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Abstract 

 

Sri Lanka ports authority and many other organizations are increasingly interested in 

the use of Unmanned Surface Vehicles (USV) for harbor security and surveillance 

applications. USVs can be used to collect information, samples and perform 

experiments inside a harbor or outside by. Navigating through ships and other 

objects. 

 

This research study is focused on finding algorithms for obstacle avoidance (OA) of 

USVs. The initial paradigm that is used to establish the solution was the OA of 

Unmanned Ground Vehicles (UGV). The algorithms developed for UGV were 

implemented practically with the limitations of hardware. Then, effort is taken to 

apply those algorithms to the surface vehicles with some modifications.  

 

In this study, a novel OA algorithm is proposed for static obstacles based on the 

Morphin algorithm. This proposed algorithm and the previous algorithm which is 

developed based on ground vehicles are compared with the potential field method. 

 

Static OA without dynamic OA is not helpful for unmanned vehicles on sea. A lot of 

researches have been carried out to avoid dynamic objects, but have failed to find an 

optimum solution although comparatively good approaches have been presented. 

Intelligent techniques have been rarely applied for dynamic obstacle avoidance. In 

this research, the effectiveness of applying intelligent or mathematical techniques for 

path prediction of dynamic obstacles is discussed with simulations to pick the best 

for a given situation. Then a noval projected dynamic obstacle area method is 

presented to avoid dynamic obstacles effectively. Comparative results are presented 

at the end to prove the strength "of the noval dynamic obstacle area method. 
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1.1 Applications of Unmanned Surface Vehicles (USV) 

Chapter 1 

Introduction 

USV can be integrated for remotely controlled combat system ideally suited to meet 

force protection requirements in all maritime settings. By providing long range stand­

off surveillance, identification and engagement capability, USV can be quickly 

deployed to defend high value assets including naval vessels, port operations, oil rigs 

and coastal power plants. 

Protector is a name of an USV developed by Israel's Rafael Armament Development 

Authority in response to emerging terrorist threats against maritime assets [27]. That 

USV is stealthy, highly autonomous and can operate with general guidance from a 

commander in port, harbor and coastal waterways in a variety of roles, thanks to the 

plug-and-play design of its various mission modules, such as force protection, anti­

terror, surveillance and reconnaissance, mine warfare and electronic warfare. 

With integrated navigational sensors including GPS, navigation radar and video 

cameras, the USV can conduct harbor surveillance even in busy waterways. Highly 

autonomous and remotely controlled, USV can successfully monitor waterways with 

general guidance from a commander and operator at sea or from shore - no matter 

how hazardous the condition [38]. The USV having an on-mount camera allowing for 

day and night operation and has a forward-looking infrared laser range finder 

capability to detect and track targets in the near vicinity. The Boat Control unit's 

navigation sensors are used to obtain location, speed, heading and course data. 

1.2 Obstacle Avoidance of Unmanned Ground Vehicles 

An intelligent vehicular system which is a subtopic that comes under "Intelligent 

autonomous systems" is an important research topic today, due to its importance in the 

field of "Autonomous surface vehicles and intelligent transportation systems". These 
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systems can be classified according to the technology based on them and their method 

of implementation. This lies from basic vehicular management systems such as traffic 

lighting systems, container management systems and simple navigation systems to 

more advanced systems such as the systems getting feedback from the other 

compatible external systems, and external sources such as live feedback, whether 

information and so on. Predictive techniques have been developed to implement better 

inference systems.These methods allow some advanced modeling and comparison 

with historical baseline data and real-time data hence to provide an intelligent 

inference system which can deduct the best option at a time to control the system [31]. 

Collision avoidance techniques should be implemented within the platform or within 

an external system and a proper communication scheme should be maintained in order 

to prevent any life or material hazards, for these intelligent vehicular systems. In most 

of the times these inter platform communication scheme for short ranges (less than 

400 meters) is accomplished by using IEEE 802.11 protocols or the Dedicated Short 

Range Communications standard being promoted by the Intelligent Transportation 

Society of America and the United States Department of Transportation [31]. In the 

case of long range communication schemes, this is accomplished by using 

infrastructure networks such as WiMAX (IEEE 802.16) or Global System for Mobile 

Communications (GSM). 

Obstacle avoiding algorithms play major role in the overall process of navigation. 

Waypoint navigation without obstacle avoidance is given only limited capabilities 

to the USVs in a real-world mission. In order to provide more functionality and 

reduce the reliance on operator oversight, a robust obstacle avoidance capability must 

be added. More advanced behaviors can be added, such as autonomous recovery in the 

case of lost communications, target tracking and interception, etc., after adding a 

obstacle avoidance controller with algorithms. 

In this research, a typical intelligent vehicle prototype was implemented and tested 

under laboratory conditions for its mobility, controllability and communication 

capabilities between the vehicle and a personal computer. Then another identical 

prototype was implemented to test, the communication capabilities between the tvvo 

prototypes (inter vehicular communication capabilities) and communication between 
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the vehicles and a personal computer. A dead reckoning algorithm is used as the 

tracking algorithm for the vehicles. 

The novel interactive control paradigms in here have been testified as effective 

solutions for reliable collision avoidance of autonomous vehicular systems via 

computer simulations will be experimentally validated. The so-called interactive 

controller negotiates collision scenarios between two vehicular systems leading to 

cooperative maneuvers. The key -point is that in order to avoid a probable collision 

situation, both the vehicular systems interactively carry out maneuvers. The 

hierarchical differentiation of the participatory vehicular subsystems is done by using 

a mater-slave concept. In the experimental validation using the prototypes, the 

advanced collision avoidance algorithms are implemented in the personal computer 

due to the limitations of memory and computational speed in the prototype. RS 232 

serial communication standard is used for the wireless communication between three 

nodes (the computer and two prototypes) based on a suitable communication protocol 

that is developed specially for this scenario [32]. 

The developed prototypes were fully equipped with required hardware such as sensors 

and actuators. This has the motion control and position tracking abilities. The 

communication scheme was implemented via the RF broadcasting. The obstacle 

detection was done by ultrasonic sensors. Detection of the other prototype (as an 

obstacle, in collision conditions) was done by the relative distance, relative angle and 

relative velocity information, that are exchanged between vehicles via an inter­

vehicular communication scheme that was implemented. Micro controller board was 

programmed in order to act as the central information processing unit [8]. 

1.3 Appling Ground Vehicle Technologies for Surface V chicles 

Current unmanned vehicles adhere to different levels of autonomy as defined by 

existing technology limitations and used sensors. Important operational characteristics 

related to unmanned vehicle functionality (aerial, surface and ground), include 

perception, intelligence and action. Here, the acquiring and use knowledge about the 

environment and itself is called the perception [17]. This is done by taking 

measurements using various sensing devices and then extracting meaningful 
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information that should be used in all later tasks such as localization, planning, 

collision free motion control. The meaning of the Intelligence relevant to unmanned 

vehicles, is operating for a considerable time period without human intervention. This 

is associated with the learning and inference capabilities, which of the vehicle should 

be able to adapt to the environment. The action is the way that unmanned vehicle 

should travel from one point to another. The vehicle should utilize predefined and 

acquired knowledge to move in dynamic environments without involving humans in 

the navigation loop. So, the algorl.thms and technologies developed for unmanned 

ground vehicles can apply for the surface vehicles as well due to those similarities. 

