high. It shows that PhishRepo can detect phish-

ing attacks very accurately than the other solutions used in the experiment. It is

an advantage of the proposed solution because incorrect marking of phishing

instances may significantly impact potential users.

Further, when comparing the RDLM accuracy with recent anti-phishing

solutions available in Table 3.3, the RDLM recorded accuracy is slightly lower.

However, the accuracy of an anti-phishing solution always depends on the di-

versity of the evaluation dataset, as discussed in Section 5.3.4. This study

performed a benchmarking experiment in Section 5.5.2.2 with the Web2Vec
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solution, which holds the best accuracy among the recent anti-phishing solu-

tions in Table 3.3. According to this experiment, the DLM outperformed the

Web2Vec solution. In contrast, RDLM outperformed DLM in Section 9.2.4.

These observations inferred that the RDLM is a more accurate anti-phishing

solution than the explored solutions.

2. Protection against zero-day phishing attacks

As identified in the literature analysis, zero-day protection is an essential as-

pect of an anti-phishing solution. Therefore, in Section 9.2.3, RDLM perfor-

mance was evaluated against zero-day attacks. According to this experiment,

RDLM can detect zero-day attacks with 95.34% detection accuracy. This ac-

curacy was an outstanding achievement of RDLM since the overall detection

accuracy was also 96.40%.

However, this study was unable to find any anti-phishing solution that

had performed a specific experiment to measure the accuracy of zero-day at-

tack detection. Therefore, this study could not compare the RDLM’s zero-day

performance to that of prior solutions.

3. Better performance in the natural web environment

Users visit more legitimate sites than phishing sites in a typical web environ-

ment. As a result, the natural web environment is always unbalanced, with

legitimate websites outnumbering phishing websites. Section 9.2.6 simulated

this imbalanced environment using different ratios because no practical ratio

for an imbalanced experiment has been presented in the literature. According

to that experiment, increasing the number of legitimates reduced the f1-score

of the RDLM solution to a 90.81% mean value. It is nearly a 6% reduction

from the recorded f1-score in the balanced environment.

However, the literature has already observed this performance drop in

an imbalanced environment. Aassal et al. (2020) mentioned that almost all

the benchmark solutions they used in their imbalanced experiment showed a

decreasing trend when the ratios were changed. This was a noticeable point

because the same observation was also seen in the imbalanced experiment
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performed in this study. Although RDLM has not performed in its imbal-

anced environment like in the balanced environment, it outperformed all the

benchmark solutions in most cases when the phishing-to-legitimate ratio was

changed from 1:1 to 1:10, as illustrated in Figure 9.4. This inferred that even

though the proposed anti-phishing solution shows a decreased performance in

the natural environment, the RDLM is better than the other solutions.

4. Effective against real-time phishing attacks

This study’s ultimate goal was to reduce the impact of phishing on Internet

users. As a result, real-time phishing detection is a critical feature of the pro-

posed RDLM solution. Section 9.2.7 used a simulated web browser exper-

iment to evaluate this characteristic of the RDLM. In this experiment, most

phishing attacks were collected by reducing reporting and collection time to

create a real-time environment. According to this experiment, RDLM has con-

sistently maintained its phishing detection ability above 95%. Furthermore, as

shown in Figure 9.5, the f1-score reached above 96.5% in many cases in the

latter part. This shows that the RDLM is effective at detecting phishing attacks

in real-time.

According to these interesting aspects of the RDLM solution, the RQ1 solution can

be considered an effective anti-phishing solution. Therefore, with RDLM imple-

mentation, this study has successfully solved the RQ1 of this study.

Since RQ1 was directly linked to the RO2 of this study, a successful solution to RQ1

supported RO2 to achieve its goal. Therefore, the primary outcome of RO2 was the

RDLM solution implemented through the RQ1. However, the success of RDLM de-

pends on the continuous learning process. Section 6.7.2 and 9.2.2 experiments demon-

strate this situation precisely. According to these experiments, the RDLM’s detection

accuracy and f1-score dropped by 3.36% and 2.69%, respectively, over a span of nearly

four months. It was mainly due to the lack of support that the RDLM got from the con-

tinuous learning process. Therefore, RO3 was critical when achieving this study’s aim.
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RO3 – To incorporate an autonomous knowledge acquisition process to update

the existing knowledge of the phishing detection features to minimise the perfor-

mance loss over time

The continuous learning process is an essential aspect of the RDLM since RLM and

DLM both need to learn over time to maintain their performance against the latest

phishing attacks. RDLM primarily depends on RLM, an RL environment that is ex-

pected to improve its detection ability by interacting with real websites. On the other

hand, the DLM also need to be retrained occasionally. Otherwise, its performance loss

indirectly affects the RLM since the DLM is one critical observation of the RDLM

architecture. Therefore, if the DLM deviates from the expected behaviour, it indirectly

affects the performance of the RLM.

However, the initial idea of implementing the RDLM was to control the phishing

detection ability until DLM could find a retraining point. This indicates that once a

considerable amount of data is collected, the DLM could retrain to regain its normal

behaviour to detect the latest phishing attacks. Until that, the RLM is responsible for

managing the performance of RDLM with the support of external features alongside

the DLM output. However, when achieving this study’s aim, RDLM required a con-

tinuous learning process to update its knowledge to fight against the latest phishing

attacks. In that step, finding answers to the second implication of this study, RQ2, was

important. RQ2 mainly targeted a systematic knowledge acquisition process which

supports RDLM to update its present phishing detection knowledge, and this is to min-

imise its performance loss. Therefore, when solving RQ2, this study first designed

the knowledge acquisition process and then demonstrated how this process helped the

RDLM to minimise its performance loss. The following section presents the proposed

knowledge acquisition process and its impact on the RDLM when detecting phishing

attacks over time.

RQ2 – How can existing knowledge of phishing detection features be automati-

cally updated to minimise performance loss over time?

According to the literature, collecting phishing data is more challenging than legiti-
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mate data because phishing websites are removed from the Internet within a shorter

period. Therefore, collecting phishing data take more time than legitimate data

in anti-phishing studies. However, these data cannot be constructed from a single

night, and a continuous process is required. This problem is mainly associated with

the solutions like RDLM, which takes multi-modal data. If a solution used only

URLs, then phishing URLs could be downloaded from different phishing verifica-

tion systems discussed in Section 3.3. Therefore, finding the latest labelled phishing

data when acquiring new knowledge was a challenge when solving RQ2, as men-

tioned in the second and third challenges listed in Section 3.7. Hence, a practical

approach for collecting and labelling training data was required first when solving

RQ2. After finding a successful data collection and labelling process to overcome

these challenges, a systematic knowledge acquisition process was proposed to up-

date the existing knowledge of the RDLM.

Proposed solution: In Chapter 7, this study implemented an online phishing data

repository called PhishRepo as the first step toward answering this RQ2. PhishRepo

is an online phishing data repository which collects, verifies, disseminates and

archives phishing data. Although it is considered a phishing data repository, it is

designed to oversee both legitimate and phishing data during its process. How-

ever, the legitimate data collection was not promoted through PhishRepo and was

used only with legitimate websites with high uncertain value. It is primarily due

to the crowdsourcing approach used by PhishRepo. If more legitimate websites

were passed to PhishRepo, the crowds’ effort would become useless because online

services like Google Search and Alexa can provide the same output without much

effort. As a result, PhishRepo’s main intention was to collect and label phishing

websites and high uncertainty legitimate websites, as described in Chapter 8. This

was a limitation in the proposed PhishRepo solution. However, this limitation was

addressed by using the Google Search service. This service verified the legitimate

websites that were not handled by PhishRepo to balance the number of legitimate

and phishing websites collected by the knowledge acquisition process.

The primary goal of the proposed knowledge acquisition process was to col-
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lect the most recent data and send it to the RDLM to acquire new phishing detec-

tion knowledge. It was mainly to identify the latest phishing attacking strategies

to maintain the performance of the proposed anti-phishing solution. This process

was a five-step process which has data production, data submission, labelling, data

construction and automatic knowledge acquisition, as discussed in Chapter 8.

In the knowledge acquisition process, the relevant knowledge is primarily

extracted by the RDLM. Therefore, the existing knowledge of phishing detection

features will be updated automatically due to the architecture of the RDLM. Fur-

ther, this knowledge acquisition will be effective only if the training data collected

through this proposed process is diverse and up-to-date. However, when updating

the phishing detection knowledge, the main influencer for the changed knowledge is

the phishing websites because those are constantly changing. Therefore, the diver-

sity of the collected phishing websites and the effectiveness of those in the learning

process when identifying the latest phishing attacks were evaluated in Chapter 7.

Section 7.4.3 demonstrates that the PhishRepo dataset met all of the diversity

requirements tested during the review, and the results achieved with regard to data

leakage were exceptional. This tendency of data leakage was identified as a critical

factor, but it has not been exercised before in the anti-phishing domain. However,

PhishRepo solution integrated it into the data collection process as a deduplication

filter to produce zero-duplicate data to eliminate the data leakage issue that could

occur during the RDLM learning process. This deduplication filter is useful be-

cause the final phishing detection solution is autonomous and requires correct data

to make accurate decisions. Figure 7.16 shows that the objective of this filter was

successfully achieved by producing zero-duplicate data for the RDLM learning pro-

cess.

Further, the effectiveness of the anti-phishing solutions trained by the PhishRepo

dataset was evaluated with the latest phishing attacks in Section 7.5. In this exper-

iment, PhishRepo’s dataset outperformed both the benchmarking datasets by im-

proving almost all the anti-phishing solutions’ accuracies when detecting the latest

phishing attacks. These results show that the phishing data collection approach pro-
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vided in this work ensures quality data collection when updating existing phishing

detection knowledge in anti-phishing solutions. According to these experiments

and diversity analyses performed, the proposed knowledge acquisition process is

well-suited to support the continuous learning process of the RDLM solution.

With this knowledge acquisition process, this study successfully found a solu-

tion to RQ2. Next, the effectiveness of this solution was evaluated to verify whether

the performance loss of the RDLM was minimised after integrating the RQ2 solu-

tion with the RDLM.

Solution evaluation: The primary goal of the RQ2 was to update the RDLM’s ex-

isting phishing detection knowledge to minimise future performance losses. How-

ever, due to the RDLM’s black-boxing nature, updating existing knowledge cannot

be visualised. As a result, when assessing this RQ2 solution, the RDLM’s perfor-

mance loss after a certain period and regained performance once the knowledge

acquisition process integrated with it was considered. Based on that consideration,

the proposed RQ2 solution was evaluated in three cases, as discussed below.

1. RDLM improved its detection accuracy by 6% when integrated with the

knowledge acquisition process.

