INVESTIGATION ON PLASTIC WASTE UTILIZATION AND MANAGEMENT IN FISHERY HARBORS OF SRI LANKA

P.M.S.R.Muhandiram

228044X

Degree of Master of Science in Civil Engineering

Department of Civil Engineering

University of Moratuwa

Sri Lanka

August 2023

INVESTIGATION ON PLASTIC WASTE UTILIZATION AND MANAGEMENT IN FISHERY HARBORS OF SRI LANKA

P. M. S. R. Muhandiram

228044X

The thesis submitted in partial fulfillment of the requirements for the degree

Master of Science in Civil Engineering

Department of Civil Engineering

University of Moratuwa

Sri Lanka

August 2023

DECLARATION

I hereby declare that this thesis entitled "Investigation on plastic waste utilization and management in fishery harbors of Sri Lanka" is the result of my original work and has not been submitted in part or in whole for any other degree or diploma in any other University or institute of higher learning and to the best of my knowledge and belief it does not contain any material previously published or written by another person except where the acknowledgment is made in the text. All sources used in this thesis have been duly acknowledged and referenced.

Also, I hereby grant to the University of Moratuwa the non-exclusive right to reproduce and distribute my thesis, in whole or in part in print, electronic or other medium. I retain the right to use this content in whole or part in future works (such as articles or books).

Signature	Date
	02/11/2023
The above candidate has carried out rese	arch for the Master under our supervision.
Name of the Supervisors;	
Prof. Rangika Umesh Halwatura	
Signature;	Date;
Prof. Karl S. Williams	
Signature;	Date;
	21/09/2023
Prof. Champika Liyanage	
Signature;	Date;

ABSTRACT

Fishery harbors (FH) are recognized as hot spots for coastal pollution as intensive anthropogenic activity takes place there. According to previous beach surveys conducted in the country, plastic was recognized as the major polluter. However, there are no studies being conducted which target plastic waste generation inside FH located in Western Province of Sri Lanka. The study was conducted from October 2022 to September 2023. For this study, weekly accumulation study method was followed along the land-water interface to collect primary data.

Throughout the study period, a total of 34,188 anthropogenic debris pieces weighing 2650.47 kg were recorded from 59 data collection points within five FH. Plastic has become the major polluter both by count and by weight. By count it was 29,141 (85.24%) and by weight it was 1578.07 kg (59.53%). Therefore, plastics was recognized as the major polluter in FH located in the Western Province of Sri Lanka. By count only, rubber, metal, glass, processed wood and fabric represented 7.99%, 1.98%, 1.95%, 1.78% and 1.06% of the total anthropogenic debris respectively. The spatial variation in plastic debris accumulation was statistically significant in all five FH, while seasonal variation was statistically significant at Beruwala, South Dikkowita and Panadura FH. Plastic debris accumulation rates were 1.45, 2.21, 1.57, 0.98 and 0.17 items/m²/week for Beruwala, North Dikkowita, South Dikkowita, Panadura and Negombo FH respectively. The top ten debris, fishery industry related plastic debris, single use plastics and transboundary plastic products represented 84.64%, 10.71%, 60.94% and 0.27% of the total plastic debris collected from the five FH. Lower percentage of transboundary plastic products highlights that the problem is primarily a result of mismanagement of plastic waste within the harbor. There was a strong positive (r=0.883) correlation between number of plastic debris recorded and plastic weight. Correlation between monthly rainfall and monthly average number of plastic debris recorded had a very weak positive correlation for Beruwala, North and South Dikkowita FH whilst being negative for Panadura and Negombo FH. Correlation between the tide level and number of plastic debris recorded was weakly negative (r = -0.280). Stranding debris count was significantly higher than the floating debris at FH. Therefore, conducting cleanup projects at FH during low tide will be much more effective, with a priority on addressing stranding debris.

A Stakeholder workshop and a questionnaire survey were conducted as a secondary data collection method. This was to reveal the perceptions and, attitudes of stakeholders as well as to find policy gaps related with plastic debris generation inside FH. Over half of the fishermen (51%) believe that the poor waste management of plastic within the FH by the Ceylon Fishery Harbors Corporation is the primary contributing factor for large amount of plastic waste generation. It highlighted the requirement of improving awareness among fishery communities, properly implementation of existing regulations and integrated stakeholders involvement.

Key words: Fishery harbors, Plastic pollution, Coastal environment, Coastal contamination, Anthropogenic debris

ACKNOWLEDGMENT

I wish to express my deepest gratitude to my research supervisor, Prof. R.U. Halwatura of the Department of Civil Engineering, for his invaluable guidance, unwavering encouragement, and immense knowledge. I am also thankful to him for providing me with the opportunity to conduct research under his supervision.