1.4 Potential Field Method for Obstacle Avoidance 

During the past few years, potential field methods (PFM) for obstacle avoidance have 

gained increased popularity among researchers in the field of robots and mobile robots 

[34]. The idea of imaginary forces acting on a robot has been suggested by Khatib in 

1985 [18]. In these approaches obstacles exert repulsive forces onto the robot, while 

the target applies an attractive force to the robot [ 41]. The sum of all forces, the 

resultant force, determines the subsequent direction and speed of travel. One of the 

reasons for the popularity of this method is its simplicity. Simple PFMs can be 

implemented quickly and initially provide acceptable results without requiring many 

refinements. 

PFM cannot be applied for dynamic obstacles directly. An ongoing unpublished 

research work is there to apply potential field method for dynamic obstacle avoidance. 

The velocity dipole is used for that. The velocity dipole field is presented for real-time 

collision avoidance of mobile robots. The direction of motion of the obstacle is used 

as the axis of the dipole field, and the speed of the obstacle is used to proportionally 

strengthen the dipole field. The elliptical field lines of the dipole field are useful to 

skillfully guide the robot around obstacles, quite similar to the way humans avoid 

moving obstacles. That system seems to have the capability of a new real-time 

collision avoidance strategy and it will overcome the weaknesses in the conventional 

potential field method. 
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The Software developed by Lee Feng [20] for potential field applications was utilized 

in this research to compare the proposed methods with the potential field method . 

1.5 Morphin algorithm for path planning 

Morphin is an area-based algorithm and it analyzes obstacles in the area which can 

disturb its navigation. It projects all the possible paths to the front initially. To select 

from among multiple paths, path evaluations are assigned to all possible candidate 

paths according to how effectively each path would drive the rover toward its goal 

point. The path that would lead directly toward the goal with less obstacles is given 

the highest evaluation; other paths are assigned lesser values according a predefine 

function [21]. These evaluations are then combined with the user's preferences to 

determine the overall best command, which is then sent to the rover to be executed. 

The cycle time for this process is about 1-2 seconds, with the stereo computations 

taking up about 75% of the total time. 

This algorithm is novel but the approach has a long history of applications in real­

world systems (including the Mars Rovers) and has its lineage back to the Carnegie 

Mellon University Morphin algorithm and Distributed Architecture for Mobile 

Navigation (DAMN) [29]. 

In the practical applications, the problems which are mainly attributable to an 

abundance of noise, particularly in the stereo-produced obstacle maps and Global 

Position Systems (GPS) are jammed or the Inertial Navigation Unit (INU) drifts can 

create problems to the previous algorithms since they are heavily depend on Obstacle 

positions. So another approach had to be chosen to develop new algorithms to 

overcome above particulars for smooth and safe navigation of the USV. 

An applying ground vehicles algorithm for surface vehicles and PFM were done 

previously. So Morphin approach was chosen due to it's proven capabilities for 

ground robots like famous Mars Rovers and Lunar Rovers [21]. The algorithm is 

noveL but the approach has a long history of applications in real-world systems and 

has its lineage back to the DAMN of Carnegie Mellon University . 
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1.6 Defining safety distance for path planning 

Safety distances need to be defined for different obstacles considering their 

geometrical shapes. They might change around obstacles center of gravity. That was 

not considered in this study. Therefore circular safety distance is defined for the safety 

of the USV. The ways of defining safety distance is shown in Figure 1.1. 

Obstacle 

Safety 
Mprgi~ 
~~, 
I I 

I 
ofsta~l• 

I 

Figure 1.1 -Safety Distance for Obstacles 

Safety 
Margin 
:~ 

For an example the length of the USV named Protector used by IIsraeli Sea Corps is 9 

meters. 

1.7 Dynamic obstacle avoidance 

A lot of researches has been carrying out to avoid dynamic objects and unable to find 

a best solution for that although comparatively good approaches has been presented. 

Canny and Reif [ 13] showed that motion planning for a point in a plane with bounded 

velocity in the presence of moving obstacles is Non-deterministic Polynomial-time 

hard. Aggarwal and Fujimura [22] show that a more optimal solution can be found by 

adding a third dimension of time and plotting the location of the moving obstacles 

along that three-dimensional (3D) structure. Fujimura and Samet [15] provide yet 

another solution, but even they admit the solution is best with few moving obstacles. 
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A solution for dynamic obstacle avoidance is presented by Space and Naval Warfare 

Systems Center, San Diego for the requirement of robust USV operation in a real 

world environment, primarily focusing on autonomous navigation, obstacle 

avoidance, and path planning. Velocity Obstacle method (VOM) is one of the good 

methods for dynamic obstacle avoidance is utilized mainly for those developments. 

To avoid moving obstacles and maintain the desired path set by the user, the safe 

velocity ranges using the Velocity Obstacle method [25] have to be determined by the 

controller. This algorithm transforms a moving obstacle into a stationary one by 

considering the relative velocity and trajectory of the USV with respect to the 

obstacle. After producing a collision area called the Velocity Obstacle, defined using 

the relative velocity vector, the algorithm returns a set of USV velocity vectors which 

are guaranty the collision avoidance. This transformation and collision area detection 

reduces the complexity of the path plmming among moving obstacles with respect to 

time. This is used as a first pass to avoid moving obstacles. In the case that changing 

velocity the controller has to change the path by creating projected obstacle areas for 

each obstacle and determining a safe alternative route. 

1.8 Sensor considerations 

As with any unmanned vehicle attempting to navigate in a complex environment, 

good sensor data is critical, and getting good data is often the most difficult part of the 

project of developing a USV. The oceanic environment poses many challenges 

including waves, spray, and a disordered obstacle setting. There are some advantages 

to the marine environment including well charted operating areas, absence of negative 

obstacles (holes or cliffs), a mostly planar surface (except for the waves), no 

vegetation, etc. It's important that the sensors are selected to make the most of the 

environmental advantages and to provide the best data possible in the challenging 

territories. 

The sensors for the obstacle avoidance need to provide data about obstacles in the far­

field (e.g., >200-300 yards) and provide state information (position, course, and 

speed) for the moving obstacles. 
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High-resolution and at a much higher rate data is needed about the obstacles in close 

proximity to the USV (e.g., <200-300 yards). Some of these sensors are typically not 

found in the commercial marine industry but many have been used extensively in 

UGV programs. 

1.8.1 Radar Contacts 

Standard marine radar (Furuno) with a third-party PC controller can be used for 

USVs. The controller, developed by Xenex Innovations Ltd., provides a digital 

networked interface for the radar. The Xenex system provides an API to access the 

radar data and controls as well as an Advanced Radar Plotting Aid (ARPA) Software 

Development Kit, which provides algorithms to automatically acquire and track up to 

1 00 contacts [23]. 

One significant problem with the radar is that it tends to classify noise from the 

shoreline return as contacts which are often shown to be moving at a significant 

velocity and in the direction of the USV. These false contacts are obviously 

detrimental to the successful operation of the path planner. To mitigate this problem, 

the on-board nautical chart server can be used to calculated polygons that follow the 

shoreline and structures along the shoreline. The radar contacts are compared with 

these polygons and those that fall inside a polygon are rejected and deleted from the 

radar's list [28]. 

Laboratory (JPL) for a number of years to transition technology to its UGV programs. 

