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Abstract 
 

Persistent Data Library (PDL) manages object persistence. PDL provides a set of data 

structures which transparently handles persistence. Data structures in PDL are quite 

similar to data structures in Standard Template Library (STL) in C++.  

Such a framework is useful for a fault tolerant application. State based applications 

need to check point data periodically. In case of a failure, such applications need fast 

recovery of data. In developing such applications, each time a new state is introduced 

to the system, the programmer needs to write code to serialize and de-serialize data. 

PDL framework helps the programmer to write less code on serialization and de-

serialization. Due to the direct memory dumping technology PDL uses, the time taken 

to write data to the disk and recover data from the storage are minimized. 

The data structures are stored in files in a format that is structurally equivalent to the 

format of the objects on a volatile medium, such as the memory of a computer. 

Objects are stored according to data relationship with other objects. Object references 

are converted to offset references before they are stored. The objects are stored as a 

stream of objects and offset references. Offset references are converted to actual 

memory addresses when objects are retrieved into the volatile medium. 

 A performance evaluation was carried out between PDL and STL in order to 

compare performance. Research results shows that there is a significant performance 

improvement in persisting data inside PDL data structures and loading data into PDL 

data structures. 
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