According to Section 6.7.2, the phishing detection accuracy of the RDLM was

94.11%. However, in Section 9.2.1 RDLM (RLM1 instance), detection ac-

curacy dropped by nearly 4% and was recorded as 90.75%. This indicates

that within four months, the accuracy of the RDLM was decreased due to

the absence of the knowledge acquisition process. However, the RLM3 in-

stance, which received the knowledge acquisition process support for nearly

six weeks, achieved 96.40% detection accuracy in the same experiment. This

indicates that the RDLM increased its detection accuracy by 6% by getting the

knowledge acquisition process support. The conclusion is that the proposed

knowledge acquisition process supports RDLM in updating its existing phish-

ing detection knowledge to have better phishing detection.
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2. RDLM recorded an increasing performance during the experiment

In Section 9.2.1 experiment, RDLM had 90.75% initial detection accuracy,

but within two weeks, this accuracy was increased to 95.26%. After another

four weeks, the accuracy of the RDLM reached 96.40% with the same test

data, as shown in Figure 9.1. This implies that the RDLM has an increasing

performance trend when exposed to more websites. It is mainly due to the

continuous learning process integrated with the RDLM. It implies that the

RDLM is updating its existing knowledge with the help of the knowledge

acquisition process.

3. DLM regained its typical behaviour through the knowledge acquisition

process

As identified by Section 8.2.5.1, DLM noted a considerable phishing detection

accuracy loss every three months. However, as shown in Figure 8.2, the DLM

achieved 96.95%, 96.02%, and 96.42% detection accuracies during three re-

training cycles performed during this study. Furthermore, Table 9.3 results

showed that 8.54% of detection accuracy improvement of the RDLM was re-

ported once the old DLM was replaced with the latest DLM. This indicates

that the knowledge acquisition process supported the DLM to regain its typical

behaviour over time by updating the existing phishing detection knowledge.

These cases indicate that the RDLM updated its phishing detection knowledge auto-

matically with the support of the proposed knowledge acquisition process. Further,

this knowledge acquisition process helped the RDLM to maintain an increasing per-

formance trend by minimising the performance loss, as shown in Figures 9.1 and

9.5. Therefore, the proposed knowledge acquisition process can update the existing

knowledge of phishing detection features automatically to minimise performance

loss over time.

The goal of RO3 was to integrate a knowledge acquisition process with RDLM to

update the existing knowledge of the phishing detection features to minimise its de-

creasing performance. Since this goal was linked to the RQ2 of this study, the success-
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ful knowledge acquisition process found in RQ2 supported RO2 in achieving its goal.

Therefore, the primary outcome of RO2 was the knowledge acquisition process inte-

grated RDLM solution named SmartiPhish. Since this knowledge acquisition process

proposed through RO3 did not involve direct human interaction, it was considered an

autonomous knowledge acquisition process. Therefore, SmartiPhish is an autonomous

anti-phishing solution that can update the existing phishing detection knowledge via a

systematic knowledge acquisition process.

SmartiPhish is a highly accurate real-time phishing detection solution that is ef-

fective against zero-day attacks. It can work effectively in balanced and imbalanced

phishing environments with an average detection time of 4.34 seconds without net-

work transfer time. Furthermore, a real-world SmartiPhish execution has taken 16.65

seconds of average time to detect a given request. It is comparatively high (Yang et

al., 2019), but it would again depend on several conditions like hosting machine per-

formance and network bandwidth. Once the SmartiPhish was implemented, this study

found that the adversarial inputs at runtime threatened this proposed solution. As a

result, a GN was proposed in Chapter 8 to control the runtime adversarial inputs effect

on SmartiPhish. The proposed GN was reasonable because it recorded positive mean

rewards for self-generated adversarial attacks during the evaluation, as shown in Figure

8.6. It indicates that most of these attacks were correctly identified by the SmartiPhish

during the evaluation period.

As mentioned in the study’s aim, the outcome of this work should minimise the

impact of phishing attacks on Internet users. This indicates that a successful appli-

cation of the implemented solution should exist to use with real users. As a result,

the MORA Browser was proposed in Chapter 8. It was implemented to demonstrate

how Internet users will protect themselves against phishing attacks with the help of

SmartiPhish. The video shared publicly in Section 8.3.3 demonstrates how a user can

access a legitimate website and be protected from phishing websites with SmartiPhish

support. It further demonstrates the practical usage of SmartiPhish. However, this ap-

plication is only one application of SmartiPhish, and it can be integrated with other

relevant sources like smartphones since SmartiPhish was initially implemented as a
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web service.

As previously mentioned, SmartiPhish is an autonomous anti-phishing solution that

can update the existing phishing detection knowledge via a systematic knowledge ac-

quisition process. The performance presented in different experiments showed that

SmartiPhish detected phishing attacks effectively for an extended period without hav-

ing a noticeable performance drop. This infers that SmartiPhish can reduce the impact

of phishing attacks via accurate detection. Then, the proposed MORA Browser is the

application of SmartiPhish, which supports Internet users to benefit from the Smar-

tiPhish solution. Therefore, this study finally proposed an autonomous anti-phishing

solution that can update the existing phishing detection knowledge via a systematic

knowledge acquisition process to reduce the impact of phishing attacks on Internet

users. This proposed solution was the aim of this study. It indicates that this study has

achieved its aim successfully.

10.4 Resolving the research problem

Even though numerous anti-phishing solutions are available at present, this study has

identified that these solutions have not considered the constantly changing phishing

attacks which impact the significant phishing detection features. As a result, the per-

formance of these anti-phishing solutions is declining over time, and it has become a

significant problem in the current anti-phishing domain, as identified in Section 3.8.

As a solution to this identified problem, this study proposed to develop an autonomous

anti-phishing solution that can update the existing phishing detection knowledge via a

systematic knowledge acquisition process to reduce the impact of phishing attacks on

Internet users. As a result, the SmartiPhish solution was developed through integration

with MORA Browser.

As mentioned earlier, the main problem identified by this study was the perfor-

mance drop of the existing anti-phishing solutions, which increases the phishing im-

pact on Internet users. According to the literature, this performance drop is visible

on machine-learning solutions after two months from the initial training. Therefore,

a benchmark experiment was conducted using four machine learning solutions ini-
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tially trained in November 2021. Subsequently, these solutions were again evaluated

after three months with a separate dataset that included the latest phishing attacks,

as described in Section 9.2.4. Once this experiment was completed, the results were

evaluated to check the performance of these solutions, including the SmartiPhish. Ac-

cording to Table 9.5, these solutions showed good accuracy in the initial stage, but the

accuracies were reduced between 3% to 8% after three months, as shown in Table 9.6.

However, SmartiPhish had shown a 94.11% detection accuracy before starting this ex-

periment in Section 6.7.2. Once this benchmarking experiment was performed with

SmartiPhish, it showed that SmartiPhish achieved 96.40% detection accuracy. This

indicates that SmartiPhish showed an increasing performance while others recorded a

decreasing trend in this experiment.

With this benchmarking experiment results, this study has experimentally shown

that the proposed SmartiPhish solution has not recorded a performance drop after a

certain period. However, as presented in the literature, other solutions employed in

this benchmarking experiment recorded a performance drop. This is mainly due to the

continuous learning facility SmartiPhish has proposed to update the existing phishing

detection knowledge. Therefore, this study concludes that the proposed SmartiPhish is

a possible solution for the identified research problem.

10.5 Research novelty and contributions

According to the literature review conducted in Chapter 3, there is no phishing detec-

tion solution that can update its phishing detection knowledge automatically to adapt

itself to the constantly changing phishing attacks. According to this study, this type of

solution is a current demand for the anti-phishing domain to lessen the phishing impact

on Internet users.

10.5.1 Research novelty

This study proposed an anti-phishing approach that can automatically update its phish-

ing detection knowledge to be effective in the most recent phishing attacks. This ap-

proach is being used for the first time in the anti-phishing domain, and the results show
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that it is a reliable solution to the identified problem. Furthermore, in this study, a

GCN-based HTML content analysis approach was introduced to detect phishing at-

tacks to overcome a challenge encountered during phase one of the proposed imple-

mentation process. It was a novel approach, and it became the first GNN application in

the anti-phishing domain. Furthermore, to convert an HTML page into a GCN-based

input, this GCN-based approach initially required an effective HTML page traverser to

generate a GNN-compatible graph. According to the literature, no such traverser could

perform this task effectively. As a result, this study has developed a novel HTML page

traverser that can traverse any number of nested levels in a hierarchical order on a given

web page.

Furthermore, this study filled a gap in phishing data collection by introducing an

online phishing data repository that collects, verifies, distributes, and archives real-

world phishing examples. With the support of this data repository, a reinforcement

learning-based phishing detection framework was introduced as a novel concept. These

new concepts and techniques contributed a large amount of knowledge to the anti-

phishing domain, allowing for better phishing detection in the future.

10.5.2 Main contribution

The main contribution of this study was the SmartiPhish solution. It is an autonomous

anti-phishing solution that can update the existing phishing detection knowledge via

a systematic knowledge acquisition process. This contribution directly addresses the

performance decreasing problem identified with the existing anti-phishing solutions.

As shown in Table 9.2.1, SmartiPhish has increased its performance over time, while

other solutions have recorded a decreased performance compared to their initial perfor-

mance. This indicates that SmartiPhish is effective when detecting the latest phishing

attacks. Therefore, SmartiPhish architecture opens a new direction for anti-phishing

researchers to use a systematic knowledge acquisition process to update their phishing

detection knowledge to detect the latest phishing attacks effectively.
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10.5.3 Value-added contributions

In addition to this main contribution, this study introduced several other contributions

to the scientific community. The following points discuss these specific contributions

in detail.

• A novel anti-phishing solution to detect phishing attacks using URL and

HTML content features.

This study proposed the DLM, a representation learning-based phishing detec-

tion approach that uses URL and HTML features simultaneously. According

to the accessed literature, this is the third phishing detection approach that uses

representation learning to detect phishing attacks from URL and HTML con-

tent. Even though there are two similar solutions, this is the first anti-phishing

solution using LRCN and GCN architecture in the anti-phishing domain. This

solution outperforms the best similar solution reported in the literature. There-

fore, the proposed DLM is a differentiated phishing detection approach which

has recorded a high success in the anti-phishing domain. Furthermore, this con-

tribution will benefit other anti-phishing researchers because they can explore

this novel approach to have a better phishing detection in future.

• A novel approach to detect phishing attacks using HTML content analysis.

In phishing detection, the HTML content analysis was conducted through man-

ual feature extraction in the past. There was no representation learning-based

strategy for analysing HTML content to develop an efficient phishing detection

approach at the start of this work. Therefore, this study implemented a novel rep-

resentation learning approach to analyse HTML contents when detecting phish-

ing attacks. It used GCN to extract HTML content features for effective phish-

ing detection. However, some other researchers introduced two representation

learning-based HTML content analysis solutions. These solutions used LSTM

and CNN to build their deep networks. Therefore, the proposed GCN approach

will be the first GNN-based phishing detection deep network introduced in the

anti-phishing domain. This GNN approach will open many research directions
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in the anti-phishing field to have better solutions against this prevalent Internet

threat.

• A novel HTML page traverser which generates a GNN compatible graph

from a given HTML page.

GNN is a graph-based neural network that requires graphs as inputs. Therefore,

this study introduced a novel HTML page traverser to generate GNN-compatible

graphs. At the initial stage of the GNN approach, this study faced several chal-

lenges, such as the dynamic content of web pages which generate different tree

structures, length of the web page, and a different number of children elements

under a parent element. Therefore, a functional programming approach was used

to build an effective HTML page traverser using several python libraries. This

HTML traverser was evaluated more than 100,000 times, and it generated ac-

curate results every time. It can work with any page length and any number of

nested elements when generating GNN-compatible graphs. Therefore, this novel

HTML traverser will be a useful resource for the scientific community who likes

to work with GNN. Furthermore, the logic used when developing this traverser

could be used for different tasks by modifying specific code segments to extract

information from the web page.