That work is now being extended to the USV domain [14]. The stereo vision system 

provides high-resolution 3D data about the near-field environment, which can be 

converted into a 2D obstacle map and fused with data from the other sensors. 

Stereo vision is capable of providing very high quality 3D data but also has the 

disadvantage of requiring precise calibration every time the cameras are mounted. 

There is also the risk that the cameras may move relative to one another slightly which 

will affect the calibration and result in erroneous data. So the monocular vision vvith 

sophisticated algorithms can be utilized for that as well. 
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Chapter 2 

Obstacle Avoidance of Unmanned Ground Vehicles 

2.1 Sensor selection for prototypes 

The proposed vehicular prototype has ultra-sonic range sensors to detect collision 

conditions encountered by the prototype, a digital compass module to obtain the 

heading angle, optical shaft encoder modules to get the position of the prototype, RF 

transceiver module for communication, servo drivers, and a micro controller to 

process the information and to give the control signals to the actuators. A block 

diagram representation of the complete system is given in Figure 2.1. 

The main objective of the developed prototypes is to test, fine tune, and 

experimentally validate intelligent collision avoidance algorithms for ground vehicles. 

So, the features expected in the vehicular platforms should be identified at the initial 

stage of the project. Individual prototypes should include a suitable controller which is 

capable of implementing the collision avoidance computational intelligence 

algorithms. The motors selected need to be easy to control. Most importantly, the 

prototypes should be able to communicate each other. The heading angles of the 

vehicles are vital information in order to realize successful collision avoidance 

maneuvers. 
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Figure 2.1 - Basic Block Diagram of the System 

2.2 Development of prototypes 

2.2.1 Digital Controller Selection 

... :;·~~;(;.;. 
~-:~ f":: 
~:." ~ ·=~ 
~?~~7::~:: 

Digital controller is the heart of the system and should be carefully chosen. The 

controller should have a good memory capacity and a very high frequency. Most 

importantly, the programming of the controller should be straightforward. In this 

application, the onboard controller controls two motors, while executing the other 

instructions. 

The OOPic-R [3] was selected for the project. It provides 16 digital l/0 lines 

including power and ground connection. Its smaller size suits well for prototype 

development. 
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The speaker onboard OOPic-R is useful in the developmental stage. The speaker can 

be used to take required outputs and warning signals at the development stage. All the 

modules were tested separately before integrating. The speaker was deployed to check 

the output values of those modules successfully. 

ec network connector of OOPic-R can be used to network two or more OOPic-R s. 

Multiple power lines are provided to use different power consuming modules (Figure 

2.2). The jumpers onboard can be used to set the different power outputs. OOPic-R 

contains 3 onboard LEDs having different colors. They are internally com1ected to 

three different IO lines. Those LEDs are used in the development stage for debugging 

and monitoring. The RS232 serial port connector can be used to communicate with PC 

via MAX 232 chip. A separate three-pin connector provided direct and easy 

connection for the LCD displays. The green LED connected near the programming 

connector is lit brightly when power supply is good. It is a good indicator of supply 

battery level. Reset button on the board can be used to reset the controller when that 

becomes stuck. 

OOPic has an object-oriented operating system that has been pre-programmed into a 

Microchip PIC. It also provides an object-oriented language model design to interact 

with the electrical hardware components that are attached to the PIC. Hardware 

interface is designed using programming software by creating objects and setting their 

properties to define their behavior and interaction with the hardware. These objects 

can also be interconnected to form a virtual circuit and then utilize this hardware 

interface and its associated virtual circuits by writing a program that controls and 

responds to hardware events that occur. 
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Figure 2.2 - OOPic R Micro controller board 

2.2.2 Digital Compass Module Selection 

Path of the vehicle travels should be mapped to analyze the workability of the theories 

.There are two major options to map those paths. They are GPS mapping and 

employing a suitable dead reckoning algorithm. GPS module is needed for GPS 

mapping. But even differential error correcting GPS has an error around 5m [16]. But 

as each prototype developed is 30cm x 20cm in size, GPS mapping is not an option 

and a dead reckoning algorithm is adopted for path mapping. 

A digital compass and an optical encoder were used in the dead reckoning algorithm. 

The CMP 03 digital compass module by Devantech Ltd was selected for this study 

(Figure 2.3 ). Especially, together with the optical encoders, this compass is meant to 

be used for dead reckoning purposes. The CMP 03 digital compass uses the Philips 

KMZ51 magnetic field sensor, which detects the Earths magnetic field. The output 

from the two of them mounted at right angles to each other is used to find the heading 

angle. The compass readings can be obtained both from the ec channels as well as a 

PWM signal. The resolution of the compass is 0.1 degrees. 

The compass needs to be calibrated in the area it is being used. 
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Figure 2.3 -Digital compass module 

I2C object in the OOPic multi-language compiler was used to access the digital 

compass. ec node address was set to OxCO. Location 1 in the compass module was 

access to take heading angle value from 8 bit value. The value that came from the 

module was between 0 to 255. This was mapped to the 0-360 degree range. 

Compass---~ 

Figure 2.4 -The way of mounting the compass to the prototype 

The mounting position of the compass was very important due to its high magnetic 

field sensitivity. Because the DC servos used to power the wheels generate magnetic 

fields which may interfere with the digital compass, the digital compass was mounted 

as far as possible from the DC servo motors as shown in Figure 2.4. 

- 13 -



"" 

2.2.3 Digital Encoder and Encoder Wheel 

The optical encoder module has three chmmel incremental encoders with a code wheel 

is choosen as shown in Figure 2.5 [3]. The speed of the two wheels of the prototype is 

intended to be measured using this. Optical encoder outputs together with that of the 

digital compass can be used for dead reckoning in navigation purposes of the 

prototypes. 

·~V R=2.71o:O 

Q 
TO OUTPUT LOGIC 
!ONE. TTl lOAD 
PER OUTPUT) 

Figure 2.5 - Connection arrangement of the encoder 

Qencode encoder object was used to get data from the digital encoder. Position 

property of the Qencode object was utilized to take the encoder position. Channel A 

and Channel B were connected to IO lines on the OOPic and the numbers of the IO 

lines were set to the Qencode object properties. 

The encoder wheel and the Optical sensors should be mounted with care to have a 

good alignment as shown in Figure 2.6. 

Encoder Wheel 

Figure 2.6 - The way of mounting the encoder to the prototype 
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2.2.4 Servo Motors 

The HS-422 standard deluxe servomotors, by Hitec RCD Inc., are 3-pole ferrite type 

motor attached with an in-built potentiometer. Such a motor is shown in Figure 2.7. 

These motors are with the control system of pulse width 1500,LLS neutral type [11]. 

Figure 2. 7 - HS-422 Servo Motor 

The potentiometer \Vas removed from the servo and a gear wheel adjustment was done 

for continuous run. The practical speed of the prototype was quite below the required 

speed. So the controlling circuit of the servo was removed and power was directly 

given to the motor through a motor driver (L298N) chip. A supply voltage of 7V was 

given to the servo when maximum speed was required. 

