Modelling Optimum Water Release for Agricultural Lands Using Goal Programming Approach

A Thesis Submitted in Partial Fulfillment of the Requirements for the Master of Science in Operational Research

> By S.A.S Rasangika 199524N 2022

Modelling Optimum Water Release for Agricultural Lands Using Goal Programming Approach

Master of Science in Operational Research
By
S.A.S Rasangika
199524N

External Supervisor: Dr. D.M Samarathunga

Internal Supervisor: Dr. P.M. Edirisinghe

Department of Mathematics
University of Moratuwa
Moratuwa.

Declaration

I declare that this dissertation has not been previously accepted in substance for any degree in the University or any other Institution. I state that this dissertation is the result of my own independent work, except where otherwise indicated or acknowledged under the supervision of Dr. D.M. Samarathunga, (Senior Lecturer, Faculty of Science, University of Ruhuna) and Dr. Pasan Edirisinghe, (Senior Lecturer, Faculty of Engineering, University of Moratuwa).

•••••

S.A.S.Rasangika 199524N Department of Mathematics University of Moratuwa Moratuwa 22 / 03/ 2023

External Supervisor:

......

Internal Supervisor:

Dr. D.M Samarathunga Senior Lecturer Department of Mathematics University of Ruhuna

Matara 22 / 03 / 2023

Dr. P.M. Edirisinghe Senior Lecturer Department of Mathematics University of Moratuwa Moratuwa 22 / 03 / 2023

Acknowledgment

First of all I would like to express deep gratitude to my guide Dr. D.M. Samarathunga, Senior lecturer in department of Mathematics for his guidance, encouragement, and gracious support throughout the course of my work, for his expertise in the field that motivated me to work in this area and for his faith in me at every stage of this research.

I would like to thank Dr. Pasan Edirisinghe, Senior Lecture and the coordinator of the Master degree programmer for his timely guidance and coordination in the event of being success of my project

Also, I am grateful to the staff members of Technical services division at water management unit in Walawa who help me to supply the data for the research.

Finally I would like to thank for my parents and friends who help me to success this research and I wish to grant my heartful gratitude for anyone whom I could not mention in particular.

Abstract

The agricultural sector is one of the main sectors which benefits from several sources of water supply. This sector faces several challenges in securing water supply for its respective crops. Since the demand for water is increasing due to several factors, including population growth and an increased level of water dependent activities, and changes to crop selection influenced by various factors, including ever changing demand, the need for optimal use of water is identified as a priority for the rural agriculture sector in Sri Lanka. Past inflow data was used to obtain inflow values from the Udawalawa reservoir by using a forecasting model and the seasonal ARIMA model which was a statistical forecasting model used to forecast the inflow using RStudio software. In this respect water reservoir management is a crucial factor for allocating water for agricultural crops for study, a Goal programming model was formulated to determine the optimum water release for agricultural lands in Udawalawa region. Six main agricultural land divisions of the Udawalawa irrigation scheme were selected, and two of them received water from the right bank canal while the other four received water from the left bank canal of the Udawalawa reservoir. A Goal programming model with a 246 number of variables, 72 equality constraints, and 138 inequality constraints is solved using the MATLAB programming language and results show that water allocation from each reservoir can be used to fulfill the water demand throughout the year by using the water flow and allocation for each crop according to the priorities. In this case, it was assumed that 60% of the farming land used to cultivate paddy while the remaining 40% of the farming land used to cultivate other crops. These findings can be used by the stakeholders when making decisions on water allocation, not just based on the demand but also meeting a balance of crop selection.

Key words: Water Release Optimization, Goal Programming, Forecasting

Contents

1	Intr	ntroduction			
	1.1	Background of the study	3		
	1.2	Problem Statement	3		
	1.3	Research Question	3		
	1.4	Research Objectives	4		
	1.5	Significance of the Research	4		
	1.6	Limitations and Assumptions	5		
	1.7	Outline of the thesis	5		
2	Lite	rature Review	6		
3	Met	chodology	11		
3	Met 3.1	chodology Linear Programming (LP)			
3					
3	3.1	Linear Programming (LP)	11		
3	3.1 3.2	Linear Programming (LP)	11 13		
3	3.13.23.3	Linear Programming (LP)	11 13 15		
3	3.13.23.3	Linear Programming (LP)	11 13 15 17		
3	3.1 3.2 3.3	Linear Programming (LP) Goal Programming (GP) Study Area Data Collection 3.4.1 Inflow	11 13 15 17 17		

