UNIVERSITY OF MORATUMA, SRI LANKA MORASUWA DME 04/76

THE IMPACT OF CLIMATE CHANGE ON WIND ENERGY GENERATION OF "THAMBAPAWANI" WIND POWER PLANT

Senarathna T.M.G.S

(178261D)

Thesis submitted in partial fulfillment of the requirements for the

degree Master of Engineering in Mechanical Engineering

620.9643

Department of Mechanical Engineering

745252

CD ROM

University of Moratuwa

Sri Lanka

May 2023

TH 5252

Declaration

I'm declaring that this thesis consists of solely my own work and not copied or inherited by any other publications inside or outside of the country. The details of the data or information gathered from external sources are mentioned in the references.

I hereby grant my permission to the University of Moratuwa to distribute and reproduce the content in the thesis as part or complete in any media. I will retain the right to use the contents in the thesis as complete or part of my future works.

Sign **UOM Verified Signature** ate: 25/05/2023

T.M.G.S. Senarathna

The above candidate has carried out research for the Masters Thesis under my supervision

 UOM Verified Signature
 Date: 25/05/2023

 Signature:
 Date: 25/05/2023

 Prof. Mahinsasa Narayana
 Professor

 Department of Chemical and Process Engineering
 Faculty of Engineering

University of Moratuwa

Sri Lanka

Abstract

The Sri Lankan northwestern coast has been identified as having significant wind power potential. Higher electricity generation from wind has been influenced by favorable terrain and geographic location. The government of Sri Lanka is currently encouraging the creation of wind power throughout the nation. The goal of this research is to determine how climate change would affect wind power generation in the Thambapawani wind power facility. Climate change affects wind resource variations. The Coordinated Regional Climate Downscaling Experiment and General Circulation Models (GCM) model can predict wind speed variation trends in the region due to climate change. In this study, wind data were collected in Mannar and predicted wind data based on Cordex and GCM forecasting baseline. The generalized wind climates in the future years for the region were developed considering ground roughness, topography, and elevation details in the area and assumed to remain these conditions unchanged in the predicted period of the study. Commercial wind turbines erected were microsited by applying a generalized wind atlas to specific wind turbine areas with the influence of ground roughness and topology in order to assess the cost to be utilized of wind electricity production in Mannar. By taking into account the features of wind turbines and the anticipated wind capacity of the areas. WAsP was utilized to forecast the production of wind power. Reso, a Danish company, created the software application WAsP to assess the wind energy production of wind farms for micro-sitting. For a specific wind farm architecture, the wake effect is computed in the micro-sitting. This study assesses the utilization of wind electricity production and the impact of climate change on wind yield in Mannar for the next 22 years. taking into account the economically feasible cost of wind electricity production.

Keywords— wind potential: cost of wind electricity production: climate change: Commercial wind Turbines: Cordex; General Circulation Models (GCM)

Acknowledgement

I would like to express my deepest sincere thanks to Prof. Mahinsasa Narayana, professor of the Department of Chemical Engineering. University of Moratuwa for extending me his fullest support for completing this research as the supervisor of the research without whom this project would have been a distant reality. My thank should spread to Dr. Indrajith Nissanka Senior Lecturer, University of Moratuwa for his kind assistance in completing this research. Also, I must give my sincere thanks to Ms. Heidi and her team in WAsP DTU for her prompt response and permit me to work with their very expensive software WAsP 12 for free.

Furthermore, Mr.W.Wickramarathna Deputy General Manager, Ceylon Electricity Board, and Mr.Ramya Gunarathna Deputy General Manager, Ceylon Electricity Board, Ceylon Electricity Board helped me in many ways to complete this research.

Last but not least I would like to say a special word of thanks to my family members, my wife and my daughter, and my parents who gave me strength and bore the inconvenience caused during my research, and allowed me to complete the research in time.

Table of contents

1	Introduction		
	1.1	Background	11
	1.2	Problem formulation	11
	1.3	Aims and Objectives	12
	1.4	Methodology	12
2	Litera	13	
	2.1	Climate change and global circulation	16
	2.2	Climate change impact on wind energy	16
	2.3	Wind Characteristics	25
	2.3.	25	
	2.3.	2 Wind speed variability	26
	2.3.	3 Wind shear	26
	2.3.4 Surface roughness		27
	2.3.5 Turbulence		28
	2.3.6 Wind direction		29
	2.3.7 Air density		29
	2.3.8 Wind rose diagram		30
	2.4	Wind resources in the world	31
	2.5	Wind resources in Sri Lanka	32
	2.6	Climate zones of Sri Lanka	34
	2.7	Identifying the research gap	36
3	Data collection and analysis		37
	3.1	Micro siting of Thambapavani wind farm	37
	3.2	Vestas 3MW series wind turbines	38
	3.3	WAsP Model	40
	3.3.1 The wind atlas methodology		43
	3.3	3.1.1 Obstacle model	44
	3.3.1.2 Roughness model		45
	3.3.1.3 Orographic flow model		46