2.2.5 Ultra-Sonic Range Sensors 

Sensing the obstacles around each vehicle prototype while moving, is important. The 

SRF235 ultrasonic range sensors are chosen for that. Those by Devantech Ltd., are for 

the purpose of detecting obstacles. The ultrasonic sensors are not meant to identify the 

other vehicle prototypes in close proximity .The adjacent prototypes are meant to be 

identified, by each other, with the RF communication between them or by adding a 

shield to prototype (minor adjustments). 
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The selection of this type of ultra-sonic sensor with a narrow beam pattern, as 

indicated in Figure 2.8, gives the opportunity to detect the obstacles, but not the floor 

as an obstacle, a false alarm. Mounting arrangements of these sensors were also 

considered with special concern. 

0 

2701 \ I l ~~ J l I f J90 

180 

Figure 2.8 - Beam pattern of the SRF235 'Pencil beam' ultrasonic sensor 

The ultra-sonic sensor is with a single transducer for both transmit and receive. 

Therefore, there is a blanking zone of 1 Ocm, so the effective range is 1 Ocm to 1.2m. 

Communication with the SRF235 ultrasonic rangefinder is via the I2C bus. Therefore, 

this is easily connected to the OOPic R+ with its capability of I2C. In order to connect 

these sensors to the OOPic R+, the address of the sensors have to be changed. Figure 

2.9 is the picture of SRF235. 

+5v-
SO,D.,--­
SCL 

No Connect/On 
Ground (Ov) 

Figure 2.9 - SRF235 Pencil beam ultrasonic sonar sensor 
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2.2.6 Inter Vehicular Communication scheme 

Inter vehicular communication was the most important part of the system. ER400 

radio modules, shown in Figure 2.1 0, were used for that. Few important features like 

several channels, low power consumption, very stable operating frequency and good 

bandwidth for data transmission, reliable communication and good data rates were 

expected from the RF module. Several Channels were needed to establish a good 
-

communication. The chosen modules can have 10 different channels, which meet our 

requirement. 

~ ,~//'_]·~ 

'~ 

r 
/'J 
// 
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Figure 2.10- LPRS ER400 Radio Modules 

The programming software, which can download from the web, was used to grve 

commands to the module as shown in Figure 2.11 [ 4]. 
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Figure 2.11 - Evaluation Software 
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That software was used to change the baud rate, power level and channels of the 

modules. The baud rate was set to 9600.The channels of RF modules were set 

according to the requirements and to avoid jamming as shown in Figure 2.12. 

~ ~annel3 

ChannelS~ 

~ 

.,.. ... __ Channel 9 

---~ Chann~--· : ll 
lnl l===r~ ~'-'fr:=_ 8 

\ (l) 
'--./ 

Figure 2.12 - Communication Channel Dedication 

2.2.7 ER400RS Receiver 

The Block diagram of the receiver module is given in Figure 2.13. Pin numbers 6 was 

used to give commands to micro processor to change the internal settings of the 

module. A programming software was used to give commands to the module [ 4]. 
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Figure 2.13-Receivcr 

It was quite easy to work with these modules, because feedback characters were 

received after every command. Thus, the verification of the changes was 

straightforward. 

2.2.8 ER400TX Transmitter 

These transmitter modules do not provide any feedback to the programming software. 

Only the serial data transmission line was provided as seen in Figure 2.14. So it was 

quite difficult to change and verify the settings of the transmitter modules. Two 

software windows were employed to change the settings of those transmitter modules. 

One window connected to com 1 serial port was used to send serial data while the 

other window connected to com2 serial port was used to receive data from the receiver 

module. The RF Channel setting commarnds are presented in Table 2.1. 

Initially, 19200bps baud rate was used to give command to the module. That baud rate 

can be change by sending baud rate setting command. An unambiguous baud rate has 

to be used when dealing with transmitter modules. The baud rate differences were 

caused data corruptions. 

; j , 1 t1 ... I 
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Figure 2.14 - Transmitter 

Table 2.1- RF Channel setting commands 

Channel 
Command Frequency 

number 

ER CMD#CO 0 433.23 MHz 

ER CMD#C1 1 433.30 MHz 

ER CMD#C2 2 433.45 MHz 

ER CMD#C3 "\ 433.55 MHz .) 

ER CMD#C4 4 433.68 MHz 

ER CMD#C5 5 433.83 MHz 

ER CMD#C6 6 433.88 MHz 

ER CMD#C7 7 434.00 MHz 

i ER_CMD#C8 8 434.15 MHz 

I ER_CMD#C9 9 434.35 MHz 

2.2.9 Serial Interface Circuit Design 

RS232 serial work with 0 to 15V logic levels while RF modules work with 0 to 5V. 

The MAX232 chip was used to do the level conversion. The circuit diagram of the 

serial interface circuit is given in Figure 2.15. 
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A two-way switch was employed in the circuit to change data transmission mode to 

setting changing mode. Because the data transmission line from the serial port had to 

connect to serial data transmission pin via chip when data transmission was need and 

it had to be connected via chip to serial data input of the receiving module when the 

settings change was needed. 

The 7805 regulator was used to give power to the RF transmitter and receiver 

modules. The RF modules were mounted to the board as shown in Figure 2.16. The 

regulator module was used to achieve a smooth power supply to the transceiver, hence 

minimized the error signals that can be caused by varying input power. 

1N4148 

PCAT 

Figure 2.15 - Serial Interface Circuit 

DCD 
DSR 
RXD 
RTS 
TXD 
CTS 
DTR 
Rl 
GND 
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Receiver 

Transmitter 

Figure 2.16- The way of mounting Transceiver module 

2.2.10 Integrating Sensors to the Controller 

Integrating sensors to the controller was done using the I2C bus. Different 

hexadecimal addresses were assigned to different components to access through the 

I2C bus. Five modules were connected to the I2C bus. Power for those modules was 

given directly from the 5V regulator. Side elevation and plan of the proposed 

prototype is presents in Figures 2.17 and 2.18. OOPic Basic Program for Vehicular 

Prototypes is given in appendix A. 
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Figure 2.17 - Proposed Prototype (Plan) 
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Figure 2.18 -The proposed prototype (Side elevation) 
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The actual implementation of the prototype can be present as follows (figure 2.19). 

Figure 2.19- Developed vehicle 

2.2.11 Interfacing Software for Prototypes 

Interfacing software was developed to give control signals to the vehicle. Visual Basic 

6 was used to develop the software interface for the prototype. GMS ActiveX 

controllers vvere used as joysticks and digital compass .. It has the ability to view the 

current position of the prototypes in its sketch pad, the current heading angle of each 

prototype, current coordinates of each prototype in sketch pad, communicate with 

each prototype, give control signals to prototypes via the established RF link through 

the serial port, and draw the path followed by each prototype in the sketch pad. 
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2.3 Experimenting with prototypes 

Two identical prototypes were developed to carryout the testing process of obstacle 

avoidance and inter vehicular collision avoidance. 

2.3.1 Position Tracking Algorithm 

As GPS is not an option because af the small distances involved in the experiments 

with scaled down prototypes, the following dead reckoning algorithm is adopted for 

position tracking. The speed of the prototype was calculated within the program by 

using the input values of two encoders and averaging its value similarly as m 

equations 2.1 and 2.2. The x(k) and y(k) positions calculated as below. 

x( k) = x( k - 1) + x x sin( B) x ( llt) 

y( k) = y( k -l) + x x cos( 0) x ( !lt) 

----------------------- (2.1) 

----------------------- (2.2) 

Where, B is the heading angle of the prototype. 

Figure 2.20 elaborates this further. 

