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Abstract 

The deteriorating water quality of the Kelani River over time has negatively affected 

environmental health and sustainability. This study aims to determine the relationship 

between land use types and its impact on the water quality within the Kelani River basin. 

The analysis utilized a dataset comprising 23 parameters related to water quality, 

spanning 17 sampling locations along both the primary river and its tributaries from 

2003 to 2023. IBM SPSS Statistics (Version 26), was utilized for data analysis, focusing 

on 7 water quality parameters (pH, dissolved oxygen (DO), chemical oxygen demand 

(COD), biological oxygen demand (BOD), nitrate, phosphate, and turbidity) that were 

influenced by land use. From this analysis, 6 sampling locations were selected to 

represent various segments of the stream, including Aguruwella and Nakkawita for the 

upstream segment, Pugoda Ela and Wak Oya for the middle stream, and Rakgahawatte 

Ela and Maha Ela for the downstream segment. This study utilized a combination of 

GIS and statistical methods over 4 years with a 6-year time interval (2004, 2010, 2016, 

and 2022). The land use maps were generated by categorizing area into 4 land use types 

as agricultural area, vegetation area, built-up area, and others, using maximum 

likelihood supervised classification. Accuracy assessment using the kappa coefficient 

revealed that overall accuracy was greater than 85 %, for all six sub-catchments across 

all four years. From the analysis, it shows that the water quality parameters are 

significantly varied spatially and temporally. From upstream to downstream and over 

time, water quality has declined. Regression analysis shows the relationship between 

land use types and 7 water quality parameters. pH, DO, COD, BOD, and nitrate show a 

correlation with built-up lands, pH, DO, COD, nitrate and turbidity with vegetation 

areas, and phosphate with agricultural areas. Moreover, this study highlighted, built-up 

lands and agricultural lands negatively influenced the water quality, while vegetation 

areas positively influenced. By identifying the correlation between land use types and 

water quality, this study helps to preserve and enhance the water quality of the Kelani 

River basin by implementing proper land use management strategies. 
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1. Introduction 

The increasing global population is significantly raising the demand for clean water across 

various sectors [1]. Water resources come in various forms like surface water, groundwater, 

and coastal waters. Clean water helps improve health and enhances the overall quality of life 

for households. 

There is a substantial relationship between land-use types and the quality of water [2]. 

Agricultural lands yielded the highest concentrations of nutrients [3] and the high 

concentrations of BOD, COD, and DO observe in the sampling results indicate significant 

urban activity [4]. In most developing countries, domestic waste is generally the primary 

cause of river water pollution. Increased settlements (urban residential areas without proper 

sanitation facilities), industrial activities, and agricultural activities have a strong negative 
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impact on water quality compared to forested areas [5,6]. Generally, watersheds with more 

forest cover have lower levels of sediment and nutrients in their streams. As an example, for 

Mitidja Basin, Algeria, urban residential land is the major factor in predicting water quality, 

influencing key parameters such as BOD, COD, SS (Suspended Solids), NH3, PO4
3-, DO, and 

pH. Vegetation primarily affects NO3
- levels while agriculture affects PO4

3- [7].  

The Kelani River has been identified by the Environmental Foundation Limited (EFL) as Sri 

Lanka's most polluted and threatened river due to agricultural runoff, domestic sewage, 

municipal waste, and industrial effluents released from a rising number of factories located 

near its shores [8].  

In the Kelani River Basin, the lower catchment is more polluted than the upper catchment. 

Key water quality parameters like pH, DO, turbidity, TSS, BOD, nitrite, ammonia, phosphate, 

and COD were worse in the lower catchment, particularly near Mattakkuliya, Kolonnawa, 

and Kaduwela. COD and pH were identified as the best indicators of pollution in the lower 

catchment. The upper catchment is less polluted, with COD and nitrate concentration being 

the main indicators. The upper catchment's pollution is mainly due to fertilizers used in tea 

cultivation, while the lower catchment's pollution is from domestic and industrial sewage [9]. 

Many researchers have examined the spatial and temporal water quality variations along the 

Kelani River [8,10-12] and identified the most suitable water quality indicators for the upper 

and lower catchments of the Kelani River [9]. However, there is a lack of knowledge about 

how specific land use types relate to the water quality parameters in the Kelani River Basin. 

This research aims to predict the relationship between land use types and water quality 

parameters and to assess the spatial and temporal variation of water quality and land use in 

the Kelani River Basin.  