Furthermore, I highly appreciate the support and guidance provided by my supervisors, Prof. Karl S. Williams and Prof. Champika Liyanage, both from the School of Engineering, University of Central Lancashire. Their encouragement and patience throughout the research study were immensely valuable, and I am grateful for their constant feedback on the study.

The support given by the chairman and Mr. Nuwan of the Ceylon Fishery Harbors Corporation is really appreciated. I wish to express my greatest appreciation for all fishery harbor managers, all staff members and all the fishermen working at Beruwala, Panadura, Negombo, North and South Dikkowita fishery harbors.

I also extended my kind appreciation to all team members of Pro Green Laboratory and all the academic and non-academic staff of the Department of Civil Engineering, and everyone who helped me to complete this research successfully.

Special thanks should be given to Mrs. Poorni Naanayakkara for her support in preparing drawings using AutoCAD, and to Miss Sewwandi Alwis for her proofreading.

Finally, I wish to express my gratitude to my beloved parents, wife, all family members, and friends for their enormous patience and encouragement throughout this research. Additionally, I would like to thank all those who contributed to the successful completion of my research.

DEDICATION

This dissertation is dedicated to my loving parents and wife for their endless love, support, and encouragement!

Also my supervisors Prof.R.U.Halwathura, Prof.Karl S. Williams and Prof.Champika Liyanage for giving me this valuable opportunity to conduct research!

Most heartfelt

Gratitude and dedication to all the Sri Lankan citizens who provide their support to free education

TABLE OF CONTENTS

DECL	ARAT	ION	ii
ABST	RACT	•	iii
DEDI	CATIC	DN	v
TABL	EOF	CONTENTS	vi
TABL	EOF	FIGURE	ix
LIST	OF TA	BLE	. xiii
LIST	OF AB	BREVIATIONS	. xiv
LIST	OF AP	PENDICES	XV
1 I	NTRO	DUCTION	1
1.1	Bac	kground of the study	1
1.2	The	e research problem	3
1.3	Imp	portance of the study	4
1.4	Ove	erall aim of the study	11
1.5	Res	earch objectives	12
1.6	Res	earch Methodology	13
1.7	Key	y Findings	15
1.8	Dis	sertation structure	16
2 L	ITER	ATURE REVIEW	17
2.1	Cha	apter introduction	17
2.2	Plas	stic classifications	18
2.3	Ber	nefits of plastics	20
2.4	Typ	bes of plastic pollution	21
2	.4.1	Land based plastic pollution	21
2	.4.2	Ocean based plastic pollution	22
2.5	Ma	rine plastic pollution	23
2	.5.1	Economic impacts of marine plastic pollution	23
2	.5.2	Ecosystem impacts of marine plastic pollution	24
2	.5.3	Human health impacts of marine plastic pollution	25
2	.5.4	Micro plastic level impacts of marine plastic pollution	26
2.6	Plas	stic waste management strategies	27
2	.6.1	Global plastic waste management strategies	27
2	.6.2	Local plastic waste management strategies	28
2.7	Fish	hery industry	29

	2	.7.1	Fishery industry in Sri Lanka	29
	2	.7.2	Impacts of seasonal variation on fishery industry of Sri Lanka	34
	2	.7.3	Problems associated with plastic waste generation in local fishery harbors	35
	2	.7.4	Research Questions	36
	2.8	Cha	pter Summary	37
3	N	ЛЕТНО	DDOLOGY	39
	3.1	Cha	pter Introduction	39
	3.2	Res	earch method	39
	3	.2.1	Study sites	40
	3 d	.2.2 ebris co	Correlation between the number of plastic debris collected and weight of p bllected	lastic
	3 c	.2.3 ollected	Correlation between monthly rainfall and monthly average number of plastic of 147	lebris
	3 d	.2.4 ebris co	Correlation between tide level and the number of stranding and floating p bllected	lastic
	3	.2.5	Comparison between the number of stranding and floating plastic debris coll 49	ected
	3	.2.6	Seasonal variation of plastic debris accumulation	49
	3	.2.7	Spatial variation of plastic debris accumulation	50
	3	.2.8	Size class of plastic debris	51
	3	.2.9	Single Use Plastics (SUPs)	52
	3	.2.10	Transboundary Marine Litter (TBML)	53
	3	.2.11	Manufactured years of food wrappers	54
	3	.2.12	Fishery industry contribution on plastic waste generation	54
	3	.2.13	Stakeholder's workshop	55
	3	.2.14	Questionnaire surveys	56
	3.3	Cha	pter Summery	57
4	F	RESUL	TS AND DISCUSSION	58
	4.1	Cha	pter introduction	58
	4.2	Res	ults overview	58
	4	.2.1	Results overview based on total number of debris	60
	4	.2.2	Results overview based on total weight of debris	62
	4	.2.3	Composition of plastic debris recorded	65
	4	.2.4	Level of anthropogenic pollution in harbor wise	68
	4.3	Cor	relation between number of plastic debris recorded and plastic weight	71