• A reinforcement learning-based collaborative phishing detection framework.

The RDLM solution introduced in this research is a phishing detection frame-

work. It is a reinforcement learning approach that uses several observations to

decide whether a web page is phishing or legitimate. This architecture can be

used in future research by changing the observations provided to the RL agent.

However, it needs little engineering effort, but this RDLM can be used as a

framework when displaying different observations like visual similarity score,

Google page ranking and Alexa ranking to have differentiated phishing detec-

tion solutions in future.

• An online phishing data repository uses to collect, validate, disseminate, and

archive real-time phishing data.
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As identified in this study, a specific location to download trustable latest phish-

ing data is a research gap in the anti-phishing domain. PhishRepo is the solution

proposed to fill this identified research gap. PhishRepo, as mentioned earlier,

is an online phishing data repository used to collect, validate, disseminate, and

archive real-time phishing data. It used some innovative design artefacts to sup-

port better phishing data collection. Since PhishRepo is proposed as an on-

line solution, other researchers also can use this to download the latest phishing

data for their needs. Further, PhishRepo also gives support to RL environments

by providing interactive feedback. Other researchers can also use this system

to get the required data and labelling requirements. Therefore, this proposed

PhishRepo will benefit anti-phishing researchers by eliminating their phishing

data hassle.

• A large-scale, multi-modal phishing data in raw format could be used for

future research.

Since this research collected data at different time points for a successful evalu-

ation process, a large amount of data has been collected during the study time.

These data are in both legitimate and phishing categories and include several in-

formation sources like URLs, HTML pages, screenshots, Alexa information and

request header details. These datasets were uploaded to the Mendeley online

data repository for others’ use. Therefore, other researchers also can use these

datasets to develop effective phishing detection solutions.

• A phishing-free web browser for safe browsing.

SmartiPhish was integrated with a web browser application named MORA browser

to provide a phishing-free environment for Internet users. Any interested party

can download this browser and use it for web surfing tasks. This browser in-

cluded all the required facilities to perform a web search. However, it does not

have some fancy stuff a modern browser has today. The shared video in Chapter

8 demonstrates its UI and how this browser works. Any Internet user can use

this browser to have a phishing-free environment during web browsing.
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10.6 Research limitations

Phishing attacks are mainly categorised under deceptive and technical subterfuge. These

categories are again divided into several sub-categories, as mentioned in Chapter 3.

Out of these, this study only focused on spoofed website attacks, a sub-category of

deceptive phishing attacks. Therefore, the other types of phishing attacks are not con-

sidered when developing the proposed solution, and those attacks could not be detected

via this solution. Even though the proposed solution detects only spoofed websites, the

website needs to have a text/HTML web page to be employed in the detection process.

Otherwise, the graphs generation process which comes under the HTMLDet model

will fail, and the solution will not make any decision on that request. Therefore, any

web page input must have text/HTML content type to have a successful phishing de-

tection with the proposed solution.

In the proposed solution, the internal phishing detection features were extracted

using a deep learning architecture. Generally, deep learning techniques are considered

a black boxing technique that hides the visibility of the extracted features. Therefore,

in the proposed solution, the extracted internal phishing detection features are not vis-

ible to the outside. As a result, the constantly changing significant phishing detection

feature could not be shown to the outside. According to the literature, these phishing

detection features must be updated after two months. However, the proposed solution

updates the internal phishing detection features every three months due to the resource

limitations such as phishing examples and high-performance computer costs associ-

ated with the retraining process.

The RL environment was updated with daily feedback every midnight. However,

that feedback process is delayed feedback due to the proposed architecture. It was

mainly due to the lack of experts in the labelling process. Therefore, the proposed

labelling architecture uses online verification systems first and then moves to humans.

In that process, once a submission enters the labelling process, it waits a minimum

of two days before entering this process due to the limitations that exist with these

verification systems. Therefore, the RL feedback process has a minimum of two days

delay. Even though these verification services are used, these services are free services
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which do not have any agreement with the proposed solution. Therefore, any shortages

of these services will interrupt the proposed solution’s execution, which is another

limitation of this solution.

The proposed solution is a web service, and a browser can call this service to

make a decision. However, this entire process takes 16.65 seconds, and frequently

calling this service will make the user uncomfortable since it decreases the browser

performance. Therefore, the proposed web browser calls to the proposed solution only

at the beginning of a new website. As a result, the proposed architecture is vulnerable

to dynamic attacks such as tab napping, which could be loaded after the web page is

loaded to the users. It may be eliminated by making requests for every content change,

but it will badly affect the browser’s performance.

According to the architecture of the proposed solution, the requested web page is

downloaded from the server-side. This adds another limitation to the proposed so-

lution. That is, the unavailability of geographical location-based content. Since the

requested location of the web page and downloaded location could be different, the

location-based content might not be correctly reflected in the web page during the

decision-making. Even though these detection time-related experiments were carried

out in this study, these experiments were done in a controlled environment. It is mainly

due to the time constraints and the sensitivity of phishing attacks. According to the na-

ture of phishing attacks, asking real users to load phishing content is very challenging

because if the proposed solution fails on some content, it may affect the user. There-

fore, none of the real users was used in the presented experiments. Hence, real-world

experiments could not be performed during the study.

Even though this study identified several adversarial attacks, it only addressed one

type of attack due to the less impact of others, as described in Chapter 4. However,

these justifications are based on literature, and there might be some impact on the

other types of adversarial attacks. The experimented adversarial attacks were tested

only in a controlled environment based on certain assumptions described in Chapter 8.

However, failure of these assumptions might impact the solution execution, which is

again a limitation of the proposed solution. Furthermore, the other type of adversarial
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attacks were not tested during the study. Therefore, those attacks might be effective

on the solution in actual execution. Further, the limitations of the execution environ-

ment are critical in this study. Since the proposed GCN-based architecture requires

high-computational power and more time for a retraining cycle, time and resource lim-

itations were added as limitations to this study. Therefore, the conducted experiments

were limited and could not perform for a more extended time.

10.7 Summary

This chapter focused on a critical assessment of the objectives attained in this study

to achieve its goal. The first objective, RO1, is directly related to the literature and

achieved through a thorough literature review. The research questions RQ1 and RQ2

were then directly linked to the RO2 and RO3 objectives. This study proposed and

evaluated an RDLM and knowledge acquisition process as solutions to these two ques-

tions. Following the successful implementation of these two solutions, RO2 and RO3

were achieved, which ultimately accomplished the aim of this study. The proposed

solution was a novel anti-phishing solution that has made several contributions to the

field. However, like many other solutions, this one has some limitations, which were

explicitly discussed here. Since the research goal has now been accomplished, the fol-

lowing chapter will introduce the concluding remarks by summarising the key points

highlighted throughout this study.
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11 CONCLUSION AND RECOMMENDATIONS

11.1 Introduction

Chapter 10 provided a critical evaluation of the study’s aim and objectives. It discussed

the proposed solution’s contributions, emphasising its novelty while highlighting its

limitations. This chapter focuses on the final remarks of the conducted study because

the key objectives of the study have been achieved at this level. As a result, this chapter

will summarise the key research findings and discuss how the knowledge developed

from this study has been disseminated to the scientific community. This chapter also

suggests specific research directions that may be undertaken in the near future.

11.2 Overall findings

This research aimed to develop an autonomous anti-phishing solution that can up-

date existing phishing detection knowledge through a systematic knowledge acqui-

sition process to reduce the impact of phishing attacks on Internet users. The results

show that the anti-phishing solution developed in this study can detect phishing attacks

with high accuracy and reduce the impact of phishing attacks on Internet users. This

solution achieved 96.40% detection accuracy and 96.42% f1-score in the most recent

testing period and may improve over time due to the continuous learning support pro-

vided by this solution. Further experiments reveal that this study effectively answered

the major research problem, which was the performance degradation of previous anti-

phishing solutions. According to these experiments, the proposed solution improves

accuracy by 6% over time, whereas other benchmark solutions degrade over time.

Additionally, two research questions are posed, RQ1: How can an effective anti-

phishing solution be implemented while overcoming the identified challenges? and

RQ2: How can existing knowledge of phishing detection features be automatically up-
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dated to minimise performance loss over time? And these questions should be resolved

at the outset. The first question was answered using a phishing detection framework

based on reinforcement learning, and the second was solved by integrating a system-

atic knowledge acquisition process with the RQ1 output. After answering these two

questions, this study accomplished its goal by introducing SmartiPhish, a real-time

phishing detection solution that continuously learns to adapt to constantly changing

phishing attacks.

SmartiPhish is the first anti-phishing solution, employing an innovative phishing

detection approach that includes powerful GNN and RL architectures. SmartiPhish

demonstrated significant performance during the experiments, particularly against zero-

day attacks, where it maintained 95.34% detection accuracy against the experimented

zero-day attacks. SmartiPhish took 4.34 seconds to decide on a specific website, and

the overall detection time was 16.65 seconds. However, the 16.65 seconds includes

the network transfer time, which may vary depending on SmartiPhish’s operating en-

vironment. Furthermore, in most cases, SmartiPhish’s f1-score was at the top among

benchmark solutions in the natural web environment, and it was 90.81% for Smar-

tiPhish.

In addition to these findings, this study filled an existing research gap identified

in the anti-phishing domain during the implementation of the knowledge acquisition

process. This study proposed PhishRepo, an innovative systematic phishing data col-

lection approach which collects, labels, disseminates, and archives phishing websites.

PhishRepo is an online phishing data repository enriched with innovative design con-

siderations such as automated submission, deduplication filtering, automated verifi-

cation, crowdsourcing-based labelling, an objection reporting window, and target at-

tack prevention techniques. Furthermore, when training an anti-phishing solution, this

PhishRepo solution collects the most recent and zero-duplicate data. Therefore, the

PhishRepo collected data outperforms when training the existing machine learning

models over two similar benchmark datasets. The PhishRepo data increased the phish-

ing attack detection ability of all of the selected machine learning-based solutions,

according to the presented experiments.
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Moreover, this study also proposed a practical application for the developed Smar-

tiPhish solution. It is a web browser named MORA Browser. It has used a modern

browser environment with the SmartiPhish solution, and it supports a phishing-free

browsing experience to reduce the impact of phishing attacks on Internet users. These

findings indicate that an effective anti-phishing solution that can automatically update

the existing phishing detection knowledge via continuous learning can maintain its

performance for a more extended time.

11.3 Dissemination of the knowledge

After a successful problem-solving stage, this study developed a set of knowledge that

can be transferred to the scientific community for future anti-phishing-related studies.

This knowledge was in different forms, such as theories, datasets, and practical imple-

mentations. In the knowledge dissemination step, this study transferred the developed

knowledge via publications33 and online repositories such as GitHub and Mendeley.

The theoretical knowledge of this research was mainly transferred via a written

medium that includes a dissertation and four journal articles. These articles contained

the implementation processes followed in SmartiPhish, DLM, PhishRepo and Hybrid

DLM solutions. These articles further presented extensive experiments to validate

these solutions and included descriptive discussion to transfer the developed knowl-

edge to the scientific community. By accessing these written media, the anti-phishing

domain can better understand how these novel concepts were introduced and the impli-

cations of these solutions. It will be crucial for future anti-phishing studies to eliminate

repeated work and develop differentiated solutions.