	3.4 Coordinated Regional Downscaling Experiment (Cordex)		47		
	3.5 Wind energy forecasting for the next 20 years		49		
	3.6 Wind direction forecast in Thambapavani Power Plant		50		
	3.7 Wind energy forecasting for the next 20 years in Thambapavani Power		ition		
			51		
	3.8	Generating of generalized wind climate file	53		
	3.9	Calculating each wind turbine energy generation from 2020 to 2023	55		
4 Results and Discussion		and Discussion	56		
	4.1	Cost of wind energy generation	56		
	4.2	Wind energy cost comparison	60		
5	5 Conclusion		65		
	5.1	Key findings	65		
	5.2	Limitations	67		
	5.3	Future works	67		
Refere	ence		69		
Appendix A Turbines geographical locations in Mannar island according to the environmental assessment report 72					
Appendix B Vestas 126, 3.45 MW Series Wind Turbine Brochure73					
Appen	dix C W	AsP generated wind farm summary results report from the year 2021 to 20)43		

List of Figures

Figure 2.1 Sri Lanka monthly normalized wind speeds	13
Figure 2.2 A view of Thambapavani Power Plant in Mannar	14
Figure 2.3 Sri Lanka wind resources map	15
Figure 2.4 Hypothetical pathways (Left) and economic growth patterns (Right).	18
Figure 2.5 Annual carbon dioxide (CO2) emissions worldwide from 1940 to 2021	18
Figure 2.6 Temperature change from 1990 and predicted temperatures for	
the year 2100.	19
Figure 2.7 Global average surface temperature	19
Figure 2.8 January December 2020 blended land and sea surface temperature anomalies	20
Figure 2.9 January December 2020 blended land and sea surface temperature percentiles	21
Figure 2.10 Percentage of global climate models	22
Figure 2.11 CGCM maximum and mean annual wind speeds over the past 30 years	23
Figure 2.12: CGCM maximum and mean annual wind speed over the future 30 years	23
Figure 2.13: Percentage change in mean and maximum annual wind speed	23
Figure 2.14: Average wind speed in the Northern part of Sri Lanka	26
Figure 2.15 Exponential wind velocity profile	27
Figure 2.16 Percent gradient wind, surface roughness α , and boundary layer height	28
Figure 2.17 Temperature vs Change in density of air	30
Figure 2.18 Temperature vs Relative humidity in air	30
Figure 2.19 Wind rose diagram at Mannar Island	31
Figure 2.20 Wind power generation in the Net Zero Scenario, 2010-2030	32
Figure 2.21 Iron smelting furnaces dating back to the third century B.C	33
Figure 2.22 Cumulative Capacity Addition of Wind in Sri Lanka 2019	33
Figure 2.23: The climate zones in Sri Lanka	35
Figure 3.1 Layout map of the "Thambapavani" wind power plant in Mannar	37
Figure 3.2 Annual Energy Production of Vestas V126 3.45 MW wind turbine	39
Figure 3.3 Power curve of the Vestas wind turbine	40

Figure 3.4 Example of Computational mesh for terrain CFD simulation	42
Figure 3.5 Example of CFD results of velocity contours	42
Figure 3.6 The Wind Atlas methodology	43
Figure 3.7 Satellite Image of Mannar Island	44
Figure 3.8 Survey Map of Mannar District	45
Figure 3.9 Mannar district topological map	46
Figure 3.10 A view of bare land on the seashore of Mannar	46
Figure 3.11 South Asia Domain of Cordex	48
Figure 3.12 Parameters for RCM using other system coordinates	48
Figure 3.13 Predicted mean wind speed values at 10m elevation in Manner	51
Figure 3.14: Creating Terrain analysis (IBZ)	54
Figure 3.15: Creating Terrain analysis (IBZ)	54
Figure 3.16: Generating Observed wind climate files	55
Figure 3.17: Generating Observed wind climate files	55
Figure 4.1 Year and Annual Gross and Net Energy Production in "Thambapavani" wind	
The power plant in Mannar	57
Figure 4.2 Year and Annual Gross and Net Energy Production in "Thambapavani" wind	
power plant in Mannar (P50)	60
Figure 4.3 Year and Annual Levelized cost of energy (LCOE) (USD/ KWh) production in the "Thambapavani" wind power plant in Mannar	64
Figure 5.1 Wind speed variation prediction at 10m elevation in Mannar	66

LIBRASY SAL 18

List of Tables

Table 1 Ten Warmest years since 1880 to 2020	17
Table 2 Typical surface Roughness lengths	27
Table 3 Temperature vs change in density of air	29
Table 4 Description of climate zones of Sri Lanka	34
Table 5 General wind turbine specifications installed in Mannar	39
Table 6 Wind Turbine details in brief	40
Table 7 Year and Annual Gross and Net Energy Production	56
Table 8 Annual energy production by WAsP model in year 2022	57
Table 9 Year and Annual Gross and Net Energy production P50 uncertainty	59
Table 10 Year and Annual Levelized cost of energy (USD/KWh) (LCOE)	63

List of abbreviations

GHG	Green House Gases
CORDEX	Coordinated Regional Downscaling Experiment
RCP	Representative Concentration Pathway
CEB	Ceylon Electricity Board
WAsP	Wind Atlas Analysis and Application Program
CFD	Computational Fluid Dynamics
IBZ	Built-in linear flow model
ADB	Asian Development Bank
WCRP	World Climate Research Program
RCD	Regional Climate Downscaling
GCM	Global Climate Model
CCCR	Center for Climate Change Research
AEP	Annual Energy Production
LCOE	Levelized Cost of Energy
CGCM	Canadian Global Climate Models