\sim	\sim		ΓEI		
<i>- '</i>	/ Nr	1.1		1'1	I 'C.
	. ,,	N I		N I	

		3.5.1	Model 1 : Linear programming model	18
		3.5.2	Model 2 : Goal programming model	22
	3.6	Foreca	asting the inflow to the Udawalawa reservoir	27
		3.6.1	Time series	27
		3.6.2	Forecasting Methods	33
		3.6.3	Fitted values and Residuals	36
		3.6.4	Statistical Test	38
4	Ana	lysis, R	Results and Findings	40
	4.1	Foreca	asting the inflow to the Udawalawa reservoir	41
		4.1.1	Time series analysis for inflow data to Udawalawa reservoir	41
		4.1.2	Forecasting Methods	45
	4.2	Resul	ts for Optimization methods	62
		4.2.1	Results for model I	62
		4.2.2	Results for Model II	70
		4.2.3	Deviation Values for Goals	85
5	Cor	nclusio	n, Discussion and Future Directions	86
	5.1	Concl	usion	86
	5.2	Discus	ssion	87
	5.3	Future	e Direction	88
Re	eferer	nces		92

List of Tables

4.1	The results of the portmanteau test for simple forecasting methods	52
4.2	Summary of the basic forecasting methods	53
4.3	Mann-Kendall trend test and unit root test for observed mean monthly Inflows	54
4.4	Performance values of the three best models	57
4.5	Parameter estimates for SARIMA (0, 0, 3) (0, 0, 2) model	57
4.6	Autocorrelation and Heteroscedasticity tests	59
4.7	Forecasting values for 2021 In SARIMA	61
4.8	Release from Udawalawa reservoir measured by hectare meter	62
4.9	Release water from other reservoirs	64
4.10	Release water for the paddy cultivated land	66
4.11	Ratio for paddy and other crops	67
4.12	Release from Udawalawa reservoir	70
4.13	Release water from one reservoir to other	72
4.14	Release for the Cultivated area	74
4.15	Release for the Chandrikawewa region	76
4.16	Release for the Angunukolapelessa region	77
4.17	Release for the Sevanagala region	78
4.18	Release for the Habaraluwewa region	79
4.19	Release for the Kiriibanwewa region	80
4.20	Release for the Andarawewa region	81

LIST OF TABLES

4.21 Proportion of land allocation for paddy and other crops	82
4.22 Areas of land allocation for paddy and other crops	83
4.23 Deviation Values for First Goal	85
4.24 Deviation Values for Second Goal	85

List of Figures

3.1	Overview of the study area	15
3.2	Land allocation of the study area	16
3.3	Plan for Water releasing	20
3.4	Plan for Water releasing	24
3.5	Four examples of time series showing different patterns	28
3.6	Example for time series plot	29
3.7	Example for seasonal plot of monthly	30
3.8	Example for STL plot	32
3.9	A tidy forecasting workflow	33
4.1	Inflow to the Udawalawa from 1996 to 2020	41
4.2	Seasonal plot for inflow to Udawalawa	42
4.3	The seasonal sub series plot	43
4.4	STL- Decomposition	44
4.5	Mean method forecast appiled to Inflow in Udawalawa	45
4.6	Naive method forecast appiled to Inflow in Udawalawa	46
4.7	Seasonal naive method forecast appiled to Inflow in Udawalawa	47
4.8	Drift method forecast appiled to Inflow in Udawalawa	48
4.9	Visualized representation	49
4.10	Residual diagnostic graphs for simple forecasting methods	50

4.11	for Udawalawa Reservoir inflows	55
4.12	Seasonally differenced autocorrelation function (ACF) and partial autocorrelation functions (PACF) inflows water of Udawalawa Reservoir	56
4.13	The residuals for the best model	58
4.14	Forecasts of monthly Inflow data in Udawalawa using the SARIMA (0, 0, 3)(0, 0, model	2) _[12]
4.15	Release water from Udawalawa reservoir	63
4.16	Release water from Other reservoirs	65
4.17	Release water to the cultivated areas	67
4.18	Release water to the cultivated areas	68
4.19	Land allocation optain by Linear programming technique	69
4.20	Release from Udawalawa reservoir	71
4.21	Release water from other reservoirs	73
4.22	Release water to the cultivated areas	75
4.23	Release water to the Chandrikawewa area	76
4.24	Release water to the Angunukolapelessa area	77
4.25	Release water to the Sevanagala area	78
4.26	Release water to the Habaraluwewa area	79
4.27	Release water to the Kiriibbanwewa area	80
4.28	Release water to the Andarawewa area	81
4.29	Release water to the cultivated areas	83
4.30	Land allocation optain by Linear programming technique	84