	4.4 record	Correlation between monthly rainfall and monthly average number of plastic debris orded		
	4.5	4.5 Correlation between the tide level and number of plastic debris recorded		
	4.6 Difference between stranding and floating debris		76	
	4.7	Seasonal variation of plastic debris accumulation	80	
	4.8	Spatial and temporal variation of plastic debris accumulation	83	
	4.8.	1 Spatial and temporal variation of plastic debris accumulation at BFH	83	
	4.8.	2 Spatial and temporal variation of plastic debris accumulation at NDFH and 85	I SDFH	
	4.8.	3 Spatial and temporal variation of plastic debris accumulation at PFH	89	
	4.8.	4 Spatial and temporal variation of plastic debris accumulation at NFH	91	
	4.9	Size classes composition of plastic debris	92	
	4.10	Top ten plastic debris items	94	
	4.11	Single Use Plastics (SUPs)	95	
	4.12	Fishery industry related plastic debris	97	
	4.13	Transboundary Marine Litter (TBML)	99	
	4.14	Manufactured year of food wrap	104	
	4.15	Questionnaire survey	109	
	4.16	Stakeholders workshop	114	
	4.17	Chapter Summary	116	
5	CONCLUSIONS, RECOMMENDATIONS AND FUTURE WORKS120			
	5.1	Conclusion	120	
	5.2	Recommendations	122	
	5.3	Future Work	124	
6	RE	FERENCES	126	
7	AP	PENDIX	142	
	7.1	Appendix A (Questionnaire surveys form)	142	
	7.2	Appendix B (Data collection sheets)	143	

TABLE OF FIGURE

Figure 1.1: Sri Lanka – Population by Districts, 20127
Figure 1.2: Nominal GDP shares by province in 20197
Figure 1.3: The annual quantity of plastic waste discharged into the ocean via rivers, categorized
by country (Meijer et al., 2021)8
Figure 1.4: Areas of high marine biodiversity (Jefferson & Costello, 2020)10
Figure 2.1: The primary classifications of plastics
Figure 2.2: The coastal zone, as defined by the Coast Conservation Act of Sri Lanka
Figure 2.3: Harbors locations of Sri Lanka
Figure 2.4: Sri Lanka's maritime zones
Figure 3.1: Selected FH located in the Western Province of Sri Lanka41
Figure 3.2: Data collection points located in NDFH (Red color- Stranding debris collection points;
Blue color- Floating debris collection points)42
Figure 3.3: Data collection points located at SDFH (Red color- Stranding debris collection points;
Blue color- Floating debris collection points)42
Figure 3.4: Data collection points located at BFH (Red color- Stranding debris collection points;
Blue color- Floating debris collection points)43
Figure 3.5: Data collection points located at PFH (Red color- Stranding debris collection points;
Blue color- Floating debris collection points)43
Figure 3.6: Data collection points located at SDFH (Red color- Stranding debris collection points;
Blue color- Floating debris collection points)43
Figure 3.7: Grouping anthropogenic debris collected from a data collection point
Figure 3.8: Weighting the plastic debris collected from a data collection point
Figure 3.9: Size class catalogue
Figure 3.10: Foreign food wrapper and beverage bottle
Figure 3.11: A food wrapper with invisible manufacturing date54
Figure 3.12: Stakeholders workshop conducted at CEA on 21st of March, 202356
Figure 3.13: Conducting Questionnaire surveys with the participation of fishermen57
Figure 4.1: Total number of debris collected from all FH during the study period60
Figure 4.2: Total number of different types of debris collected from each FH during the study
period61