2. Methodology 

2.1 Study Area 

 
Figure 1 Study area 
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The Kelani River is the fourth-longest river in Sri Lanka (144 km), originates from the Sri 

Pada Mountain range, and coming to an end in the Mattakkuliya region. Through Colombo, 

Nuwara-Eliya, Gampaha, and Kegalle, the river travels 192 kilometers. Geographical location 

of the Kelani River basin is (Northern latitudes 6° 47' to 7° 05' and Eastern longitudes 79° 52' 

to 80° 13’) with the area of 2230 km2 (Figure 1). 25% of Sri Lankans rely on the Kelani River 

in some capacity for their daily needs [13]. 

Kelani River flows through diverse landscapes, including forests, agricultural areas, industrial 

zones, and urban centers. Land use patterns investigation demonstrates that tea plantations 

and forests dominate the upper catchment, while rubber plantations and paddy fields are 

predominant in the middle and lower catchments [14]. 

2.2 Selection of Sub-Catchments 

This study utilized the data set of the Central Environmental Authority (CEA), including 23 

water quality parameters across the 17 sampling locations along both the main river and its 

tributaries from 2003 to 2023.  

First, literature on water quality parameters influenced by the land use changes was reviewed 

[3-7], identifying seven parameters (pH, DO, COD, BOD, NO3
-, PO4

3-, and turbidity). Using 

IBM SPSS Statistics (Version 26), graphs were generated to show the variation of these seven 

parameters from 2003 to 2023 across all 17 locations. Then, mean values were compared with 

Sri Lankan Standard (SLS) values for drinking purposes [15]. Locations were identified 

where the mean values exceeded the SLS values for all parameters. Based on the locations 

with the highest number of exceeded parameters, six sub-catchments, representing upstream 

(Aguruwella, Nakkawita), middle stream (Pugoda Ela, Wak Oya) and downstream 

(Rakgahawatte Ela, Maha Ela) segments were selected. This study focuses only on locations 

within the sub-catchments. 

2.3 Preparation of Watershed Areas 

 
Figure 2 Selected sub-catchments. 
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To create the river network, 30m resolution DEMs (Digital Elevation Model) that can cover 

the entire river basin, were downloaded from the USGS Earth Explorer. Using the HEC-

GeoHMS toolbar, DEM data was preprocessed. The river network was extracted using a 

threshold value of 5000. The six sampling points of Nakkawita, Anguruwella, Pugoda Ela, 

Wak Oya, Maha Ela and Rakgahawatte Ela were used as the pour points for their respective 

sub-catchments, with an additional pour point where the river meets the sea. By snapping into 

pour points, watershed areas for six sub-catchments and the whole river were generated 

(Figure 2). 

2.4 Water Quality Analysis 

The data set contained water quality data from 2003 to 2023. To cover the entire data period, 

four years were selected for the study with a 6-year interval (2004, 2010, 2016, 2022). For 

the selected seven water quality parameters, the mean values for each of the 4 years were 

calculated. Then the variation of each parameter from 2004 to 2022 across the six sub-

catchments, were plotted using Microsoft Excel 2016.  

2.5 Land Use Classification 

For the land use classification, Landsat series data were used from the USGS Earth Explorer. 

For 2016 and 2022, Landsat 8 data and for 2004 and 2010 Landsat 5 data were used with 

cloud cover adjusted to less than 10%. Composite images were prepared using 11 bands of 

Landsat 8 and 7 bands of Landsat 5.  

Land uses were classified into 4 categories such as agricultural area, vegetation area, built-up 

area, and others using supervised classification. Polygons for each category were created 

using Google Earth Pro and Composite images, added to the training sample manager in 

ArcGIS 10.8, and signature file was created. For the classification, Maximum Likelihood 

Supervised Classification was used. This method assumes each statistical value is normally 

distributed in each band and calculates the probability of each pixel belonging to a specific 

category and classifies it into the category with the highest probability. Although more 

complex, this process is more accurate and widely used [7,16-17]. 

Accuracy was assessed using 100 accuracy assessment points per each sub-catchment using 

stratified random sampling method. The confusion matrix was generated with overall 

accuracy which was greater than 85% for all sub-catchments and years [7,16]. 

2.6 Statistical Analysis 

For the statistical analysis, SPSS Version 26 was utilized. The relationship between water 

quality parameters and land use types was examined using the Pearson correlation coefficient, 

with the statistically significance levels set at 0.05 and 0.01 for two-tailed test. The percentage 

areas of four land use types and mean values of seven water quality parameters across 6 sub-

catchments in 2016, were analyzed. Additionally, a regression model was developed using 

multiple stepwise linear regression method to predict, how land use types influence changes 

in each water quality parameter. 

3. Results 

3.1 Variation of Land Use Types 

In upstream areas, the most dominant land use type is vegetation areas, while in the middle 

stream, agricultural areas are the most prevalent. Downstream, built-up areas are the dominant 

land use due to the high concentration of industries and housing developments (Figure 3). 
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The percentage of vegetation area reduced over time, while built-up areas increased across all 

six sub-catchments (Figure 4). With time, agricultural areas gradually increased in the 

upstream and middle stream areas, while downstream areas did not show a clear trend. 