----.,---------
; 
; 

' 
' ' 
' 

Path of the 
vehicle 

Figure 2.20 - Position Tracking with Compass 

x (m) 

- 25-



Figure 2.21 shows the program that is executed in OOPic, which used to maneuver the 

Yehicle with the compass. The program begins with initialization of the objects that 

are used to represent the vehicle. Basically, the sensors and the objects are needed for 

communication purposes. After that, inputs from the sensory devices are fed to the 

execution through the input-output lines that are already set. Position manipulation 

takes place after the inputs are analyzed to minimize the errors that can occur due to 

wrong input values. Then, the program transmits the calculated current position of the 

vehicle to the other vehicle, or to the computer via the RF link . 

2.3.2 Peripheral Obstacle Avoidance 

This obstacle avoidance algorithm is for stationary obstacles such as walls and other 

barriers. This mode activates when the distance to the obstacle is less than 15 em [32]. 

The algorithm used in this study can be presented as follows. 

If Obstacle on Left and distance decreasing, then Turn Right for 3 [ s] 

If Obstacle on Right and distance decreasing, then Turn Left for 3 [ s] 

If Obstacle on Front & Left and distance decreasing, then Turn Right for 3 [s] 

If Obstacle on Front & Right and distance decreasing, then Turn Left for 3 [ s] 

If Obstacle on Front then Stop, Reverse for 2 [ s ], Stop and Turn Right for 3 [ s] 

If Obstacle on Back then Stop (if Reversing) and Turn Right for 3 [ s] 

2.3.3 Collision A voidance 

This algorithm applies when the relative distance of the vehicles is less than or equal 

to 30 em. This requires advance inference techniques, that processed by fuzzy based 

inference engine.If a prototype in Collision situation then Stop and take a "right turn" 

for 3 [ s]. If still in collision situation Stop and take a "left turn" for 3 [ s] Else 

"reverse" the platform for 3 [ s] . 

2.3.4 Position Tracking without the Digital Compass 

The compass module plays a vital role in the position tracking algorithm. But some 

errors may occur due to the magnetic fields generated by servo motors. This can often 

be the case in experimenting with the physically scaled down prototypes as keeping an 
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adequate distance between the motors and the digital compass is not practical. Here, 

we present a method to calculate the heading angles to be used when the compass 

readings are not reliable [36]. 

Figure 2.22 shows a typical path that the vehicle follows and the footprint of its tires. 

The change of angle from the previous position can be approximated using the wheel 

movements and simple geometry as elaborates in equation 2.3 and 2.4. 
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Figure 2.21- Executed program in OOPic 

- 28-



8,= SJ 
r 

e
2 
= S2 

r 

, ... --
l . -
j r -

:t.. I "") 
T 't··, I 
/ I - •• I 

I . I ---- I :J i 
1 

-r~z-. 
I 1 ! T '- I I 

-! '. I I I 7'!~.·-l 1 • I " / •. ·-· ' ' , '• ·- ~ ' J I " , or--- I , ·-/' -.. ~ e ---~- , / ' 2 '4~·-
,/~· ''... / . ·--

/ . ' I 'S 
" / / ' '/ I • 

';;,.. // ', r /"'"' Jl / 

S 
?' / ' il' . ' )"'< ',,_ // •• ' 

I ' , ' ::/ 

12 

1 
I 

' ' 

I / ' ">f , 
I I ', ,// /. 

1 t 91~ .. / -' I 
f- -------L~1' / ... /, 2 

tv!otion Path 

' ;:--~:. 

I 
I ',# t 

!: ----- ·: . 
I ---
1 I 
' I I 
I. _ r : I 

---------- __ j_ 

of Volliclu 

I 
I 

• 

Figure 2.22 - Position Tracking without Compass 

-------------------------------------------------------------------(2.3) 

-------------------------------------------------------------------(2.4) 

Where Sis the traveling distance of the wheel. r is length between two wheels. 

Therefore, the total angle change within the course relative to the initial direction can 

be obtained by considering the above instantaneous angular changes. The OOPic reads 

the encoder readings every 2 seconds and executes the algorithm as illustrated in Fig 5 

where Encl and Enc2 represent the readings of encoder 1 and 2, respectively .. One 

limitation of this method is that floating points may occur during the execution 

requiring some offset actions to minimize the errors caused by this. 

If the difference between two encoder values is less than 20, previously calculated 8 

value was fonvarded to the next step assuming a straight motion of the prototype or 

the prototype is not moving. This program segment can be present in a flow layout as 

in figure 2.23. 
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2.3.5 Fuzzy Based Controlling 

The position information obtained via the methods explained previously is sent to the 

central PC that implements the fuzzy controller. Position information was processed 

and the fuzzy base controlling signals were given to both prototypes via RF link. The 

block diagram of components including fuzzy inference engine is given in figure 2.24. 

Enc=Enc1-Enc2 

e Up(bte 

Position 
Update 

Enc=Enc2-Enc 1 

Same El e Upd<1te 

Figure 2.23 - Position Tracking without Compass (block diagram) 

The encryption module therein acts as a converter of defuzzyfied output to the code 

that the communication module can understand. 

The fuzzy based controlling functions were developed by means of MatLab 

simulation software simulink. ANFIS tool box was employed for that. The input 

membership functions were defined initially. 
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Figure 2.24 - Fuzzy Based Controlling 

2.3.6 Collision Condition Function 

This as the name implies, to identify the vehicles are in collision states to trigger the 

collision avoidance scenario. The theory of relative velocity between two vehicles was 

employed for this process. The program virtually creates the inertial frame with 

respect to one vehicle and check whether the vehicles are in collision condition by the 

aid of the relative distance and velocity. By means of the path of a vehicle relative to 

the other, some collision situations can be defined. 

If the collisions between two vehicles occur in line, means that a direct collision, that 

state was defined as 'in line collision'. The other two states, named as 'in line oflikely 

collision' and 'not inline collision' following the same methodology that was 

previously stated. This is essential to quantify the inputs, which needs for fuzzification 

process. The range of valnes for the collision condition function was taken as -3 to 0, 

and decided the center of the Gaussian membership function as follows[24]. 

Table 2.2 - Centers of Gaussian Membership Functions 

Collision Situation Center of the Gaussian 

membership function 

In line collision -3 

In line of likely -1.5 

collision 

Not inline collision 0 
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2.3.7 Relative Distance Function 

This is the Euclidian distance between the vehicles, in an inertial frame of one vehicle. 

A virtual circle is drawn around the vehicles such that it covers the whole parts of the 

vehicle. The collision state can be stated as follows. 

If the distance between the centers of the virtual circles is less than or equal to the 

diameter of a virtual circle, then the vehicles are in collision state (Equation 2.5). 

RelativeDistance = ( (x1 - x2 )
2 
+ (y1 - y 2 )

2 )!i 
---------------------------(2.5) 

Therefore the breaking critical distance ( dbr) can be present as 

2~ ( v2 +( v-vret )
2 
), for head-on collisions 

dbr = ~ 2~ ( V 2 
- ( v- vrel )

2
)' for rear-end collisions 

1 v2 

otherwise 
2 a' --------------------------(2.6) 

Where v is the velocity of the vehicle and Vrel is the relative velocity of the vehicle 

with respect to the other. a is, the maximum possible deceleration of the vehicle as 

shown in equation 2.6 [3]. 

