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ABSTRACT 

 
Pipelines are a highly discussed topic in today’s technological world. There are differ- 

ent variations of pipelines; Data Science pipelines, DevOps pipelines, and DevSecOps 

pipelines, etc. A data science pipeline usually comes with a fixed architecture, which 

can be problematic in a fast-growing tech industry.Traditional data science pipelines 

may struggle to handle the volume, velocity, and variety of data at the edge, necessi- 

tating more dynamic and adaptable approaches. Many advancements are happening to 

bring the technology to the edge due to substantial data points generated in the sensor 

networks at the edge; from factory floors to log streams. 

So, in this thesis we first discuss the existing literature in the data pipeline domain 

under three main topics; data pipeline challenges, data pipeline architectures, and data 

pipeline security. Then we propose a methodology for dynamically re-configurable 

data pipeline architecture in the edge network. This way we expect to achieve more ef- 

ficiency, controllability, and scalability of the data across networks.The emerging field of 

edge architecture presents opportunities for innovative approaches to data pipelines, 

enabling organizations to harness the full potential of edge data for advanced analytics, 

machine learning, and real-time decision-making.Further, we propose a prototype with 

Raspberry Pi-based programs to discuss the effectiveness of this novel method. Using this 

proposed architecture we have evaluated the results and later discussed how this benefits 

the current and future data pipeline implementation. We hope this contributes to the 

emerging edge architecture subject area. 
 

 
Keywords: data science, pipeline, architecture, edge 
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