Figure 4.3: Total weight of different types of debris collected from all FH during the study period
Figure 4.4: Total weight of different types of debris collected from all FH during the study period
Figure 4.5: Rubber sheets collected at NDFH
Figure 4.6: Total number of different subtypes of plastic debris collected from all FH during the
study period65
Figure 4.7: Water channel opening through a trash rack close to NFH
Figure 4.8: Water channel directly opening into the BFH
Figure 4.9: Plastic beverage bottles departure form
Figure 4.10: Debris generated at NDFH workshop
Figure 4.11: Covered storehouses located at BFH
Figure 4.12: Matrix plot of plastic weight (kg) and number of plastic debris71
Figure 4.13: Matrix plot between the tide level and number of stranding plastic debris recorded
Figure 4.14: Matrix plot between the tide level and number of floating plastic debris recorded .75
Figure 4.19: Cleaning personal collecting floating debris using a hand net
Figure 4.15: Interval plot of stranding and floating plastic debris collected from BFH77
Figure 4.16: Interval plot of stranding and floating plastic debris collected from NDFH
Figure 4.17: Interval plot of stranding and floating plastic debris collected from SDFH78
Figure 4.18: Interval plot of stranding and floating plastic debris collected from PFH79
Figure 4.20: Boxplot of mean number of plastic debris collected during different seasons from
BFH
Figure 4.21: Boxplot of mean number of plastic debris collected during different seasons from
SDFH
Figure 4.22: Boxplot of mean number of plastic debris collected during different seasons from
PFH
Figure 4.23: Spatial variation of plastic debris accumulation at BFH83
Figure 4.24: Temporal variation pattern of plastic debris accumulation at BFH
Figure 4.25: Spatial variation of plastic debris accumulation at NDFH
Figure 4.26: Spatial variation of plastic debris accumulation at SDFH
Figure 4.27: Temporal variation pattern of plastic debris accumulation at Dikkowita FH

Figure 4.28: Floating debris accumulation at point number 4 of NDFH in two different seasons
(A; First Inter-monsoon season, B; South-West monsoon season)
Figure 4.29: Spatial variation of plastic debris accumulation at PFH89
Figure 4.30: Temporal variation pattern of plastic debris accumulation at PFH90
Figure 4.31: Spatial variation of plastic debris accumulation at NFH91
Figure 4.32: Temporal variation pattern of plastic debris accumulation at NFH91
Figure 4.33: Size class composition of plastic debris92
Figure 4.34: Top ten debris items according to collected data from all five FH for one year of
period94
Figure 4.35: Top ten debris items according to Ocean Conservancy International Coastal Clean-
up data, 2017
Figure 4.36: Total number of SUPs and Non-SUPs collected from all FH during the study period
Figure 4.37: Total number of SUPs and Non-SUPs collected from each FH during the study period
Figure 4.38: Total number of Fishery industry related and Non-fishery industry related plastic
debris collected from all FH during the study period98
Figure 4.39: Total number of Fishery industry related and Non-fishery industry related plastic
debris collected from each FH during the study period98
Figure 4.40: Total number of TBML collected from all FH in each month100
Figure 4.41: Total number of TBML collected from each FH101
Figure 4.42: Contribution of different countries to TBML accumulated at FH without Dikkowita
FH
Figure 4.43: Contribution of different countries to TBML accumulated at Dikkowita FH104
Figure 4.44: A food wrapper (Anchor Newdale pouch pack) manufactured in 2008105
Figure 4.45: Composition of food wrapper manufactured year106
Figure 4.46: Total number of food wrappers collected from all FH during the study period106
Figure 4.47: Manufactured years composition of food wrappers collected from all FH in each
month
Figure 4.48: Percentage composition of food wrappers manufactured year108
Figure 4.49: Age distribution of interviewed fishermen109
Figure 4.50: Educational background of interviewed fishermen

Figure 4.51: Fishermen perception on source of plastic waste generation	110
Figure 4.52: Poor waste management of CFHC	111
Figure 4.53: Fishermen perception on banning plastic products inside FH	111
Figure 4.54: A poster displaying at NDFH	113

LIST OF TABLE

Table 4.1: Total number of different debris types collected from each FH during the study time
Table 4.2: Pearson correlation values between monthly rainfall and monthly average number of
plastic debris collected7

LIST OF ABBREVIATIONS

Abbreviation	Description
BFH	Beruwala Fishery Harbor
CC	Climate change
CFHC	Ceylon Fishery Harbor Corporation
EU	Europe Union
FH	Fishery harbor
GHG	Green House Gases
MPA	Marine Protected Area
MPW	Marine plastic waste
MT	Metric tons
NARA	National Aquatic Resources Research and Development Agency
NFH	Negombo Fishery Harbor
NDFH	North Dikkowita Fishery Harbor
NOAA	National Oceanic Atmospheric Administration
PFH	Panadura Fishery Harbor
SDFH	South Dikkowita Fishery Harbor
SDG	Sustainable Development Goal
SLCG	Sri Lanka Coast Guard
SUPs	Single Use Plastics
TBML	Transboundry marine litters
WP	Western Province
WMA	Waste Management Authority

LIST OF APPENDICES

7.1	Appendix A (Questionnaire surveys	form)126
7.2	Appendix B (Data collection sheets)	