2.3.8 Master Slave Switching 

This function is mainly for hierarchical controlling of the vehicles. This assigns the 

labels 'Master' and 'Slave' for the vehicle and it is depends upon the current situation 

of the vehicles. The 'Master vehicle' has more power relative to the 'Slave vehicle'. 

This was used in the decision making process, inside the inference engine. A typical 

label assignation criterion is the speed of the vehicle. When in Inter vehicular 

communication mode, the master-slave status were calculated, transmitted and 

acknowledged by each vehicle. When the communication scheme is through the 

computer, it assigns the master-slave states to the vehicles by analyzing the motions of 

them, according to pre programmed algorithm [32]. 
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Master-Slave switching (MSSwitch) function has three variables. They are master, 

slave, and driver control. In order to quantify these variables, 'master' is assigned 'l' 

while the 'slave' is assigned with '0'. The value given to 'driver control' is '5'. As 

discussed before, these values are taken as the initial centers of the Gaussian 

membership functions of the corresponding fuzzy variables. 

2.3.9 Controlling Function 

These input membership functions were trained using 650 pairs. Those data pairs were 

generated employing spread sheet program accordance with the controller algorithm, 

considering the ranges of the input and output variables . The generated data set 

enabled to train the ANFIS so that it mimics the behavior of an expert. The trained 

input functions were taken from the MatLab software. The shapes of those functions 

were adjusted at the learning according to the training data. 

The Takagi-Sugeno type 54 output functions after training, for the braking controller 

were taken and they are given below [15]. 

.h = 1.85 xJ + 1.566e-8Xr2.79e-21X3 -2.1894e-15 X4-1.48 

J; = 0.0019X1- 0.039Xr 5.655e-23x1- 4.72e-17X4- 4.225 

~ =-0.311 X1-2.892e-6 Xr5.577e-25X3 -5.667e-18 X4+0.0921 

-----------------(2.7) 

/~4=-1.710e-15 X1+4.911e-18 X2-4.910e-14 X3+5.677e-15 X4+5.679e-15 

The Takagi-Sugeno type 54 output functions after training, for the steering controller 

was taken and they are given below [32]. 

J; = -0.322 X1+ 0.0036X2+ 5.798e-22 X3+ 0.00459 X4+ 0.233 

f; = -0.0141XJ + 0.00321X2+ l.069e-22X3+ 0.00021 X4+ 0.621 

.~ = -0.151 xJ +0.000659 X2 + l.996e-23X3 +0.0039x4+0.0652 

------------------(2.8) 

/ 54 = 2.69c-24 X1+ 1.755e-24 X2 -3.911e-25 X3 + 2.691e-23x4-1.217e-23 
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In the prototype experiments, the above 108 (54X2) functions were implemented in 

the PC by means of Microsoft Visual Basic 6 IDE. The position, heading, and speed 

information from the prototypes was transmitted and taken via a serial port to the 

central PC. This information is required to assess the input membership values [32]. 

The controlling signals generated were transmitted to the prototypes via the RF link. 

Figure 2.25 to 2.27 illustrates the input membership functions after training. These 

illustrations were created in the MatLab environment; with the aid of the ANFIS edit 

tool, and Simulink. 
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Figure 2.25 - Collision Condition Function after Training 
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Figure 2.26 -Relative Distance Function after Training 

- 34-

'' 'I 
I 

t 

I 
i 

! 
1 
1 
' 



Slave 

j~ 
.&0.8 

~ u s 06 
v 
8 

4-< 

~ 04 
2 
oJ) 
(.) 

0 0.2 

0 
L._ 
0 0.5 

Mnster 

15 2.5 

MSSwitch 

DriverContro 

3.5 4 4.5 

Figure 2.27- Master-Slave Switching Function after Training 

2.4 Results 

Trajectories of the prototypes were taken from the graphical user interface of the 

developed software. It was developed using shape objects in Visual basic 6 and 

Joystick objects of Global Magic Software's. Predefined co-ordinate system was used 

to map the prototypes. Two joysticks were used at the manual driver mode. When the 

vehicles recognize a possible collision scenario, the joystick commands are simply 

ignored and the automatic collision avoidance controller turns on. It is automatically 

changed in to manual mode after avoiding collision scenarios. 

Fig 28 represents a screenshot that was taken in a typical test case of the study that has 

been carried out with the two prototypes. It illustrates the paths followed by the 

prototypes and the encrypted data that has been received. 
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Figure 2.28 - Screenshot of the developed GUI 

The speed of the prototypes was quite low due to the performance of the de servos. 

But it was healthy with the whole system. Because of the serial communication, ec 
bus and OOPic were mainly introduced delays to whole system. But those can be 

minimizing by using appropriate hardware when this system is going to be 

implemented for genuine vehicles. 

This concept can be extended for multiple vehicles by considering them as 

parrs. 

2.5 Summary 

This chapter has presented and experimentally validated an interactive intelligent 

collision avoidance controller via testing on vehicular prototypes. A master-slave 

mechanism is engaged to effectively negotiate the cooperative maneuvers by the 

vehicle on the verge of a collision to optimally avoid the collision. The control 

strategy was developed based on ANFIS fuzzy and has been thoroughly validated via 

computer simulations in for all possible collision scenarios. The central 

communication PC was used to avoid memory constrains in the digital controller 

(OOPic) at the cost of some delays in the whole system. A better DSP can eliminate 

the central PC to easily overcome this problem in practical implementation. 
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3.1 Implementing the controller 

Chapter 3 

Design of Navigational Controller for USV 

A good navigational controller is a main requirement for traveling. So the Takagi­

Sugeno type fuzzy logic base controller was implemented successfully for navigation 

[5]. The boat is traveling as shown in Figure 3.1. 

y 

Xboat 

TAT, 

~ 

f) X 

Earth fix frame 

Figure 3.1 - Boat with fuzzy based navigational controller 

Tx and Ty are the thrust forces exerted by the propellers of the boat. The heading of 

the boat is given by 0. The thrust force is controlled using a fuzzy controller. The 

overall control system (navigation) is shown in Figure 3.2. If the required position of 

the boat is (x,,yJ and the actual position is (x,y) then the errore is given by e=xr-X. 
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d 

dt 1 e 

Fuzzy 
controller Boat 

Figure 3.2 - Fuzzy based navigational controller 

Five input membership functions were defined to represent the error input named 

negative large (NL), negative small (NS), zero (Z), positive small (PS), positive large 

(PL) and same names were used for the change rate of error as well. Input 

membership functions to fuzzy controller and output membership functions from the 

fuzzy controller are given in Figure 3.3,, 3.4 and 3.5. 

