FINDING COMPILER BUGS VIA CODE MUTATION: A
CASE STUDY

Chiran Sachintha Abeygunawardana

219176C

Degree of Master of Science

Department of Software Engineering

Faculty of Engineering

University of Moratuwa
Sri Lanka

July 2023

FINDING COMPILER BUGS VIA CODE MUTATION: A
CASE STUDY

Chiran Sachintha Abeygunawardana

219176C

Thesis submitted in partial fulfillment of the requirements for the degree

Master of Science in Software Engineering

Department of Software Engineering

Faculty of Engineering

University of Moratuwa
Sri Lanka

July 2023

DECLARATION

| declare that this is my own work, and this thesis does not incorporate without
acknowledgement any material previously submitted for a degree or diploma in any
other University or Institute of higher learning and to the best of my knowledge and
belief it does not contain any material previously published or written by another person
except where the acknowledgement is made in the text. | retain the right to use this
content in whole or part in future works (such as articles or books).

Signature: Chiran Sachintha Date: 30/07/2023

The above candidate has carried out research for the master’s thesis under my
supervision. I confirm that the declaration made above by the student is true and correct.

Name of Supervisor: Professor Indika Perera

30/07/2023
Signature of the Supervisor: Date:

DEDICATION

| dedicate my thesis to my parents in appreciation of their endless love, support, and
encouragement throughout my pursuit of higher education. | hope this achievement will
fulfil the dream they imagine for me.

il

ACKNOWLEDGEMENT

| want to express my sincere gratitude to my supervisor, Prof. Indika Perera, for his
efforts, ongoing guidance, and support. | feel incredibly fortunate to have him as my
supervisor because his advice improved my study. His encouragement led me to
successfully complete this research.

| also want to thank all my friends for supporting me during this study process with their
help and encouragement.

And most significantly, without my family's love and support, none of this would have
been possible. I am appreciative of my family for supporting me during this time and
encouraging me to finish the research.

il

ABSTRACT

Compiler errors can cause a variety of problems for software systems, including
unexpected program behavior, security flaws, and system failures. These defects can be
brought on by a number of things, including improper data type handling, poor code
creation, and wrong code optimization. Compiler defects can be difficult to spot due to
their complexity and, if ignored, can have severe effects. So, Identifying compiler
defects is a crucial and difficult undertaking because it is difficult to produce reliable
test programs.

One of the most used software testing techniques for finding bugs and vulnerabilities is
fuzzing. Fuzzing is the process of generating numerous inputs to a target application
while keeping an eye out for any anomalies. Among fuzzing techniques, the most recent
and promising methods for compiler validation are test program generation and
mutation. Both methods have proven to be effective in identifying numerous problems
in a variety of compilers, although they are still constrained by the techniques' use of
valid code creation and mutation methodologies.

Code mutation is a method that has grown in favor recently since it can find bugs that
standard testing can forget. This technique involves performing minor adjustments to a
program's source code to make versions of the original code, which are then compiled
and evaluated to see if they deliver the desired outcomes. It is a sign that there might be
a compiler issue if the output of the altered code differs from the output of the original
code.

Current mutation-based fuzzers randomly alter a program's input without
comprehending its underlying grammar or semantics. In this study, we proposed a novel
mutation technique that mutates the existing program while automatically
understanding the syntax and semantic rules. Any type of compiler can be verified using
the suggested method without regard to the semantics of the language. With that we can
use this approach to test various other compilers without depend on the syntax of that
language. We focus on evaluating the Ballerina compiler to the language syntax and
semantics because Ballerina is a relatively new programming language.

In this work initially we construct a test suite from the present testcases of that language
and developed a syntax tree generator which can identify the syntax of that language
and then developed semantic generator which can identify semantic of that language.
With that we are able to mutate the existing test cases using our generator. Furthermore,
we have analyzed the performance of our model with the number of test cases which
use to train our model and the number of tokens in the generated file.

Keywords: Compiler testing, random testing, random program generation, Automated
testing

v

TABLE OF CONTENTS

DECLARATION ..ottt i
DEDICATION ...t s i
ACKNOWLEDGEMENT ..ottt il
ABSTRACT ... v
Table Of CONENLSeiiiiiiiicii e \
List Of FIGUIES ..ovviiiiiiiiii s vii
LSt OF TaDIES ... viii
List Of ADDIEVIAtIONS.......ciiiiiiiiiiiiiii i X
LIST OF APPENDICESoo it X
INEEOAUCTION ... 1
1.1 Nature and scope of the Problemcccceiiiiiiiiiiiiic e 1
1.1.1 Ballerina 1anguageccccoiuiiiiiiiiiiie e 1
1.1.2 Introduction t0 COMPILETScoviiiieiiiiiiiieie s 1