Upstream areas consistently had the highest vegetation percentage. In 2004, 2010 and 2016, 

the vegetation percentages were relatively similar in both middle stream and downstream. 

However, in 2022, the middle stream reported a higher vegetation percentage (65.27%, 

55.54%), than the downstream areas (34.91%, 40.84%). The highest built-up areas were 

reported from downstream. Among all six sub-catchments, Maha Ela consistently had the 

highest built-up area percentages in all four years. The percentage of agricultural area was 

highest in the middle stream, with Pugoda Ela reporting the highest values for all four years. 

From 2004 to 2010, agricultural areas in upstream, were less than those in the downstream, 

but from 2016 onwards, both upstream and downstream showed relatively similar values. 

3.2 Variation of Water Quality Parameters 

According to Figure 5, most water quality parameters, except for pH, showed significant 

spatial variation among the six sub-catchments. The maximum DO was recorded in the 

upstream areas, while the minimum was observed in the downstream. Conversely, the 

minimum BOD was recorded from the upstream and the maximum in the downstream. The 

lowest COD and NO3
- values were recorded in the upstream areas, with the highest values 

observed in the downstream areas. However, Pugoda Ela recorded nearly similar values to the 

downstream. The turbidity and PO4
3- were highest in both middle stream and downstream. 

Regarding temporal variation, from 2004-2016, pH, COD, BOD and PO4
3- increased across 

all sub-catchments. From 2016-2022, these values decreased due to the pandemic influence 

and the economic crisis [18]. DO decreased from 2004-2016 and then increased from 2016-

Figure 2 Land use maps for 2004, 2010, 2016 and 2022. 
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2022, also due to the pandemic influence [18]. NO3
- and turbidity didn’t show a clear trend 

over time. 

The results indicated that most water quality parameters were negatively affected from 

upstream to downstream. The temporal analysis revealed that most water quality parameters, 

instead of NO3
- and turbidity, degraded over time. However, the trend deviated from 2016 to 

2022, likely due to the pandemic and economic crisis. During this period, factors like the 

shutdown of industries and reduced human activities contributed to improved water quality 

[18]. 

 
Figure 4 Land use variation from 2004-2022 across six sub-catchments (a) Vegetation area (b) 

Built-up area (c) Agricultural area 
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Figure 5 Variation of (a)pH (b)DO (c)COD (d)BOD (e)NO3

 (f)PO4
3- and (g)Turbidity from 

2004-2022 across six sub-catchments 
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Figure 5 Variation of (f)PO4

3- and (g)Turbidity from 2004-2022 across six sub-catchments 

3.3 Single Factor Correlation Analysis 

The land use types and water quality parameters showed a significant relationship according 

to the Pearson correlation coefficient (Table 1). Based on the significance level, built-up areas 

were strongly positively correlated with BOD and strongly negatively correlated with DO at 

the 0.01 significance level, while being positively correlated with pH, COD, and NO3- at the 

0.05 significance level. Vegetation was positively correlated with DO and negatively 

correlated with pH, COD, NO3-, and turbidity at the 0.05 significance level. Agriculture was 

positively correlated only with PO43- at the 0.05 significance level. 

Table 1 Pearson Correlation Coefficient between land use types and water quality parameters in 

2016 

Water Quality 

Parameter 
Agriculture (%) Vegetation (%) Built-up areas (%) 

pH 0.282 -0.878* 0.851* 

DO -0.188 0.839* -0.918** 

COD 0.341 -0.862* 0.836* 

BOD -0.109 -0.672 0.964** 

NO3
- 0.095 -0.819* 0.905* 

PO4
3- 0.889* -0.662 0.120 

Turbidity 0.635 -0.858* 0.513 

*Significance at 0.05 probability level (2-tailed). **Significance at 0.01 probability level (2-tailed). 

3.4 Multiple linear regression analysis 

Multiple Linear Regression (MLR) model was developed to predict the relationship between 

three land use types (Agriculture, Vegetation and Built-up) and water quality parameters. 

From the significance probability level, tolerance, and variance inflation factor (VIF), which 

are characteristic parameters of the collinearity diagnostics, indicated no collinearity among 
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the independent variables. However, for developing the MLR model, Built-up area was 

excluded for pH and COD, and Vegetation was excluded for DO and NO3
-. This exclusion is 

likely due to the effect of excluded factors masked by the included factors.  

The results revealed that all seven water quality parameters across the six sub-catchments 

could be predicted using these three land use types. Most of the water quality parameters 

correlated with built-up areas and vegetation, while only PO4
3- correlated with agriculture 

(Table 2). Therefore, vegetation and built-up areas were the most suitable predictors for water 

quality in the Kelani River Basin. 