Degree of membership 

Negative large Negative Small Zero Positive Small Positive Large 

Error 

-3e -2e -e -e/4 0 e/4 e 2e 3e 

Figure 3.3 - Error input membership function of the fuzzy based navigational 

controller 
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Degree of membership 

Negative large Negative Small 
1 

I Zero Positive Small 

-3Ed -2Ed -Ed -Ed/4 0 Ed/4 Ed 2Ed 

Positive Large 

I 
I 
I 
I 
I 
I 
I 
I 
1 Rate of 
1 changing error 

3Ed 

Figure 3.4 -Rate of change error input membership function of the fuzzy based 

navigational controller 

Degree. of membership 

Zero 
Positive Small Positive Large Negative large Negative Small 

-2T -T 0 T 2T 

Figure 3.5 - Rate of change error input membership function of the fuzzy based 

navigational controller 

Rule base is one of the important parts in the fuzzy controller. When Table 3.1 shows 

that the "thrust is positive large" means that the fuzzy controller will give controlling 

signab to the boat's thrust force controller to increase its thrust force by 2dT 

(maximum safe thrust increase) by changing propeller angle and torque. "Thrust is 

negative large" is represented the maximum thrust force reduction of the boat. The 

Figure 3.6 presents the output surface of the fuzzy-logic navigational controller. 
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Table 3.1 -Rule table for fuzzy PD controller 

~ NL NS z PS PL 

NL NL NL NS NS NS 

NS NL NS NS NS NS 

z NS NS z PS PS 

PS PS PS PS - PS PL 

PL PS PS PS PL PL 

5 

0 
0 

ErrorRate -5 -5 
Error 

Figure 3.6 - Output surface of the fuzzy based navigational controller 

3.2 Mathematical model for USV 

The mathematical model of the boat called Delfim (Figure 3.7), developed by 

Dynamical Systems and Ocean Robotics Laboratory (Portugal) [37] is utilized for the 

simulation purposes. The following dynamic equations are modeled in MatLab 
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environment [19]. This mathematical model is controlled by using the fuzzy logic 

navigational controller in the simulations which are performed 

Figure 3. 7 - Picture of the actual boat model 

The velocities of surge (XB-direction), sway (YB-direction), and yaw (rotation 

about ZB-direction) are defined as u = u (t ), v = v (t ), and r = r (t ) .Then the 

dynamic equations for the model are given as below, 

nni=-D (u,v,r)+mvr+T cosa +T cosa 
X P p S ·' 

---------------(3.1) 

mv=-D (zt, v,r)-mur+ T sin a + T sin a 
y p !' s s 

---------------(3.2) 

ml;=-D(u,v,r)+Tcosa xd +Tcosaxd +Tsina xd +Tsina xd. 
f: !' !' flY ,\' S ·'Y P p X S S X ("' "'>) 

---- .:l . .:l 

Where Tis thrust delivered by port side and starboard side propellers, respectively the 

a1) and as are inclinations to the X B -axis , dis diameter of the propeller. 

R.tsic steps of the MatLab program are given below, 

a) Define all the variables and set the dimensions of the boat 

b) Calculate mass and inertia matrix of the boat 

c) Calculate frictional, form and additional resistance forces 
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e) Calculate the damping and total moments 

f) Set all the variables to its initial values, including time t, t = 0 

g) Define boundary conditions for all variables of input and output 

h) Initialize the reference values, such as reference trajectory of the ship in 2-D 

plane 

i) While t < t stop 

Calculate the position error 

Feed the inputs to the controller (within equal intervals) 

Process the rules according to the inputs, by means of MatLab FIS. 

Get the defuzzified output 

Solve dynamic equations to find new position 

Plot the results 

3.3 Results from the navigational controller 

The perfonnance of the fuzzy based navigational controller is compared with the 

performance of a PD controller to prove the brilliance of the fuzzy logic based 

controllers. The results are presented in Figure 3.8 to 3.12 and MatLab progam is 

given in Appendix B. The desired path is presented in red while blue is utilized for the 

actual path. 
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Figure 3.8 - Path tracking of a Sinusoidal trajectory with PD controller 
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Path tracking: Sinosoidal trajectory 
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Figure 3.9 - Path tracking of a Sinusoidal trajectory with Fuzzy controller 
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Controller 
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Figure 3.12 - Path tracking of a Straight trajectory with Fuzzy controller 
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3.4 Summary 

This chapter mainly described about designing and simulating a fuzzy logic-based 

navigational controller for unmanned surface vehicles. An already developed dynamic 

model of a boat is utilized for the simulations though out the report. The controller 

considered in this study is a fuzzy based system. MatLab framework with Fuzzy-logic 

toolbox was used to design and implementing the whole system. MatLab programs 

were employed for the navigational controller simulations. The basic design procedure 

and the simulation procedure were included in detail. The results including the desired 

and actual paths are plotted at the end. 
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Chapter 4 

Static Obstacle Avoidance of USV 

4.1 Utilizing Ground Vehicle Technologies for Surface Vehicles 

4.1.1 Design of OA controller 

Obstacle avoidance controller is essential - for autonomous, semi-autonomous 

navigation or as a driver assistance system to encounter the collision situations for 

safe navigation. The navigation controller and the obstacle avoidance controller are 

synthesized independently but operate combined since both controllers are essential to 

ensure safe navigation. 

This OA controller is also implemented in Matlab framework, using fuzzy logic 

toolbox and Fuzzy Inference systems (FIS) editor GUI. Trapezoidal membership 

functions are selected as the input membership functions. Sugeno type inference 

system is used for the controller synthesis [7]. 

4.1.1.1 Input Functions 

Two auxiliary input functions are developed to be used as the inputs to the fuzzy 

controller. They are 

a) Collision direction function and 

b) Relative distance function between the obstacle (stationary or dynamic) and the 

vehicle 

Collision direction function is used to take the obstacle direction with respective to the 

boat heading. I1eading angle of the boat and obstacle angle with respective to the earth 

are used to find this collision direction in the MatLab simulation. Collision direction 

angle is measured from the Y axis of the boat frame. Figure 4.1 and 4.2 show the 

measurement of collision direction angle. Calculation was corrected for the whole 

Cartesian plan. The collision direction angle is defined as 
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f3 = 90+8-a ----------------------- ( 4.1) 

Where e is heading angle of the boat and a is obstacle angle. 
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Figure 4.1 - Calculating collision direction 
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Figure 4.2 - Calculating collision direction 

jJ changes near obstacle alone a desired path is presented in Figure 4.4. That straight 

path of the boat is given below (Figure 4.3). 
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Figure 4.5- Names of collision direction input membership function 

Degree of 
membership 

YX X XNY NY NYNX NX NXY y 

(I 7r 

36 36 2 36 

357r 7r 377r 

36 36 
537r 37r 557r 

36 2 36 
717r 27r 

36 

Figure 4.6 - Collision direction input membership function to the obstacle 

avoidance controller 

Eight ditierent membership functions are defined for the collision direction input 

function. Triangular functions which are having 10° with were used to input collision 

directions on main axes of the boat fixed frame. Centres of those functions are 0, 

I1 /2. n. 3 TI /2 and 2 TI respectively. Triangular and trapezoidal functions are chosen 

and these functions can be implements with out many complications. The approach of 

naming the membership function is given in Figure 4.6 while Figure 4.5 presents the 

membership functions of the Collision direction function. The radar maps and stereo 

Yision can be used to find this collision direction in real world situations [14]. 
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4.1.1.1.2 Relative Distance Function 

Relative distance towards obstacle is calculated by means of coordinates in the 

coordinate frame system [33]. This is the Euclidian distance between the center of 

gravity of the boat and the obstacle. Two triangular membership functions are defined 

as "Low" and "High" (Figure 4.7). 

Low 

08 

~ 

j 06 

~ 
0 

~ 04 
0 

02 

5 
Rel-drstance 

Htgh 

10 

Figure 4. 7 - Relative distance input membership function to the obstacle 

avoidance controller 

The x-scale of these functions may subject to changes according to the dimensions 

and speed of the considered boat platform, but the design and simulation algorithm 

remain same. Inputs for the relative distance function are defined in between 0 to 

I OOm for the simulation. It means that "Low" fuzzy set is define from 0 to 50m while 

·'High" is define from 50m to I OOm. 