1.1.3 Possible challenges when validating a compiler and the importance of
VAIIAAEINEZ ..ot 2
1.1.4 Introduction to fUZZING.........ccceeiiiiiiiiiie e 3
1.2 Main novelty of the research............ccooeiiiiiii e 3
1.3 Objectives of the 1eSearchccviveiiiiiiicii 5
LItEIatUI® TEVIEWeiuviiiiiieiiic ettt e e ne e 6
2.1 State Of ATt TEVIEW ..o.veiiiiiiiiieiici e 6
2.1.1 Manually construct teSt Programsccceeoverreereerineeneesree e 6
2.1.2 Test program ENETALOTcccevviriiiiiiieiiiiiie e 7
2.1.3 Grammar directed test program generatorcccoceverreerireeneerireeneeneeenes 7
2.1.4 Grammar aided test program generatorcccovvverieriiieeiieiesiee e, 10
2.1.5 Program MUtationccooiiiiiiiiiiiec e 11
2.1.6 Semantic preserving Mutation.........ccccvveruiiiiiieiiiiieiiee e 13
2.1.7 Non-semantics preserving mMutationccccereeereerireenieeeneeninesneennens 14
2.1.8 TSt OTaCIESvviuiiiiiiiieiiiie i 15
2.1.9 Differential teStINGcccvviiiiiiiiiie e 15
2.1.10 Metamorphic testing for COMPIlersoovevviriiiieiiiiiiiei e, 18

2.1.11 Other testing method of compilers with deep learning and other
methods 20

MEthOOLIOZY ... 33
3.1 Capture test cases from the ballerina repositorycccocvvvvviieiiiieciinenennn 33
3.2 GENETALE TUZZET ..vviiviie it 33
33 Train the Model ..o 34
34 Generate mutated tESt CASESvviiriiiiiiiiiii i 35
3.5 TEST TUNNET.....ceiiiiiiieic et 36

EXPETIMENLS ...ttt 37

4.1 Implementation of data provider..........ccccvvviiiiiiiiiiie e 37
4.2 Implementation of Syntax tree SeNeratorcecvvreerveriireesiese e 38
4.3 Implementation of sSeMantic ZENErator.........vvvvvvvirieriiiieiiiie e 42
4.4 Mutation algOrithmcccoeviiiiiiiiic 44
4.5 Training the model and identify compiler bugscccccvvviviriiiiiiiiiniiieee, 45
RESULLS ..ttt ettt b et e e e e be e ae e b e e nnne s 48
5.1 Captured test cases from the Ballerina Repositoryccccevvvvviiiiiiiiiinnene, 48
5.2 Captured code fragments from the teSt CaSes........ccuerrerreiriiriiiiiieeiie e 49
53 Captured compiler bugs using code mutation...........cceeeereeiieenieeeneenneennn 51
Discussion ANd CONCIUSIONeiviiiiiiiiie ettt 52
6.1 FULUIE WOTKS ... 55
RETETEINCES ...t nne e 56

Vi

LIST OF FIGURES

Figure 1.1 Architecture of Ballerina 1anguage............ccceoviiiiiiiiiiciicicceecee, 2
Figure 1.2 Ballerina compiler pPhases..........cccoiiiiiiiiiiiiiniiieeiie e 2
Figure 1.3 Architecture of fUZZETcooovviiiiiiiiiic 3
Figure 2.1 Architecture of Langfuzzer........ccccocoveiiiiiiiiiiiie e 15
Figure 3.1 Example of .balt fileccoiiiiiiiii 33
Figure 3.2 Architecture of data provider..........cccviiiiiiiiiiiiieie e 33
Figure 3.3 Example for production rule of Ballerina.............ccccooviiiiiiiiiiiinicee, 34
Figure 3.4 Architecture of the fUZZerccce v 34
Figure 3.5 Mutation Of tESTCASESc.vviviiiieiiiiiiiieii s 36
Figure 3.6 Architecture of the proposed method..........ccccovviiiiiiiiiiii 36
Figure 4.1 Syntax tree of original program...........cccccovveiiiiiniiiieicieeseee e 41
Figure 4.2 Syntax tree of generated program............cccoceeviiiiiiniiiiiicie e 45
Figure 5.1 Literal.balt filecccoiiiiiiiiiii e 46
Figure 5.2 Literal 1.bal fileccooiiiiiiiiii e 46
Figure 5.3 Literal 2.bal fileccooviiiiiiiii e 47
Figure 6.1 Defects found with tOKEN SI1Zeccoviiiiiiiiiiiiieie e 50
Figure 6.2 Bugs identified with code SeZmentsccccveviriiiiiiiiienec e 51
Figure 6.3 Number of bugs identified with number of tokens..............cccocovrriiniennn, 52

vii

LIST OF TABLES

Table 2.1 Overview of approaches constructing test programs

Table 3.1 Details of generated code fragments............ccevvuvenns
Table 5.1 Code fragmentsccccovvivirieniniiiiiei e

viii

LIST OF ABBREVIATIONS

EMI — Equivalent Module Input

JVM — Java Virtual Machine

et al — And Others

GCC — GNU Compiler Collection
LLVM - Low Level Virtual Machine
OpenJDK — Open Java Development Kit

X

LIST OF APPENDICES

Appendix Description Page

Appendix - A Results 59