The phishing URLs collected during this study mainly depended on online phishing

verification systems such as PhishTank and OpenPhish. After that, these URLs were

used to collect publicly available data to construct relevant phishing datasets for this

study. These verification systems provided free data access permissions for academic

researchers and have no restrictions on sharing these data. Further, the legitimate data

were mainly collected via Google search and various public resources. Therefore, the

33The journal publications relevant to this study are listed in Appendix B.
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data collected during this study was not associated with legal compliance when shared

with others. Thus, this study disseminated the constructed phishing and legitimate

datasets via the Mendeley cloud-based repository (see Appendix B) for others’ use.

This study was primarily implementation-oriented. Therefore, the planned solu-

tions were practically implemented to evaluate their actual execution performance.

Hence, this study proposed different novel implementations for the scientific com-

munity. These implementations may support other researchers when doing similar

works in any domain. Therefore, the study’s main codebase was shared via GitHub

(see Appendix B) to increase the reusability of the developed knowledge.

11.4 Recommendations for future research

The proposed solution for the identified research problem was SmartiPhish. However,

this solution was primarily restricted to spoofed website attacks, which are only a sub-

set of deceptive phishing attacks described in the literature. As a result, this study’s

findings can be applied to other phishing attack categories to check whether any in-

teresting findings can be extracted. Furthermore, the proposed solution only considers

text/html content type web pages to resolve graph generation issues that occur with

other types of web pages such as application/pdf. A separate graph generation pro-

cess that can be used with any web page will be an added benefit for the proposed

architecture to become more robust than it is now.

As stated in the limitations, the proposed solution is vulnerable to dynamic attacks

that can be carried out by client-side technologies such as Javascript. In the future,

some solutions to reduce these attacks may be required to improve the reliability of the

solution. Furthermore, this study only tested the research outcome for a limited period

due to resource and time constraints. However, in the future, the solution should be

monitored for an extended period to address any potential issues that may arise dur-

ing real-world implementation. Additionally, evaluating the model’s accuracy through

several sets of experiments will enable the conduction of statistical significance tests.

These tests will help to compare the proposed solution with other benchmark solutions

and determine its ranking among the other proposed solution.
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The proposed RDLM architecture can be extended to include more observations

as a separate work to enhance its detection capabilities in the future. In that case, it

is worth exploring the potential of using certificates for phishing detection. While this

aspect was not studied in the current research, certificate-based techniques have the

potential to improve phishing detection methods and enhance overall security mea-

sures. Such investigations can lead to advancements in the field of cybersecurity and

the development of stronger tools to combat phishing attacks. Despite not currently

utilizing certificate-related information, the RLM part of SmartiPhish can still adapt

to receive new input, such as certificate-related data, and train itself to be an effective

anti-phishing solution.

Furthermore, the RL agent and deep network structures employed in the proposed

solution can be adjusted in the future to have better combinations in phishing detection.

Such experiments may be helpful to find lesser detection time and lower the hardware

requirements when detecting phishing attacks. In addition to that, the behaviour of the

proposed solution with GN may require a more extended execution than experimented

here to see its actual impacts. These findings will help fine-tune the proposed solution

to work as expected. From the PhishRepo side, a few more anti-phishing communities

can be integrated under the alpha labelling process to strengthen its labelling capac-

ity and reduce the human workload in the verification. Furthermore, archiving some

incorrect pages (e.g., 403 pages, 404 pages, and content not found pages) impacts the

PhishRepo data quality. As a result, future work may include automatically detecting

erroneous or unwanted pages via web page screenshots and removing such data points

from the repository. Then, the quality of the data collected through PhishRepo could

be improved even further.

Moreover, to gain deeper insights into the performance of the proposed approach

and the specific contributions of each module, conducting a comprehensive ablation

study is crucial. This study would systematically analyse the impact of individual

components, shedding light on their effectiveness within the overall solution. The

findings from this ablation study would enable further optimisation and refinement of

SmartiPhish, enhancing its capabilities and effectiveness.
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11.5 Summary

The primary outcome of this study was SmartiPhish. It is a self-contained anti-phishing

solution that continuously updates the phishing detection features. Furthermore, this

primary outcome was recorded with a detection accuracy of 96.40%, and it was a

feasible solution for the identified research problem because it improved its detection

ability by 6% over time. This SmartiPhish development process yielded a wealth of

valuable knowledge to anti-phishing researchers. As a result, the developed knowledge

was transferred to the scientific community via standard media. Finally, this chapter

concludes this dissertation’s main content by recommending future directions for the

conducted research. The references and appendices sections follow to provide addi-

tional references for the presented content.
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APPENDIX A. SAMPLE SOURCE CODES

Code Listing 1: URLDet implementation

import re, pickle

import numpy as np

import pandas as pd

from numpy import load

import tensorflow as tf

from tensorflow.keras.models import Sequential , Model ,

load_model

from tensorflow.keras import regularizers

from tensorflow.keras import initializers

from tensorflow.keras.layers import *

from tensorflow.keras import optimizers

from tensorflow.keras import backend as K

from tensorflow.keras.callbacks import EarlyStopping

# Parameters

epochs = 500 # Number of training epochs

es_patience = 50 # Patience for early stopping

batches = 64 # Batch size

learning_rate = 1e-4 # Learning rate

reg_l2 = 1e-5 # l2 regularisation

# Load data

X_train = load("tr.npy", allow_pickle=True)

X_test = load("te.npy", allow_pickle=True)

X_val = load("val.npy", allow_pickle=True)

y_train = load("tr_class.npy", allow_pickle=True)

y_test = load("te_class.npy", allow_pickle=True)
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y_val = load("val_class.npy", allow_pickle=True)

def lstm_conv(max_len=150 , emb_dim=256 , max_vocab_len=100 ,

lstm_output_size=32):

# Input

main_input = Input(shape=(max_len ,), dtype="int32", name="

main_input")

# Embedding layer

emb = Embedding(input_dim=max_vocab_len , output_dim=emb_dim ,

input_length=max_len ,

embeddings_regularizer=regularizers.l2(reg_l2))(main_input)

emb = Dropout(0.8)(emb)

# Conv layer

conv = Conv1D(kernel_size=3, filters=256 , padding="same",

activation="relu",

kernel_initializer="he_uniform", bias_initializer="zeros",

kernel_regularizer=regularizers.l2(reg_l2))(emb)

conv = MaxPooling1D(pool_size=4)(conv)

conv = Dropout(0.5)(conv)

# LSTM layer 1

lstm1 = LSTM(units=lstm_output_size ,kernel_regularizer=

regularizers.l2(reg_l2),

return_sequences=True)(conv)

lstm1 = Dropout(0.5)(lstm1)

# LSTM layer 2

lstm2 = LSTM(units=lstm_output_size ,kernel_regularizer=

regularizers.l2(reg_l2))(lstm1)

lstm2 = Dropout(0.5)(lstm2)

# Output layer

output = Dense(1, activation="sigmoid", name="output")(lstm2)
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# Compile model and define optimizer

model = Model(inputs=[main_input], outputs=[output])

adam = optimizers.Adam(lr=learning_rate)

model.compile(optimizer=adam , loss="binary_crossentropy",

metrics=["accuracy"])

return model

model = lstm_conv ()

es = EarlyStopping(patience=es_patience , restore_best_weights=

True , verbose=1)

history = model.fit(X_train , y_train , validation_data=(X_val ,

y_val), epochs=epochs ,

batch_size=batches , callbacks=[es], verbose=1)

# Evaluate the model

loss , accuracy = model.evaluate(X_test , y_test , verbose=1)

# Save model

model.save("URLDet.h5")

Code Listing 2: HTMLDet implementation

import pickle , requests

import numpy as np

from numpy import load

import tensorflow as tf

from tensorflow.keras import backend as K

from tensorflow.keras.layers import Input , Dense

from tensorflow.keras.metrics import categorical_accuracy

from tensorflow.keras.models import Model

from tensorflow.keras.regularizers import l2

from tensorflow.keras import initializers

from spektral.layers import GraphConvSkip , GlobalAvgPool

from spektral.layers.ops import sp_matrix_to_sp_tensor

from spektral.layers.pooling import MinCutPool
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from spektral.utils import batch_iterator

from spektral.utils.convolution import normalized_adjacency

from spektral.utils.data import Batch

import warnings

warnings.filterwarnings("ignore")

# Parameters

n_channels = 32 # Channels per layer

activ = "relu" # Activation in GNN and mincut

GNN_l2 = 1e-3 # l2 regularisation of GNN

pool_l2 = 1e-3 # l2 regularisation for mincut

epochs = 500 # Number of training epochs

es_patience = 100 # Patience for early stopping

learning_rate = 1e-3 # Learning rate

batch_size = 1 # Batch size. NOTE: it MUST be 1 when

using MinCutPool and DiffPool

# Load data

X_train , A_train , y_train = load("tr_features.npy", allow_pickle=

True), list(load("tr_adjacency.

npy", allow_pickle=True)), load(

"tr_class.npy", allow_pickle=

True)

X_test , A_test , y_test = load("te_features.npy", allow_pickle=

True), list(load("te_adjacency.

npy", allow_pickle=True)), load(

"te_class.npy", allow_pickle=

True)

X_val , A_val , y_val = load("val_features.npy", allow_pickle=True)

, list(load("val_adjacency.npy",

allow_pickle=True)), load("

val_class.npy", allow_pickle=

True)

# Preprocessing adjacency matrices for convolution
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A_train = [normalized_adjacency(a) for a in A_train]

A_val = [normalized_adjacency(a) for a in A_val]

A_test = [normalized_adjacency(a) for a in A_test]

# Parameters

F = X_train[0].shape[-1] # Dimension of node features

n_out = y_train[0].shape[-1] # Dimension of the target

average_N = np.ceil(np.mean([a.shape[-1] for a in A_train])) #

Average number of nodes in

dataset

# Build model

X_in = Input(shape=(F, ), name="X_in", dtype=tf.float64)

A_in = Input(shape=(None ,), sparse=True , dtype=tf.float64)

I_in = Input(shape=(), name="segment_ids_in", dtype=tf.int32)

X_1 = GraphConvSkip(n_channels ,

activation=activ ,

kernel_regularizer=l2(GNN_l2),

kernel_initializer="he_uniform",

bias_initializer="zeros")([X_in , A_in])

X_1 , A_1 , I_1 = MinCutPool(k=int(average_N // 2),

activation=activ ,

kernel_regularizer=l2(pool_l2),

kernel_initializer="he_uniform",

bias_initializer="zeros")([X_1 , A_in , I_in])

X_2 = GraphConvSkip(n_channels ,

activation=activ ,

kernel_regularizer=l2(GNN_l2),

kernel_initializer="he_uniform",

bias_initializer="zeros")([X_1 , A_1])

