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ABSTRACT

In the modern world, most of the enterprises willing to leverage the use of machine
learning models in their applications. Due to the high demand usage of the machine
learning models in production, need to bring the machine learning models from re-
search to production with minimal time duration, MLOps emerge an unavoidable prac-
tice. Big scope of the MLOps opens many doors for research. MLOps is one of the
emerging topic among researchers. There are many people involved in the entire ma-
chine learning life cycle with various roles. Similar to DevOps, MLOps is also a cul-
ture that should be practiced by all the parties with different roles who involved in the
entire process to get a better outcome. MLOps adopts many practices from DevOps
and it has some own set of practices as well. Even though there are are many tools
and technologies developed to build MLOps pipeline, there are still rooms for further
studies to improve the performance of the MLOps pipelines.

There are many phases in the entire machine learning process such as data han-
dling, model training, model evaluation, hyperparameter tuning, model deployment,
model versioning, and model monitoring etc. For a successful performance of an
MLOps pipeline, all of these phases should be automated as much as possible. Perfor-
mance improvements in the MLOps pipeline can be achieved in terms of easiness of
usage, time and cost.

In this study we have taken a simple machine learning problem called "Stock
price prediction for Google stock prices using LSTM". We have analysed many tools
that can be used in MLOps pipeline. Finally we have implemented an end-to-end
MLOps pipeline with open source tools and technologies for the selected machine
learning problem. Our final solution is implemented using DVC, MLflow, Evidently
and GitHub Actions.

We compared our final solution along with other solutions available in the market
and analysed the pros and cons. Our solution is very flexible to use. It has no vendor
locking. If any modifications or extensions of tools needed, it can be plugged easily
into the proposed architecture. We have automated almost all the phases in the MLOps
pipeline. It reduce the time taken to bring the machine learning models from research
to production. Since we have used free and open source tools mostly, it is very cost ef-
fective. We have found that our final solution improves the performance of the MLOps
pipeline in terms of easiness of usage, time and cost.

Keywords: MLOps, Machine Learning, Pipeline, DevOps, Data Version Control, Continuous

Integration(CI), Continuous Deployment(CD), Continuous Training (CT), Workflow
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