STUDY OF SMALL-SIGNAL STABILITY OF A RENEWABLE INTEGRATED POWER SYSTEM USING A DYNAMIC PHASOR APPROACH

Wasala Appuhamilage Damsith Lakshan

208087L

Degree of Master of Science(Major Component of Research)

Department of Electrical Engineering Faculty Of Engineering

> University of Moratuwa Sri Lanka

> > February 2024

STUDY OF SMALL-SIGNAL STABILITY OF A RENEWABLE INTEGRATED POWER SYSTEM USING A DYNAMIC PHASOR APPROACH

Wasala Appuhamilage Damsith Lakshan

208087L

Dissertation submitted in partial fulfillment of the requirements for the degree Degree of Master of Science(Major Component of Research)

> Department of Electrical Engineering Faculty Of Engineering

> > University of Moratuwa Sri Lanka

> > > February 2024

DECLARATION

I declare that this is my own work and this Dissertation does not incorporate without acknowledgement any material previously submitted for a Degree or Diploma in any other University or Institute of higher learning and to the best of my knowledge and belief it does not contain any material previously published or written by another person except where the acknowledgement is made in the text. I retain the right to use this content in whole or part in future works (such as articles or books).

Signature:

Date: 18/03/2024

The supervisor should certify the Dissertation with the following declaration.

The above candidate has carried out research for the Degree of Master of Science(Major Component of Research) Dissertation under my supervision. I confirm that the declaration made above by the student is true and correct.

Name of Supervisor: Dr. WD Prasad

Signature of the Supervisor:

Date: 18-0302024

DEDICATION

To my devoted parents, whose love, sacrifice, and teachings have been the beacon guiding me through life's journey. To my mother, for her nurturing spirit and unwavering belief in my abilities, and to my father, for his invaluable lessons on perseverance and integrity. And to my cherished wife, who has stood by me as a pillar of strength and understanding throughout this journey. Her love, patience, and encouragement have been the foundation upon which this work was built.

ACKNOWLEDGEMENT

First and foremost, my profound appreciation goes out to Dr. W.D. Prasad from the Department of Electrical Engineering at the University of Moratuwa. His exceptional knowledge, continuous guidance, and relentless support during the course of this research have been invaluable. His commitment to academic excellence and his role as a mentor has consistently motivated me to aim high and tackle challenges with determination and enthusiasm.

In addition, I'd like to express my heartfelt gratitude to the distinguished members of the Department of Electrical Engineering at UOM. Their collective wisdom and support have been pivotal in shaping this work. Moreover, a special acknowledgment is due to the faculty of Electrical and Information Engineering at the University of Ruhuna, where my foundational academic journey commenced. Their teachings and guidance during my undergraduate studies laid the groundwork for the researcher I am today.

ABSTRACT

The transition trend towards renewable energy in the modern world shows a rapid increment of renewable power sources in electrical power systems. Wind energy and solar energy can be considered as the leading energy sources nowadays. These renewable power plants have several power electronic interfaces, and they introduce more complex dynamics to the power system. A comprehensive evaluation is required to identify significant changes in the power system due to these changes. This study provides a detailed examination of the outcomes of introducing renewables to power systems with a significance on its effect on small signal stability and the complex dynamics arising from varying penetration levels of renewable energy sources are explored in-depth, providing a comprehensive understanding of their impact on the stability of the system. This research also revealed the significance of accounting for the network dynamics which are overshadowed in constant admittance network modeling to this study. This research deeply explores the complex mathematical representations of the power system with two types of network modeling techniques and to ensure the accuracy of the model this mathematical model is validated against a nonlinear response. Within this research, attention is drawn to five main scenarios and a real-world case study on wind power integration in Sri Lankan power system.

Keywords: In this research, various concepts and methodologies were explored, focusing on topics such as power system stability, eigenvalue analysis, participation factors, oscillatory modes, renewable energy integration, nonlinear responses, conventional energy sources, dy-namic power system models, controller alterations, grid dynamics, power plant influences, wind energy penetration, solar energy penetration, system damping ratios, small signal stability, state matrix, mode shape analysis, complex plane eigenvalues, network interactions

TABLE OF CONTENTS

De	clarat	tion of t	he Candidate & Supervisor	i
De	dicati	on		ii
Ac	know	ledgem	ent	iii
At	ostract	:		iv
Ta	ble of	Conten	ts	v
Li	st of F	igures		vii
Li	st of T	Tables		ix
Li	st of A	Abbrevia	ations	ix
Lis	st of A	Appendi	ces	xi
1	Intro	Introduction		1
	1.1	Power	System Stability	1
	1.2	Small	Signal Stability	2
	1.3	Analyzing Small Signal Stability Through Linearization		3
	1.4	Wind	Power Plants	4
	1.5	Solar J	power plants	5
	1.6	Object	tive Of The Study	7
	1.7	Organ	ization Of The Thesis	8
2	Mathematical Modeling Of Power Systems For Small Signal Stability As-			
	sessi	sessments		
	2.1	Power	Plant Modeling	9
		2.1.1	Conventional Power Plant Modeling	9
		2.1.2	Wind Power Plant Modeling	13
		2.1.3	Solar Power Plants	21
	2.2	Netwo	rk Moedling	25
		2.2.1	Constant Admittance Matrix Representation	26
		2.2.2	Dynamic Phasor Network Model	26
	2.3	Comm	ion Reference Frame	29