X_2 , A_2 , I_2 = MinCutPool(k=int(average_N // 4),

activation=activ ,

kernel_regularizer=l2(pool_l2),

kernel_initializer="he_uniform",

bias_initializer="zeros")([X_2 , A_1 , I_1])
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X_3 = GraphConvSkip(n_channels ,

activation=activ ,

kernel_regularizer=l2(GNN_l2),

kernel_initializer="he_uniform",

bias_initializer="zeros")([X_2 , A_2])

# Output block

avgpool = GlobalAvgPool ()([X_3 , I_2])

output = Dense(n_out , activation="softmax")(avgpool)

# Build model

model = Model([X_in , A_in , I_in], output)

model.compile(optimizer="adam", # Doesn’t matter , won’t be used

loss="categorical_crossentropy")

# Training setup

opt = tf.keras.optimizers.Adam(learning_rate=learning_rate)

loss_fn = model.loss_functions[0]

acc_fn = lambda x, y: K.mean(categorical_accuracy(x, y))

@tf.function(experimental_relax_shapes=True)

def train_step(inputs , targets):

with tf.GradientTape () as tape:

predictions = model(inputs , training=True)

loss = loss_fn(targets , predictions)

gradients = tape.gradient(loss , model.trainable_variables)

opt.apply_gradients(zip(gradients , model.trainable_variables))

return loss , acc_fn(targets , predictions)

# Fit model

current_batch = 0

model_loss = 0

model_loss_values = []

model_val_loss_values = []

model_acc = 0

model_acc_values = []
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model_val_acc_values = []

best_val_loss = np.inf

best_weights = None

patience = es_patience

batches_in_epoch = np.ceil(y_train.shape[0] / batch_size)

batches = batch_iterator([A_train , X_train , y_train], batch_size=

batch_size , epochs=epochs)

for b in batches:

X_ , A_ , I_ = Batch(b[0], b[1]).get("XAI")

A_ = sp_matrix_to_sp_tensor(A_)

y_ = b[2]

outs = train_step([X_, A_, I_], y_)

model_loss += outs[0]

model_acc += outs[1]

current_batch += 1

if current_batch % batches_in_epoch == 0:

model_loss /= batches_in_epoch

model_acc /= batches_in_epoch

# Compute validation loss and accuracy

val_loss , val_acc = evaluate(A_val , X_val , y_val , [loss_fn ,

acc_fn], batch_size=batch_size)

logging.warning("Ep. {} - Loss: {:.2f} - Acc: {:.2f} - Val loss:

{:.2f} - Val acc: {:.2f}"

.format(current_batch // batches_in_epoch , model_loss , model_acc ,

val_loss , val_acc))

# Check if loss improved for early stopping

if val_loss < best_val_loss:

best_val_loss = val_loss

patience = es_patience

print("New best val_loss {:.3f}".format(val_loss))

best_weights = model.get_weights ()

else:
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patience -= 1

if patience == 0:

print("Early stopping (best val_loss: {})".format(best_val_loss))

break

model_loss_values.append(model_loss)

model_acc_values.append(model_acc)

model_val_loss_values.append(val_loss)

model_val_acc_values.append(val_acc)

model_loss = 0

model_acc = 0

# Load best model

model.set_weights(best_weights)

# Evaluate model

def evaluate(A_list , X_list , y_list , ops , batch_size):

batches = batch_iterator([A_list , X_list , y_list], batch_size=

batch_size)

output = []

for b in batches:

X, A, I = Batch(b[0], b[1]).get("XAI")

A = sp_matrix_to_sp_tensor(A)

y = b[2]

pred = model([X, A, I], training=False)

outs = [o(y, pred) for o in ops]

output.append(outs)

return np.mean(output , 0)

test_loss , test_acc = evaluate(A_test , X_test , y_test , [loss_fn ,

acc_fn], batch_size=batch_size)

# Save model

model.save("HTMLDet.h5")

Code Listing 3: DLM implementation

import pickle
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import numpy as np

from numpy import load

from sklearn import metrics

from sklearn.metrics import confusion_matrix

import tensorflow as tf

from tensorflow.keras import backend as K

from tensorflow.keras.models import Model , load_model

from tensorflow.keras.layers import *

from spektral.layers import GraphConvSkip , GlobalAvgPool

from spektral.layers.ops import sp_matrix_to_sp_tensor

from spektral.layers.pooling import MinCutPool

from spektral.utils.convolution import normalized_adjacency

from spektral.utils import batch_iterator

from spektral.utils.data import Batch

import warnings

warnings.filterwarnings("ignore")

# Load data

X_train_A = load("tr.npy", allow_pickle=True)

X_test_A = load("te.npy", allow_pickle=True)

X_val_A = load("val.npy", allow_pickle=True)

X_train , A_train , y_train = load("tr_features.npy", allow_pickle=

True), list(load("tr_adjacency.

npy", allow_pickle=True)), load(

"tr_class.npy", allow_pickle=

True)

X_test , A_test , y_test = load("te_features.npy", allow_pickle=

True), list(load("te_adjacency.

npy", allow_pickle=True)), load(

"te_class.npy", allow_pickle=

True)

X_val , A_val , y_val = load("val_features.npy", allow_pickle=True)

, list(load("val_adjacency.npy",

allow_pickle=True)), load("
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val_class.npy", allow_pickle=

True)

# Preprocessing adjacency matrices for convolution

A_train_B = [normalized_adjacency(a) for a in A_train_B]

A_val_B = [normalized_adjacency(a) for a in A_val_B]

A_test_B = [normalized_adjacency(a) for a in A_test_B]

# Load pre -trained models

URLDet = load_model("URLDet.h5")

HTMLDet = load_model("HTMLDet.h5", custom_objects={"GraphConvSkip

": GraphConvSkip , "MinCutPool":

MinCutPool , "GlobalAvgPool":

GlobalAvgPool})

# Get the output before last layer of both models

URLDet = Model(inputs=URLDet.inputs , outputs=URLDet.layers[-2].

output)

HTMLDet = Model(inputs=HTMLDet.inputs , outputs=HTMLDet.layers[-2]

.output)

# Parameters

epochs = 500 # Number of training epochs

es_patience = 20 # Patience for early stopping

learning_rate = 1e-5 # Learning rate

batch_size = 1 # Batch size. NOTE: it MUST be 1 when

using MinCutPool and DiffPool

# Constructing the model

concat = Concatenate(-1)([model_A.output , model_B.output]) #

merge outputs

concat = Dense(2, activation="softmax", name="output")(concat)

model = Model(inputs=[URLDet.inputs , HTMLDet.inputs], outputs=

concat)

model.compile(optimizer="adam",
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loss="categorical_crossentropy")

# Training setup

opt = tf.keras.optimizers.Adam(learning_rate=learning_rate)

loss_fn = model.loss_functions[0]

acc_fn = lambda x, y: K.mean(tf.keras.metrics.

categorical_accuracy(x, y))

# Training function

@tf.function(experimental_relax_shapes=True)

def train_step(inputs , targets):

with tf.GradientTape () as tape:

predictions = model(inputs , training=True)

loss = loss_fn(targets , predictions)

gradients = tape.gradient(loss , model.trainable_variables)

opt.apply_gradients(zip(gradients , model.trainable_variables))

return loss , acc_fn(targets , predictions)

current_batch = 0

model_loss = 0

model_loss_values = []

model_val_loss_values = []

model_acc = 0

model_acc_values = []

model_val_acc_values = []

best_val_loss = np.inf

best_weights = None

patience = es_patience

batches_in_epoch = np.ceil(y_train_B.shape[0] / batch_size)

# Fitting model

batches = batch_iterator([A_train_B , X_train_B , y_train_B ,

X_train_A], batch_size=

batch_size , epochs=epochs)

for b in batches:

X_ , A_ , I_ = Batch(b[0], b[1]).get("XAI")
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A_ = sp_matrix_to_sp_tensor(A_)

y_ = b[2]

X_A_ = b[3]

outs = train_step([X_A_ , X_ , A_ , I_], y_)

model_loss += outs[0]

model_acc += outs[1]

current_batch += 1

if current_batch % batches_in_epoch == 0:

model_loss /= batches_in_epoch

model_acc /= batches_in_epoch

# Compute validation loss and accuracy

val_loss , val_acc = evaluate(A_val_B , X_val_B , y_val_B , X_val_A ,

[loss_fn , acc_fn], batch_size=

batch_size)

logging.warning("Ep. {} - Loss: {:.2f} - Acc: {:.2f} - Val loss:

{:.2f} - Val acc: {:.2f}"

.format(current_batch // batches_in_epoch , model_loss , model_acc ,

val_loss , val_acc))

# Check if loss improved for early stopping

if val_loss < best_val_loss:

best_val_loss = val_loss

patience = es_patience

logging.warning("New best val_loss {:.3f}".format(val_loss))

best_weights = model.get_weights ()

else:

patience -= 1

if patience == 0:

logging.warning("Early stopping (best val_loss: {})".format(

best_val_loss))

break

model_loss_values.append(model_loss)

model_acc_values.append(model_acc)

model_val_loss_values.append(val_loss)
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model_val_acc_values.append(val_acc)

model_loss = 0

model_acc = 0

# Model evaluation function

def evaluate(A_list , X_list , y_list , X_A_list , ops , batch_size):

batches = batch_iterator([A_list , X_list , y_list , X_A_list],

batch_size=batch_size)

output = []

for b in batches:

X, A, I = Batch(b[0], b[1]).get("XAI")

A = sp_matrix_to_sp_tensor(A)

y = b[2]

X_A = b[3]

pred = model([X_A , X, A, I], training=False)

outs = [o(y, pred) for o in ops]

output.append(outs)

return np.mean(output , 0)

# Load best model

model.set_weights(best_weights)

# Evaluate model

test_loss , test_acc = evaluate(A_test_B , X_test_B , y_test_B ,

X_test_A , [loss_fn , acc_fn],

batch_size=batch_size)

# Save model

model.save("DLM.h5")

Code Listing 4: Hybrid DLM’s URLDet implementation

import re, os

from string import printable

from sklearn import model_selection

import tensorflow as tf

from keras.models import Sequential , Model , load_model
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from keras import regularizers

from keras.layers import *

from keras.layers.convolutional import Conv1D , MaxPooling1D

from keras.layers.core import Dense , Dropout , Activation , Lambda ,

Flatten

from keras.preprocessing import sequence

from keras import optimizers

from keras.utils import np_utils

from keras import backend as K

from tensorflow.contrib import rnn

#Parameters

epochs = 100

batches = 64

learning_rate = 0.001

#Fix random seed for reproducibility

seed = 7

#Load data

df = pd.read_csv("data.csv")

X_train , X_test , y_train , y_test = model_selection.

train_test_split(df.drop(columns

=["Result"]), df.Result ,

test_size=0.1, random_state=seed

)

#Convert to numeric format

url_int_tokens_train = [[printable.index(x) + 1 for x in url if x

in printable] for url in

X_train.url]

url_int_tokens_test = [[printable.index(x) + 1 for x in url if x

in printable] for url in X_test.

url]

#Step 2: Cut URL string at max_len or pad with zeros if shorter
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max_len=150

X = sequence.pad_sequences(url_int_tokens_train , maxlen=max_len)

X_t = sequence.pad_sequences(url_int_tokens_test , maxlen=max_len)

def lstm_conv(max_len=max_len , emb_dim=256 , max_vocab_len=100 ,

lstm_output_size=32 , W_reg=

regularizers.l2(1e-4)):

