

PERSISTENT DATA LIBRARY

MSC IN COMPUTER SCIENCE

UNIVERSITY OF MORATUWA
SRI LANKA

JANUARY/2008

AMILA JAYASEKARA

Persistent Data Library

This dissertation was submitted to the
Department of Computer Science and Engineering

Of the
University of Moratuwa

In partial fulfillment of the requirements of the
Degree of MSc in Computer Science

Department of Computer Science and Engineering
University of Moratuwa

Sri Lanka

January/2008

Amila Jayasekara

 ii

Persistent Data Library

This dissertation was submitted to the
Department of Computer Science and Engineering

Of the
University of Moratuwa

In partial fulfillment of the requirements of the
Degree of MSc in Computer Science

Department of Computer Science and Engineering
University of Moratuwa

Sri Lanka

January/2008

Amila Jayasekara

 i

Abstract

Persistent Data Library (PDL) manages object persistence. PDL provides a set of data

structures which transparently handles persistence. Data structures in PDL are quite

similar to data structures in Standard Template Library (STL) in C++.

Such a framework is useful for a fault tolerant application. State based applications

need to check point data periodically. In case of a failure, such applications need fast

recovery of data. In developing such applications, each time a new state is introduced

to the system, the programmer needs to write code to serialize and de-serialize data.

PDL framework helps the programmer to write less code on serialization and de-

serialization. Due to the direct memory dumping technology PDL uses, the time taken

to write data to the disk and recover data from the storage are minimized.

The data structures are stored in files in a format that is structurally equivalent to the

format of the objects on a volatile medium, such as the memory of a computer.

Objects are stored according to data relationship with other objects. Object references

are converted to offset references before they are stored. The objects are stored as a

stream of objects and offset references. Offset references are converted to actual

memory addresses when objects are retrieved into the volatile medium.

 A performance evaluation was carried out between PDL and STL in order to

compare performance. Research results shows that there is a significant performance

improvement in persisting data inside PDL data structures and loading data into PDL

data structures.

 ii

Acknowledgements

I would like to take this opportunity to show appreciation to every person who

gave valuable support in completing this research project.

First I am very thankful to my supervisor Dr. Sanath Jayasena for his excellent

supervision and guidance. Dr. Jayasena provided valuable advice and guided me on to

the correct direction when required and aided me with lot of guidance and had patients

to be with me through out till the successful completion. Also as the MSC project

coordinator Dr Jayasena always made sure that I had sufficient resources to carry out

my research.

I am grateful to Mr. Tharindu Dissanyake for providing guidelines for finding a good

research project. Mr. Dissanayake provided valuable advice and information when

ever essential.

My sincere thanks go to Ms. Eroma Abeysinghe for her support in correcting language

used in my thesis.

 iii

Table of Contents

1 Introduction __ 1
1.1 Background ___ 1
1.2 The Problem ___ 2
1.3 Research Objectives __ 4
1.4 Expected Outcomes ___ 5

2 Literature Review ___ 6
2.1 Hibernate [2] __ 6
2.2 General Persistence [4] __ 9
2.3A Method for Providing Persistence to Objects in C++ [1] __________________ 10
2.4 PTL [15] ___ 13
2.5 POST++ [5] __ 15

3 Materials and Methods __ 18
3.1 Big Picture ___ 18
3.2 Object Orientation ___ 18
3.3 Managing Memory __ 20
3.4 Memory Layout Inside One Block ______________________________________ 23

3.4.1 Memory Management with Bitmaps __ 23
3.4.2 Memory Management with Linked Lists _______________________________________ 24

3.5 Memory Management across Memory Blocks ____________________________ 26
3.6 Memory Fragmentation Issue ___ 27
3.7 Memory Arrangement Inside one Block _________________________________ 29
3.8 Metadata ___ 32
3.9 Composing and Decomposing Memory __________________________________ 32
3.10 Making Data Persistent __ 33
3.11 Loading Persistent Data ___ 36
3.12 The API ___ 38

3.12.1 The API for Creating Objects Using PDL _____________________________________ 38
3.12.2 API for Using PDL Data Containers ___ 40
3.12.3 Reference Primitive Data Type Support ______________________________________ 42
3.12.4 STL (Standard Template Library) vs. PDL ____________________________________ 43

4 Evaluation and Results __ 45
4.1 Unit Testing __ 45
4.2 Performance Testing ___ 45

4.2.1 Experimental Setup ___ 45
4.2.2 Setup for Goal 1 __ 46
4.2.3 Setup for Goal 2 __ 50

4.3 Other Results ___ 57
5 Conclusion and Future Improvements _________________________________ 59

 iv

6. References ___ 61

 v

List of Figures

Figure 1-1 Operations in a typical fault tolerant environment 2

Figure 1-2 Serialized data stream for an object of class ‘X’ .. 4

Figure 2-1 Hibernate Architecture ... 7

Figure 2-2 Process of creating a persistent object ... 12

Figure 3-1 High level PDL architecture... 18

Figure 3-2 PDL managed memory layout ... 22

Figure 3-3 : Memory division of 32MB Heap (Division are in 32 bytes) 23

Figure 3-4 : 1MB Free bitmap structure .. 23

Figure 3-5 Memory with holes and processes ... 24

Figure 3-6 Memory management with Linked lists ... 24

Figure 3-7 Fragmented memory layout ... 27

Figure 3-8 Fragmented memory with unused blocks .. 29

Figure 3-9 List view before and after allocating ”X” amount of memory 30

Figure 3-10 After de-allocating Y amount of memory .. 30

Figure 3-11 Merging free memory nodes .. 31

Figure 3-12 Node re arranging and merging used memory nodes............................... 31

Figure 3-13 Amalgamating all nodes ... 31

Figure 3-11 How memory is stored in the disk.. 34

Figure 3-12 Converting to relative addresses, with multiple blocks 35

Figure 3-13 Converting to actual addresses with multiple blocks 37

Figure 4-1 Performance testing boundary, for setup 1 .. 46

Figure 4-2 Performance comparison of data insertion to list 47

Figure 4-3 Performance comparison of data deletion from the list 48

Figure 4-4 Performance Comparison of Data insertion to Map 49

Figure 4-5 Performance comparison of data deletion from the map 50

Figure 4-6 Performance testing boundary, for setup 2 .. 51

Figure 4-7 How data is stored during performance test (for STL list) 51

Figure 4-8 How data is stored during performance test (for STL Map) 52

Figure 4-9 Performance comparison of data persistence of a list 52

Figure 4-10 Performance comparison of data loading from a list 53

Figure 4-11 Performance comparison of data persistence of a map 54

Figure 4-12 Performance comparison of data loading in a map 55

 vi

Figure 4-13 Persistence time change against block size for PDL 56

Figure 4-14 Loading time change against block size... 56

 vii

List of Acronyms

API Application Programming Interface

CPU Central Processing Unit

J2EE Java 2 Enterprise Edition

ODMG Object Data Management Group

PDL Persistent Data Library

POJO Plain Old Java Object

PTL Persistent Template Library

RAM Random Access Memory

RPM Revolutions Per Minute

STL Standard Template Library

TCP Transmission Control Protocol

UDP User Datagram Protocol