	2.4	Aggreg	gate Small Signal Model Development	31
	2.5	The Te	est Scenarios	31
	2.6	Chapte	er Summery	34
3	Resu	ilts And	Analysis	35
	3.1	Model	Validation	35
	3.2	Stabilit	ty Analysis	39
		3.2.1	Scenario 1	39
		3.2.2	Scenario 2	40
		3.2.3	Scenario 3	41
		3.2.4	Scenario 4	44
		3.2.5	Scenario 5	46
		3.2.6	Scenario 1A	46
		3.2.7	Scenario 2A	49
		3.2.8	Scenario 3A	50
		3.2.9	Scenario 4A	51
		3.2.10	Chapter Summery	52
4	Cond	clusionS		53
References			55	
Appendix A Network Parameters			57	
	A.1	12 Bus	System	57
Appendix B Power plant models		60		
		B.0.1	Conventional power plant	60
		2.0.2	Wind Power plant	70
		4.0.3	Solar power plant	71

LIST OF FIGURES

Figure Description

Page

Figure 1.1	Classification of Power System Stability	1
Figure 1.2	Different types of wind turbine generators	6
Figure 1.3	Configuration of PV generation	6
Figure 2.1	Synchronous generator equivalent circuit in d-q frame	9
Figure 2.2	AC4A exciter control block diagram	11
Figure 2.3	Governor-Turbine block diagram	12
Figure 2.4	Typical components of a type 4 wind turbine	14
Figure 2.5	Drive train two mass model	15
Figure 2.6	PMSG d-q axis representation	16
Figure 2.7	Generator side Converter	18
Figure 2.8	DC link model	19
Figure 2.9	Grid side converter model	20
Figure 2.10	Configuration of PV generation	22
Figure 2.11	Configuration of PV arrayl	23
Figure 2.12	Control strategy of VSC	24
Figure 2.13	Control strategy of PLL	25
Figure 2.14	Single line diagram of the 12-bus test system	29
Figure 2.15	Single line diagram of the Sri Lankan power System up to 220kV	29
Figure 2.16	Single line diagram of the Sri Lankan power System up to 132kV	30
Figure 2.17	Transformation from individual machine d-q frame to common reference	30
Figure 3.1	PSCAD and SS model Generator speed variation after small distur-	
	bance for scenario 1	36
Figure 3.2	PSCAD and SS model Generator speed variation after small distur-	
	bance for scenario 2	37
Figure 3.3	PSCAD and SS model Generator speed variation after small distur-	
	bance for scenario 3	37
Figure 3.4	PSCAD and SS model Generator speed variation after small distur-	
	bance for scenario 4	37
Figure 3.5	PSCAD and SS model Generator speed variation after small distur-	
	bance for scenario 5	38
Figure 3.6	PSCAD and SS model Generator speed variation after small distur-	
	bance for scenario 1A	38
Figure 3.7	PSCAD and SS model Generator speed variation after small distur-	
	bance for scenario 2A	38

Figure 3.8	Participation Factors for modes with lower damping (scenario 1)	39
Figure 3.9	Participation Factors for modes with lower damping related to scenario	
	1 mode A, Mode B, Mode D (scenario 2)	41
Figure 3.10	Mode shape plots for mode A2, mode B2, mode D2 (scenario 2)	42
Figure 3.11	Participation factors for modes with critical damping from Wind plant	
	(scenario 3)	42
Figure 3.12	Mode shape of the modes with critical damping from Wind plant (sce-	
	nario 3)	43
Figure 3.13	Participation factors for modes with critical damping from solar plant (
	scenario 4)	45
Figure 3.14	Mode shapes of modes R and Mode S (scenario 4)	45
Figure 3.15	Particpation factors Mode shapes mode M1A-1 in scenario 1A	48
Figure 3.16	Particpation factors Mode shapes mode M1A-2 in scenario 1A	48
Figure 3.17	Particpation factors Mode shapes mode M1A-3 in scenario 1A	49
Figure 3.18	Particpation factors Mode shapes mode M1A-4 in scenario 1A	49
Figure A.1	Schematic Diagram of Sri lankan transmission system (CEB Long Term	
	Transmission Development Plan 2013-2022)	59

LIST OF TABLES

TableDescription

Page

Table 3.1	Comparison between the critical modes of Scenario 2 and Scenario 3	43
Table 3.2	Damping Ratios for Different Wind Penetration Levels (scenario 3)	44
Table 3.3	Comparison between the critical modes of Scenario 2 and Scenario 4	45
Table 3.4	Damping Ratios for Different Wind Penetration Levels (scenario 4)	46
Table 3.5	Comparison between the critical modes of Scenario 2 and Scenario 5	47
Table 3.6	Selected modes in scenario 1A	47
Table 3.7	Comparison between the low damping modes of Scenario 1A and Sce-	
	nario 2A	50
Table 3.8	Selected under damped modes in scenario 3A	51
Table 3.9	Comparison between the low damping modes of Scenario 3A and Sce-	
	nario 4A	52
Table A.1	Details of Power System Buses	57
Table A.2	Power System Line Parameters	57
Table A.3	Transformer Data (100 MVA base)	58
Table A.4	Power Generation Unit Details	58
Table A.5	Details of Shunt Components at Buses	58

LIST OF ABBREVIATIONS

Abbreviation Description

AC	alternating current
DC	direct current
dq	direct quadrature
GSC	Grid side converter
MPPT	Maximum Power Point Tracking
PI	Proportional-Integral
PMSG	permanent magnet synchronous generator
PV	Photovoltaic
RSC	Rotor Side converter
SCIG	squirrel cage induction generators
TSR	Tip Speed Ratio
VSC	voltage source converters
VSI	Voltage Source Inverter
WRIG	wound rotor induction generators

LIST OF APPENDICES

Appendix	Description	Page
Appendix -A	Network Parameters	57
Appendix -B	Power plant models	60