#Input

main_input = Input(shape=(max_len ,), dtype="int32", name="

main_input")

#Embedding layer

emb = Embedding(input_dim=max_vocab_len , output_dim=emb_dim ,

input_length=max_len ,

W_regularizer=W_reg)(main_input)

emb = Dropout(0.25)(emb)

#Conv layer

conv = Conv1D(kernel_size=5, filters=256 , border_mode="same",

activation="relu")(emb)

conv = MaxPooling1D(pool_size=4)(conv)

conv = Dropout(0.5)(conv)

#LSTM layer

lstm = LSTM(lstm_output_size)(conv)

lstm = Dropout(0.5)(lstm)

#Output layer

output = Dense(1, activation="sigmoid", name="output")(lstm)

# Compile model and define optimizer

model = Model(input=[main_input], output=[output])

adam = optimizers.Adam(lr=learning_rate , beta_1=0.9, beta_2=0.999

, epsilon=1e-08, decay=0.0)

model.compile(optimizer=adam , loss="binary_crossentropy", metrics

=["accuracy"])

return model

#Model fit

model = lstm_conv ()

history = model.fit(X, y_train , validation_split=0.2, epochs=
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epochs , batch_size=batches ,

verbose=0)

#Evaluate the model

loss , accuracy = model.evaluate(X_t , y_test , verbose=0)

#Save model

model.save("Hybrid_URLDet.h5")

Code Listing 5: Hybrid DLM’s HTMLDet implementation

import numpy as np

import re, os

import time

from string import printable

from sklearn import model_selection

import tensorflow as tf

from keras.models import Sequential , Model , load_model

from keras import regularizers

from keras.layers import *

from keras.layers.convolutional import Conv1D , MaxPooling1D

from keras.layers.core import Dense , Dropout , Activation , Lambda ,

Flatten

from keras.preprocessing import sequence

from sklearn.preprocessing import StandardScaler

from keras.optimizers import Adam

from keras.utils import np_utils

from keras import backend as K

from tensorflow.contrib import rnn

from keras.wrappers.scikit_learn import KerasClassifier

from sklearn.model_selection import cross_val_score

from sklearn.preprocessing import LabelEncoder

from sklearn.pipeline import Pipeline

#Parameters

epochs = 100

batches = 64
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learning_rate = 0.001

#Fix random seed for reproducibility

seed = 7

df = pd.read_csv("data.csv")

#Apply standard scaler

html_len = df[["html_length"]].values.astype(float)

n_hyperlinks = df[["n_hyperlinks"]].values.astype(float)

n_script_tag = df[["n_script_tag"]].values.astype(float)

n_link_tag = df[["n_link_tag"]].values.astype(float)

n_comment_tag = df[["n_comment_tag"]].values.astype(float)

scaler = StandardScaler ()

html_len_scaled = scaler.fit_transform(html_len)

n_hyperlinks_scaled = scaler.fit_transform(n_hyperlinks)

n_script_tag_scaled = scaler.fit_transform(n_script_tag)

n_link_tag_scaled = scaler.fit_transform(n_link_tag)

n_comment_tag_scaled = scaler.fit_transform(n_comment_tag)

#Remove column and add to data frame

df = pd.concat([df.drop(columns=["html_length","n_hyperlinks","

n_script_tag","n_link_tag","

n_comment_tag"]),

pd.DataFrame(html_len_scaled , columns=["html_length_std"]),

pd.DataFrame(n_hyperlinks_scaled , columns=["n_hyperlinks_std"]),

pd.DataFrame(n_script_tag_scaled , columns=["n_script_tag_std"]),

pd.DataFrame(n_link_tag_scaled , columns=["n_link_tag_std"]),

pd.DataFrame(n_comment_tag_scaled , columns=["n_comment_tag_std"])

], axis=1, join="inner")

X_train , X_test , y_train , y_test = model_selection.

train_test_split(df.drop(columns

=["Result"]), df.Result ,

test_size=0.1, random_state=seed

)
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#Input (x) variables

x = X_train.drop(columns=["url"]).values.astype(float)

x_test = X_test.drop(columns=["url"]).values.astype(float)

#Reshape input (x)

X_2 = x.reshape(x.shape[0], x.shape[1], 1)

X_2t = x_test.reshape(x_test.shape[0], x_test.shape[1], 1)

def conv_1d ():

#Input

main_input_2 = Input(shape=X_2.shape[1:3], name="main_input_2")

conv1D = Conv1D(filters=256 , kernel_size=5, activation="relu",

name="conv1D_1_layer")(

main_input_2)

conv1D = Dropout(0.5, name="conv1D_dropout_layer_1")(conv1D)

conv1D = Conv1D(filters=128 , kernel_size=5, activation="relu",

name="conv1D_2_layer")(conv1D)

conv1D = MaxPooling1D(pool_size=2, name="conv1D_maxpooling_layer"

)(conv1D)

conv1D = Dropout(0.5, name="conv1D_dropout_layer_2")(conv1D)

conv1D = Flatten ()(conv1D)

conv1D = Dense(32 , activation="relu", name="conv1D_dense_layer")(

conv1D)

#Output

output = Dense(1, activation="sigmoid", name="

conv1D_sigmoid_layer")(conv1D)

#Model compile

model = Model(input=[main_input_2], output=[output])

adam = Adam(lr=learning_rate , beta_1=0.9, beta_2=0.999 , epsilon=

1e-08, decay=0.0, amsgrad=False)

model.compile(loss="binary_crossentropy", optimizer=adam , metrics

=["accuracy"])

274



return model

#Model fit

model = conv_1d ()

history = model.fit(X_2 , y_train , validation_split=0.2, epochs=

epochs , batch_size=batches ,

verbose=0)

#Evaluate the model

loss , accuracy = model.evaluate(X_2t , y_test , verbose=0)

#Save model

model.save("Hybrid_HTMLDet.h5")

Code Listing 6: Hybrid DLM implementation

import numpy as np

import re, os

import time

from string import printable

from sklearn import model_selection

import tensorflow as tf

from keras.models import Sequential , Model , load_model

from keras import regularizers

from keras.layers import *

from keras.layers.convolutional import Conv1D , MaxPooling1D

from keras.layers.core import Dense , Dropout , Activation , Lambda ,

Flatten

from keras.preprocessing import sequence

from sklearn.preprocessing import StandardScaler

from keras.optimizers import Adam

from keras.utils import np_utils

from keras import backend as K

from tensorflow.contrib import rnn

from keras.wrappers.scikit_learn import KerasClassifier

from sklearn.model_selection import cross_val_score

from sklearn.preprocessing import LabelEncoder
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from sklearn.pipeline import Pipeline

#Parameters

epochs = 50

batches = 64

learning_rate = 0.001

#Fix random seed for reproducibility

seed = 7

df = pd.read_csv("data.csv")

#Apply standard scaler

html_len = df[["html_length"]].values.astype(float)

n_hyperlinks = df[["n_hyperlinks"]].values.astype(float)

n_script_tag = df[["n_script_tag"]].values.astype(float)

n_link_tag = df[["n_link_tag"]].values.astype(float)

n_comment_tag = df[["n_comment_tag"]].values.astype(float)

scaler = StandardScaler ()

html_len_scaled = scaler.fit_transform(html_len)

n_hyperlinks_scaled = scaler.fit_transform(n_hyperlinks)

n_script_tag_scaled = scaler.fit_transform(n_script_tag)

n_link_tag_scaled = scaler.fit_transform(n_link_tag)

n_comment_tag_scaled = scaler.fit_transform(n_comment_tag)

#Remove column and add to data frame

df = pd.concat([df.drop(columns=["html_length","n_hyperlinks","

n_script_tag","n_link_tag","

n_comment_tag"]),

pd.DataFrame(html_len_scaled , columns=["html_length_std"]),

pd.DataFrame(n_hyperlinks_scaled , columns=["n_hyperlinks_std"]),

pd.DataFrame(n_script_tag_scaled , columns=["n_script_tag_std"]),

pd.DataFrame(n_link_tag_scaled , columns=["n_link_tag_std"]),

pd.DataFrame(n_comment_tag_scaled , columns=["n_comment_tag_std"])

], axis=1, join="inner")

276



X_train , X_test , y_train , y_test = model_selection.

train_test_split(df.drop(columns

=["Result"]), df.Result ,

test_size=0.25, random_state=

seed)

def create_X_1(temp_X_1):

url_int_tokens = [[printable.index(x) + 1 for x in url if x in

printable] for url in temp_X_1.

url]

max_len=150

X_new_1 = sequence.pad_sequences(url_int_tokens , maxlen=max_len)

return X_new_1

def create_X_2(temp_X_2):

#Input (x) variables

x = temp_X_2.drop(columns=["url"]).values.astype(float)

#Reshape input (x)

X_new_2 = x.reshape(x.shape[0], x.shape[1], 1)

return X_new_2

model_A = load_model("model_A.h5")

model_A.layers.pop()

model_A = Model(inputs=model_A.inputs , outputs=model_A.layers[-1]

.output)

model_B = load_model("model_B.h5")

model_B.layers.pop()

model_B = Model(inputs=model_B.inputs , outputs=model_B.layers[-1]

.output)

def final_model ():

mergedOut = Add()([model_A.output ,model_B.output])

#Output layer
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mergedOut = Dense(1, activation="sigmoid")(mergedOut)

model = Model([model_A.input ,model_B.input], mergedOut)

adam = Adam(lr=learning_rate , beta_1=0.9, beta_2=0.999 , epsilon=

1e-08, decay=0.0)

model.compile(optimizer=adam , loss="binary_crossentropy", metrics

=["acc"])

return model

model = final_model ()

history = model.fit([create_X_1(X_train),create_X_2(X_train)],

y_train , validation_split=0.2,

epochs=epochs , batch_size=

batches , verbose=0)

#Evaluate the model

loss , accuracy = model.evaluate([create_X_1(X_test),create_X_2(

X_test)], y_test , verbose=0)

#Save model

model.save("Hybrid_DLM.h5")

Code Listing 7: RL environment

import gym

import numpy as np

from gym import spaces

class Cyberspace(gym.Env):

metadata = {"render.modes": ["human"]}

def __init__(self):

self.index = 0

self.done = False

self.actions = ["ALLOW ACCESS","STOP ACCESS","ASK USER",]

# Action space

self.action_space = spaces.Discrete(len(self.actions))
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# Observation space

self.observation_space = spaces.Box(low=np.array([0.0, 0.