Table 2 MLR model between land use types and water quality parameters in 2016 

Dependent 

Variable 

Independent 

variables 
Regression R2 Adjusted R2 P 

pH Ve 7.908-0.013Ve 0.77 0.713 0.022 

DO Bu 7.055-0.103Bu 0.843 0.804 0.01 

COD Ve 30.056-0.419Ve 0.743 0.678 0.027 

BOD Bu 0.578+0.184Bu 0.929 0.912 0.002 

NO3
- Bu 0.362+0.079Bu 0.819 0.774 0.013 

PO4
3- Ag -0.010+0.007Ag 0.79 0.737 0.018 

Turbidity Ve 78.973-0.864Ve 0.736 0.67 0.029 

4. Discussion 

In the upstream areas of the Kelani River basin, high vegetation cover and less urban areas 

result in less addition of pollutants to the water sources, effective erosion control, and fast 

purification processes. Therefore, the overall water quality in upstream areas is high.  In 

contrast, the downstream areas suffer from high urban areas, reduced vegetation cover and 

intensive human activities. These factors contribute to increased residential and industrial 

discharges into the water, high erosion, and street runoffs, leading to degraded water quality 

downstream. Middle stream areas of the Kelani River basin contain extensive agricultural 

areas. Agricultural activities increase soil erosion and cause fertilizers and pesticides to enter 

the river through rainfall runoff, which degrades water quality. All water quality parameters 

recorded their best values in upstream areas. Turbidity and PO4
3- levels were at their worst in 

both middle stream and downstream, while other parameters recorded their worst in 

downstream areas. Overall, water quality shows a declining trend from upstream to 

downstream. 

With time, the reduction in vegetation areas coupled with an increase in built-up and 

agricultural areas result in the deterioration of most water quality parameters. This shows that 

overall water quality in the Kelani River Basin degraded over time.  

Regression analysis showed that built-up areas negatively correlate with DO and positively 

correlate with pH, COD, BOD, and NO3
-. Increased organic pollutant loads from residential 

and industrial discharges lead to decreasing DO levels, while other parameters increase. 

Vegetation areas, on the other hand, show a positive correlation with DO and negative 

correlation with pH, COD, NO3
- and turbidity. High vegetation cover helps to control erosion 
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and reduce runoffs, which lowers turbidity. Also, due to the less human activities and urban 

waste discharges in vegetated areas lead to increased DO levels and decreased COD and BOD 

levels. Agricultural areas increase soil erosion and introduce fertilizers and pesticides into 

river from the rainfall runoff, particularly affecting PO4
3-, NO3

-, and turbidity levels [5-7]. 

However, regression analysis indicates that agriculture only positively correlates with PO4
3-. 

Therefore, regression results may not fully capture the relationship between agriculture and 

water quality parameters.  

Throughout the study period, certain water quality parameters consistently exceeded SLS 

limits for drinking purposes. Parameters such as pH, NO3
- and PO4

3- remained within 

acceptable range across all six sub-catchments for all years. COD exceeded acceptable limits 

in both middle stream and downstream, while BOD exceeded limits only in downstream. DO 

exceeded in downstream and in Pugoda Ela from 2016 onwards. Turbidity levels were 

consistently above acceptable limits across all sub-catchments for all years. 

5. Conclusion 

The purpose of this research was to assess the special and temporal water quality variations 

and examine the relationship between water quality parameters and land use types in the 

Kelani River Basin. Upstream areas maintained higher water quality due to extensive 

vegetation and minimal human impact, whereas downstream areas experienced poor water 

quality due to urbanization and industrialization. Overall, water quality showed a degradation 

from upstream to downstream in the Kelani River Basin. 

Over time, overall water quality degraded as agricultural and built-up areas increased, while 

vegetation areas decreased. However, in 2022, water quality improved due to the pandemic 

influence and economic crisis, which reduced human activity and industrial discharge. 

Built-up areas negatively correlated with DO and positively correlated with pH, COD, BOD, 

and NO3
-. In contrast, vegetation areas positively correlated with DO and negatively 

correlated with pH, COD, NO3
- and turbidity. Agriculture only positively correlated with 

PO4
3-. Therefore, Built-up areas and vegetation areas were the most relevant predictors of the 

water quality in the Kelani River Basin. 

This study considered three main land use types (vegetation, agriculture, and built-up areas). 

Among them, vegetation positively impacts the water quality, while built-up areas negatively 

impact. The protection of vegetation cover is crucial to preserve the water quality. Therefore, 

implementing proper land use management strategies is essential to mitigate the effects of 

urbanization and development on water quality in the Kelani River Basin. 
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