0, 0.0]), high=np.array(

[1.0, 1.0, 1.0]), dtype=

np.float32)

def init_dataset(self , data=None , url=None , external_factors=

None):

self.data = data

self.url = url

self.external_factors = external_factors

self.states , self.community_feedback = self.get_states_cf

(self.data , self.url)

def get_states_cf(self , data , url):

l = len(data)

processed_data = []

cf_data = []

res = []

res.append(data[0][1]) #add phishing probability

res.append(self.external_factors[0]) #add community

feedback

res.append(float(self.external_factors[1])) #add global

alexa rank

state , cf = np.array([res]), self.external_factors[0]

for t in range(2):

processed_data.append(state)

cf_data.append(cf)

return processed_data , cf_data

def _next_observation(self):

obs = self.states[self.index]

self.index = self.index + 1

return obs , self.index

def get_rewards(self , action , state):
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reward = None

url = self.url[self.index - 1]

DL_output = [(1 - state[0][0]), state[0][0]]

community_decision = self.community_feedback[self.index -

1]

record_id , user_feedback = self.get_user_feedback(url ,

community_decision)

entropy = 0 if (DL_output[0] == 0 or DL_output[0] == 1)

else -np.sum(DL_output *

np.log2(DL_output))

true_reward = int(entropy * 100)

if user_feedback == 2:

reward = int(( entropy - (1 - DL_output[action])) *

100) if (action == 0

or action == 1)

else 0

else:

if user_feedback == action:

reward = int(entropy * 100)

elif action == 2:

reward = int(( entropy - DL_output[

community_decision

]) * 100)

else:

reward = int(( entropy - 1) * 100)

return reward , record_id , true_reward

def step(self , action , state):

# Execute one time step within the environment

reward , record_id , true_reward = self.get_rewards(action ,

state)

if self.index >= (len(self.states) - 1):

self.done = True

obs , _ = self._next_observation ()

return obs , reward , self.done , record_id , true_reward , {}
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def reset(self):

self.index = 0

self.done = False

return self._next_observation ()

def render(self , mode="human", close=False):

print("render")

def get_user_feedback(self , url , community_decision):

feedback = community_decision

record_id = 0

## If the human feedback is available for the passed URL ,

it should be fetched

here.

## Otherwise , this function will pass the community

decision as the feedback

.

return record_id , feedback

Code Listing 8: RL Agent

import random

import numpy as np

from collections import deque

from tensorflow.keras.optimizers import Adam

from tensorflow.keras.models import Sequential

from tensorflow.keras.layers import Dense , Dropout

class Agent:

def __init__(self , state_size , action_size):

self.state_size = state_size

self.action_size = action_size

self.batch_size = 128

self.memory = deque(maxlen=10000)

self.gamma = 0.8

self.epsilon = 1.0

self.epsilon_min = 0.001
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self.epsilon_decay = 0.99975

self.learning_rate = 0.001

# Main model

self.model = self._build_model ()

# Target network

self.target_model = self._build_model ()

self.load("phishing -dqn.h5")

# Used to count when to update target network with main

network ’s weights

self.target_update_counter = 0

# Used to update target network after this no of episodes

ends

self.target_update_frequency = 1

def _build_model(self):

# Neural Net for Deep -Q learning Model

model = Sequential ()

model.add(Dense(units=128 , input_dim=self.state_size ,

activation="relu"))

model.add(Dense(units=128 , activation="relu"))

model.add(Dense(self.action_size , activation="linear"))

model.compile(loss="mse", optimizer=Adam(lr=self.

learning_rate), metrics=

["accuracy"])

return model

def memorize(self , state , action , reward , next_state , done):

self.memory.append ((state , action , reward , next_state ,

done))

def act(self , state):

if np.random.rand() <= self.epsilon:

return int(random.randrange(self.action_size))

act_values = self.model.predict(state)
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return int(np.argmax(act_values[0])) # returns action

def replay(self , batch_size=64):

minibatch = random.sample(self.memory , batch_size)

for state , action , reward , next_state , done in minibatch:

target = reward

if not done:

target = (reward + self.gamma *

np.amax(self.target_model.predict(next_state)

[0]))

target_f = self.model.predict(state)

target_f[0][action] = target

self.model.fit(state , target_f , epochs=1, verbose=0)

if self.epsilon > self.epsilon_min:

self.epsilon -= self.epsilon_decay

def load(self , name):

self.model.load_weights(name)

self.target_model.load_weights(name)

def save(self , name):

self.model.save_weights(name)

Code Listing 9: GAN implementation

import numpy as np

import pandas as pd

import seaborn as sns

from pathlib import Path

from numpy.random import randn

from tensorflow.keras.layers import Dense

from sklearn.manifold import TSNE

from tensorflow.keras.models import Sequential

from gan_inputs import GANInputGenerator
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class GAN:

def __init__(self):

# initializing GANInputGenerator

n_training_example , n_eval_example , n_pred_example = 3000

, 2000 , 1000

gan_inputs = GANInputGenerator(ex=n_training_example ,

eval_ex=n_eval_example ,

pred_ex=n_pred_example)

# generate relevent data

self.train_data = np.array(gan_inputs.get_train_data ())

self.eval_data = np.array(gan_inputs.get_eval_data ())

pred_l_data , pred_p_data = gan_inputs.get_pred_data ()

self.pred_l_data = np.array(pred_l_data)

self.pred_p_data = np.array(pred_p_data)

# network parameters

self.n_inputs = 64

self.latent_dim = 128

self.batch_size = self.train_data.shape[0]

self.epochs = 10000

self.eval_frequency = 50

# save accuracy and loss

self.acc_list = []

self.loss_list = []

# create the discriminator

self.discriminator = self.define_discriminator ()

# create the generator

self.generator = self.define_generator ()

# create the gan

self.gan = self.define_gan ()

# define the standalone discriminator model
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def define_discriminator(self):

model = Sequential ()

model.add(Dense(64, activation="relu", kernel_initializer

="he_uniform", input_dim

=self.n_inputs))

model.add(Dense(64, activation="relu", kernel_initializer

="he_uniform"))

model.add(Dense(64, activation="relu", kernel_initializer

="he_uniform"))

model.add(Dense(1, activation="sigmoid"))

# compile model

model.compile(loss="binary_crossentropy", optimizer="adam

", metrics=["accuracy"])

return model

# define the standalone generator model

def define_generator(self):

model = Sequential ()

model.add(Dense(512 , activation="relu",

kernel_initializer="

he_uniform", input_dim=

self.latent_dim))

model.add(Dense(256 , activation="relu",

kernel_initializer="

he_uniform"))

model.add(Dense(256 , activation="relu",

kernel_initializer="

he_uniform"))

model.add(Dense(128 , activation="relu",

kernel_initializer="

he_uniform"))

model.add(Dense(self.n_inputs , activation="relu"))

return model

# define the combined generator and discriminator model , for

updating the generator
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def define_gan(self):

# connect them

model = Sequential ()

# add generator

model.add(self.generator)

# add the discriminator

model.add(self.discriminator)

# compile model

model.compile(loss="binary_crossentropy", optimizer="adam")

return model

# generate n real samples with class labels

def generate_data(self , task="train"):

x_real = self.train_data if (task == "train") else self.

eval_data

# generate class labels

y_real = np.ones(( x_real.shape[0], 1))

# generate points in latent space

x_input = self.generate_latent_points(x_real.shape[0])

# predict outputs

x_fake = self.generator.predict(x_input)

# create class labels

y_fake = np.zeros(( x_real.shape[0], 1))

return x_real , y_real , x_fake , y_fake

# generate points in latent space as input for the generator

def generate_latent_points(self , n):

# generate points in the latent space

x_input = randn(self.latent_dim * n)

# reshape into a batch of inputs for the network

x_input = x_input.reshape(n, self.latent_dim)

return x_input

# evaluate the discriminator

def summarize_performance(self , epoch , folder):

# prepare real and fake samples
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x_real , y_real , x_fake , y_fake = self.generate_data(task=

"eval")

# merge real and fake sample

data = np.concatenate ((x_real , x_fake), axis=0)

labels = np.concatenate ((y_real , y_fake), axis=0)

# evaluate discriminator

loss , acc = self.discriminator.evaluate(data , labels ,

verbose=0)

# summarize discriminator performance

self.acc_list.append(acc)

self.loss_list.append(loss)

print("-----")

print("Epoch: " + str(epoch))

print(" Dis. acc.: " + str(acc))

# train the generator and discriminator

def train(self):

for i in range(self.epochs):

# prepare real and fake samples

x_real , y_real , x_fake , y_fake = self.generate_data ()

# update discriminator

self.discriminator.trainable = True # make weights in

the discriminator

not trainable

self.discriminator.train_on_batch(x_real , y_real)

self.discriminator.train_on_batch(x_fake , y_fake)

# prepare points in latent space as input for the

generator

x_gan = self.generate_latent_points(self.batch_size)

# create inverted labels for the fake samples

y_gan = np.ones((self.batch_size , 1))

# update the generator via the discriminator ’s error

self.discriminator.trainable = False # make weights

in the discriminator

not trainable

self.gan.train_on_batch(x_gan , y_gan)
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# evaluate the model every n_eval epochs

if i == 0 or (i+1) % self.eval_frequency == 0:

r_folder = "resources/gan/epoch_" + str(i+1)

Path(r_folder + "/models").mkdir(parents=True ,

exist_ok=True)

self.summarize_performance ((i+1), r_folder)

self.discriminator.save(r_folder + "/models/

discriminator -

gan.h5")

self.generator.save(r_folder + "/models/generator

-gan.h5")

self.gan.save(r_folder + "/models/gan.h5")

Code Listing 10: Web page downloading function

from selenium import webdriver

from selenium.webdriver.firefox.options import Options

def get_webpage(url):

opts = Options ()

opts.headless = True

brower = webdriver.Firefox(options=opts)

brower.set_page_load_timeout(300)

brower.get(url)

webContent = brower.page_source

p = open("webpage.html", "w")

p.write(webContent)

p.close

brower.close()

Code Listing 11: SmartiPhish service - part I

import gym , csv , json , pickle , asyncio , requests

import numpy as np

from flask import Flask , request , jsonify

from flask_cors import CORS

import env , gym_register
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from agent import Agent

from connection import DBConnection

app = Flask(__name__)

cors = CORS(app , resources={r"/moraphishdet": {"origins": "*"}, r

"/moraphishup": {"origins": "*"}

})

env = gym.make("gym_register:MORAPhishDet -v0") # Make Cyberspace

gym environment

def moraphishdet(data , url , cf, global_rank):

env.init_dataset(data , url , external_factors=[cf, global_rank

]) # input data to the

environment

state_size = env.observation_space.shape[0]

action_size = env.action_space.n

agent = Agent(state_size , action_size , is_eval=True)

done = False

state , index = env.reset ()

state = np.reshape(state , [1, state_size])

for time in range(len(data)):

action = agent.act(state)

next_state , reward , done , record_id , true_reward , _ = env

.step(action , state)

next_state = np.reshape(next_state , [1, state_size])

agent.memorize(state , action , reward , next_state , done)

state = next_state

if done:

logging.warning("Rewards: {0}".format(reward))

break

return action , record_id

@app.route("/moraphishdet", methods=["GET", "POST"])

def get_action ():
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if not request.json or "url" not in request.json:

abort(400)

content = request.json

requested_url = content["url"]

res = requests.post("http :// 127.0.0.1:5001/moraphishinputs",

json={"url":requested_url})

if res.ok:

if res.json()["status"] == 1:

dict = json.loads(res.json()["data"])

data = [np.array(x) for x in dict]

url = res.json()["url"]

cf = json.loads(res.json()["cf"])

global_rank = json.loads(res.json()["global_rank"])

action , record_id = moraphishdet(data , url , cf,

global_rank)

else:

action = res.json()["status"]

url = [requested_url]

record_id = 0

else:

action = 5

url = [requested_url]

record_id = 0

return jsonify({"action":int(action), "id":int(record_id), "

url":str(url[0])})

@app.route("/moraphishup", methods=["GET", "POST"])

def update ():

if not request.json or "id" not in request.json:

abort(400)

content = request.json

record_2_update = content["id"]

connection = DBConnection("smartiphish").get_connection ()

cursor = connection.cursor(buffered=True)

sql = "SELECT * FROM reviews WHERE rec_id = (SELECT
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review_table_id FROM data

WHERE rec_id = %s LIMIT 1)

AND result = %s AND updated

= %s"

val = (record_2_update , 2, 0)

cursor.execute(sql , val)

if (cursor.rowcount > 0):

sql = "UPDATE reviews SET status = %s WHERE rec_id = (

SELECT review_table_id

FROM data WHERE rec_id =

%s LIMIT 1)"

val = (0, record_2_update)

cursor.execute(sql , val)

connection.commit ()

cursor.close()

return jsonify({"status":"success"})

app.run()

Code Listing 12: SmartiPhish service - part II

import gym , json , pickle , asyncio

import numpy as np

from flask import Flask , request , jsonify

from flask_cors import CORS

import env , gym_register

from connection import DBConnection

from generate_data import GenerateData

from knowledge_model import KnowledgeModel

app = Flask(__name__)

cors = CORS(app , resources={r"/moraphishinputs": {"origins": "*"}

})

env = gym.make("gym_register:MORAPhishDet -v0") # Make Cyberspace

gym environment

km = KnowledgeModel () # Initialize the Knowledge Model
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class NumpyEncoder(json.JSONEncoder):

""" Special json encoder for numpy types """

def default(self , obj):

if isinstance(obj , np.integer):

return int(obj)

elif isinstance(obj , np.floating):

return float(obj)

elif isinstance(obj , np.ndarray):

return obj.tolist ()

return json.JSONEncoder.default(self , obj)

# loading tokenizer

with open("tokenizer.pkl", "rb") as handle:

tokenizer = pickle.load(handle)

async def get_inputs(A, X, X_A , url , env , km):

# Create task to do so:

task1 = asyncio.ensure_future(km.get_km_prediction(A, X, X_A)

) #get DL decision

task2 = asyncio.ensure_future(env.get_google_decision(url)) #

get google feedback

task3 = asyncio.ensure_future(env.get_phishtank_decision(url)

) #get phishtank feedback

task4 = asyncio.ensure_future(env.AlexaRank(url)) #get Alexa

Ranking

await task1 , task2 , task3 , task4 # wait until all task

finished

google_decision = task2.result ()

phishtank_decision = task3.result ()

final_decision = 1 if (google_decision or phishtank_decision)

else 0

return(task1.result (), final_decision , task4.result ())

@app.route("/moraphishinputs", methods=["GET", "POST"])

def index ():

content = request.json
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requested_url = content["url"]

gen_data = GenerateData(tokenizer)

loop = asyncio.new_event_loop ()

asyncio.set_event_loop(loop)

X, A, X_A , url = loop.run_until_complete(gen_data.

generate_requested_data(

requested_url))

loop.close ()

if X == "URL GET ERROR":

action = 3

return jsonify({"status":int(action)})

elif X == "DIFF URL ERROR":

action = 4

return jsonify({"status":int(action)})

elif X == "NOT AN HTML ERROR":

action = -1

return jsonify({"status":int(action)})

else:

loop = asyncio.new_event_loop ()

asyncio.set_event_loop(loop)

data , cf, global_rank = loop.run_until_complete(

get_inputs(A, X, X_A ,

url[0], env , km))

loop.close ()

logging.warning(str(url[0]) + " [successfully generated]"

)

dumped_data = json.dumps(data , cls=NumpyEncoder)

dumped_cf = json.dumps(cf , cls=NumpyEncoder)

dumped_global_rank = json.dumps(global_rank , cls=

NumpyEncoder)

return jsonify({"status":int(1), "data":dumped_data , "url

": url , "cf":dumped_cf ,

"global_rank":

dumped_global_rank})

app.run(port="5001")
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APPENDIX B. ADDITIONAL EXPERIMENTS

Hyperparameter Optimisation in DLM

When optimizing the DLM architecture, the study conducted several experiments by

altering specific hyperparameters. The following experiments illustrate how these

modifications impacted the original model once implemented. These hyperparame-

ter optimizations were performed individually for the URLDet, the HTMLDet, and the

DLM.

(a) Old Model (b) New Model

Hyperparameter tuning for URLDet
The old model was set up with general configurations that included only small dropout and a single
LSTM layer. These configurations might have been simple and less complex, potentially limiting the
model’s ability to capture intricate patterns and relationships in the data. In contrast, the new model,
several changes were made to improve its performance. Dropout was increased, which helps prevent
overfitting by randomly deactivating certain neurons during training. The kernel_initializer was set to
‘he_uniform’, and the bias_initializer to ‘zeros’, which determine how the weights and biases in the
model are initialized. These initializations can impact the model’s ability to learn effectively from the
data. Furthermore, a kernel_regularizer was applied with a strength of 1e-4, which adds a penalty to
the model’s loss function to encourage simpler weight values, thus preventing overfitting. Additionally,
the model was augmented with a Stack LSTM, which means two LSTM layers were stacked on top of
each other. This stacking enables the model to capture more complex patterns and dependencies in the
data, potentially leading to improved performance. Overall, these changes were implemented in the new
model to enhance its learning capacity, improve generalization, and achieve better results compared to
the previous version.
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(a) Old Model (b) New Model

Hyperparameter tuning for HTMLDet
The old model was configured with general settings and achieved an accuracy of 89.67%, precision
of 92.34%, recall of 87.07%, and f1-score of 89.63% on the test data. The corresponding loss was
2.2474. However, a new model was introduced with specific changes, including a kernel_initializer set
to ‘he_uniform’, bias_initializer set to ‘zeros’, and kernel_regularizer with a strength of 1e-3. The acti-
vation function was updated to softmax, and the loss function was changed to categorical_cross_entropy.
With these modifications, the new model demonstrated significant improvement, achieving an accuracy
of 91.14%, precision of 92.98%, recall of 89.46%, and f1-score of 91.18%. The corresponding loss sub-
stantially decreased to 0.2605. These performance gains in the new model suggest that the adjustments
made to the architecture and loss function have enhanced its ability to make more accurate predictions
and better fit the given data.

(a) Old Model (b) New Model

Overall Performance of DLM
The DLM model demonstrated a minimized loss with the new architecture, where the softmax activa-
tion function and categorical_cross_entropy loss function were utilized. These changes in the model’s
architecture and loss function contributed to improved convergence during training, resulting in a sig-
nificantly lower loss value. The utilization of softmax and categorical_cross_entropy in combination
allowed the model to better capture the relationships between classes and produce more accurate pre-
dictions, leading to the observed reduction in the loss metric.

Selecting the Optimal Network Architecture for DQN

When selecting the optimum DQN architecture, this study has conducted several ex-

periments by changing hyperparameters such as the activation function, number of295



hidden layers, hidden neurons, learning rate, target network update frequency, and loss

function. The objective of these experiments was to explore the effects of different hy-

perparameter configurations on the performance of the DQN model. By systematically

varying these hyperparameters, the study aimed to identify the combination that yields

the best results for the specific task at hand.

(a) Activation Function (b) Number of Hidden Layers

(a) Learning Rate (b) Target Network Update

(a) Loss Function (b) Number of Hidden Neurons

Mean average rewards with different hyperparameters

In these experiments, the mean average rewards collected at the end of each episode

were considered as the primary evaluation metric. The mean average reward served as

a crucial performance indicator, representing the agent’s ability to achieve its objec-
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tives and indicating how well it navigated the environment and learned the optimal

policy.

The study analyzed the results obtained from each experiment, comparing the mean

average rewards for different hyperparameter settings. This analysis provided insights

into the impact of each hyperparameter on the agent’s performance. It allowed the

researchers to identify the configurations that led to higher rewards and more efficient

learning.

Experimenting with RL Reward Mechanisms

The RL agent’s reward functions were subjected to experimentation under various sce-

narios. The following illustrates how three different formulas discussed in Chapter 6

generate distinct reward values in different scenarios. This analysis serves to validate

the appropriateness of each selected reward function for specific situations.

By exploring the reward values generated by these formulas, we can gain insights

into how the agent responds to different environmental conditions and task objectives.

This investigation allows us to assess the effectiveness of each reward function in guid-

ing the agent’s behavior towards achieving desired outcomes. Ultimately, the justifica-

tion of the selected reward functions for each scenario enhances our understanding of

how to design effective RL reward systems tailored to specific problem domains.

Automated reward generation process
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Manual process in which the agent collaborates with real users
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APPENDIX C. SUPPLEMENTARY INFORMATION

Publications

1. "Detecting phishing attacks using a combined model of LSTM and CNN", In-

ternational Journal of Advanced and Applied Sciences, vol. 7, no. 7, pp. 56-67,

2020. Available: 10.21833/ijaas.2020.07.007.

2. "PhishRepo: A Seamless Collection of Phishing Data to Fill a Research Gap

in the Phishing Domain", International Journal of Advanced Computer Science

and Applications, vol. 13, no. 5, pp. 852-865, 2022. Available: 10.14569/

ijacsa.2022.0130597.

3. "Combining Long-term Recurrent Convolutional and Graph Convolutional Net-

works to Detect Phishing Sites using URL and HTML", IEEE Access, vol. 10,

pp. 82355-82375, 2022. Available: 10.1109/ACCESS.2022.3196018.

4. "SmartiPhish: A Reinforcement Learning-based Intelligent Anti-Phishing Solu-

tion to Detect Spoofed Website Attacks". Manuscript submitted for publication.

Project Sources

Main codebases

• Hybrid DLM implementation: https://github.com/sna-hm/HybridDLM

• DLM implementation: https://github.com/sna-hm/DLM

• SmartiPhish implementation: https://github.com/sna-hm/SmartiPhish

• MORA Browser implementation: https://github.com/sna-hm/MORABrowser
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Specific code samples

• HTML feature extractor: https://github.com/sna-hm/HybridDLM/blob/

main/extractor.py

• Noisy data remover: https://github.com/sna-hm/Miscellaneous/

blob/main/preprocess-phishing-pages.py

• PhishTank data extractor: https://github.com/sna-hm/Miscellaneous/

blob/main/PhishTankDataExtractor.py

• Legitimate data extractor: https://github.com/sna-hm/Miscellaneous/

blob/main/LegitimateDataExtractor.py

• OpenPhish data extractor: https://github.com/sna-hm/Miscellaneous/

blob/main/OpenPhishDataExtractor.py

• Google Search script: https://github.com/sna-hm/Miscellaneous/

blob/main/GoogleSearchIndexed.py

Datasets

• Phishing Websites Dataset: https://data.mendeley.com/datasets/

n96ncsr5g4

• PhishRepo Dataset: https://data.mendeley.com/datasets/ttmmtsgbs8

• Google Search Keywords: https://github.com/sna-hm/Miscellaneous/

blob/main/GoogleSearchKeywords

Videos

• MORA Browser: https://youtu.be/_MddiKIFvXM
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Everything is theoretically impossible,
until it is done.

—Robert A. Heinlein

[The End]