4.1.1.2 Rule base of the controller 

rhe rules for the controller are given below. Xdot and Y dot are the velocity 

components of the main direction. Here "DDD" presents the maximum velocity of the 

boat while "DD" and "D" presents the 2/3 and 1/3 of the maximum velocity 

correspondingly. Negative velocities of the above velocities are appeared as 

.. NDDD", "NDD" and "ND". 
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1. If(Col-direc is Y) and (Rei-distance is High) then (Xdot is Zero) and (Ydot is ND) 

2. If (Col-direc is Y) and (Rei-distance is High) then (Xdot is Zero) and (Y dot is ND) 

3. If (Col-direc is Y) and (Rei-distance is Low) then (Xdot is D) and (Y dot is NDD) 

4. If (Col-direc is Y) and (Rei-distance is Low) then (Xdot is D) and (Y dot is NDD) 

5. If (Col-direc is NY) and (Rei-distance is High) then (Xdot is Zero) and (Y dot is D) 

6. If (Col-direc is NY) and (Rei-distance is Low) then (Xdot is D) and (Y dot is DD) 

7. If (Col-direc is NX) and (Rei-distance is High) then (Xdot is D) and (Y dot is Zero) 

8. If (Col-direc is NX) and (Rei-distance is Low) then (Xdot is DD) and (Y dot is D) 

9. If (Col-direc is X) and (Rei-distance is High) then (Xdot is ND) and (Y dot is Zero) 

10. If (Col-direc is X) and (Rei-distance is Low) then (Xdot is NDD) and (Y dot is D) 

11. If(Col-direc is NXY)and(Rel-distance is Low)then(Xdot is D) and (Ydot is NDD) 

12. If(Col-direc is NXY)and(Rel-distance is High)then(Xdot is Zero)and(Ydot is ND) 

13. If (Col-direc is NXNY)and(Rel-distance is Low)then(Xdot is DD)and(Y dot is D) 

14. If (Col-direc is NXNY)and(Rel-distance is High)then(Xdot is Zero )and(Y dot is D) 

15. If (Col-direc is YX)and(Rel-distance is High)then(Xdot is Zero )and(Y dot is ND) 

16. If (Col-direc is YX)and(Rel-distance is Low)then(Xdot is ND)and(Y dot is NDD) 

17. If (Col-direc is XNY)and(Rel-distance is High)then(Xdot is Zero )and(Y dot is D) 

18. If (Col-direc is XNY)and(Rel-distance is Low)then(Xdot is ND)and(Y dot is DD) 

4.1.1.3 Output Functions 

Only two output membership functions are used to reduce the complexity of the 

controller. They are 

1) Velocity component along x axis ( x) 

2) Velocity component along y axis ( y) 

Output surface of the x is given in Figure 4.8 and output surface of the y is given in 

Figure 4.9 .Those velocities are given with respect to the boat frame and they are 

converted to the world frame before calculating the desired boat positions. The 

conversion matrix is given below : 
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Figure 4.8 -X direction velocity output surface of the obstacle avoidance 

controller 
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Figure 4.9 - Y direction velocity output surface of the obstacle avoidance 

controller 

The algorithm for path planning with obstacle avoidance is given in figure 4.1 0. This 

algorithm was developed as a module in MatLab. That module can be reused for 

future works. Few results from the simulations are presented at the end of this chapter. 
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4.1.2 Algorithms for simulation of the controller 

+ 
Evaluate fuzzy 

outputs 
FuzX,FuzY 

-f 
v, = FuzXxvx cosB 

vv = FuzYxvxsinB 

Define Goal, St~rt~~dl 
Obstacle points 

Do until the boat 
reach the Goal 

... 
Index=indcx+ 1 

Calculate Boat( B), 

Obstacle( a) and Goal 

direction angles . • jJ = 90+8-a 
t 

Calculate relative 
distance (RD) 

~ 
vx = vxcose 

v = vxsinB 

... 
xnew = xo/d + v,. X Timelnterval 

Ynew =Yo/(/ + vy X Timelnterval 

j. 
Plot the new point 

on the plan 

• Calculate 

X desrred ' Y desrrcd 

Xdcs1rcd' Y desired 

X desired ' Y desrred 

t 
Store above 

values with time 

Figure 4.10- Algorithm of the obstacle avoidance controller 
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Block diagram of the simulation program is shown in Figure 4.11. The algorithm of 

the path planning module is given in Figure 4.1 0. The main module is defined the total 

time span, initial configuration of the boat, goal point and the obstacle points. Then 

those data is sent to the Path Planning Module. The time span, desired path and boat's 

configurations are sent to the Boat's Dynamic Simulation Module. Then the actual 

path and configurations of the boat is taken by the Main module to plot the actual 

paths of the boat. Results from this module are presented from Figure 4.12 to 4.16. 

Relavent MatLab program is given with Appendix C. 

Path Planning Module 

Time span 
Initial configuration of the boat 

Goal point 
Obstacle points 

Main Module 

Path Plotting Module 

Time span 
Desired path and 

boat's 
configurations 

Boat's Dynamic 
Simulation Module 

Actual 
configurations of 

the boat 

Figure 4.11 - Simulation setup of the obstacle avoidance controller 
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4.1.3 Simulation Results from the Controller 
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Figure 4.12 - Path starting near root of the coordinate system 
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Figure 4.13 - Path starting near root of the coordinate system 
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4.1.4 Summary 
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Figure 4.16- Path starting near obstacle 

This chapter presented obstacle avoidance algorithms for unmanned surface vehicles 

which are already developed for unmanned ground vehicles. A previously developed 

mathematical model and a fuzzy-based navigational controller is utilized with obstacle 

avoidance algorithms, for simulations. This was also implemented in Matlab 

framework, using fuzzy logic toolbox and fuzzy inference systems (FIS) editor GUI. 

Trapezoidal and membership functions ware selected as the input membership 

functions. Sugeno type inference system is used for the controller synthesis. All the 

programs are developed in the MatLab environment. 

Obstacle avoidance control is essential for autonomous, semi-autonomous operation 

of vehicles or as a driver assistance system to encounter the collision situations for 

safe navigation. The navigation controller and the obstacle avoidance controller are 

synthesized independently but operate together, since both controllers are essential to 

ensure the task of safe navigation. 
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4.2 Novel Algorithm for OA 

4.2.1 Methodology of the Novel Algorithm 

Although the Morphin algorithm has been used for many practical applications, none 

of the detailed algorithms has is not published yet. So this section describes the 

development of novel algorithm for USV s, based on Morphin algorithm. 

In this method stereo cameras and Surveillance radars can be use to capture obstacles 

in the field [21]. The captured data is transformed in to a grid. Then that grid is 

utilized as obstacle matrix to avoid that obstacle. Figure 4.17 is presents an obstacle of 

that grid and Figure 4.18 shows the corresponding obstacle matrix with values. Ones 

and zeroes are used to represents obstacles and obstacles free areas. This morphin 

algorithm is basically developed for unmanned ground vehicles but it is not possible 

to use ones and zeroes for them. Because the height and appearance of the obstacles 

on ground are needed to store obviously. But the case is somewhat different with the 

surface vehicles because they cannot overcome obstacles as ground vehicles. So, it is 

sufficient to use ones and zeroes in the obstacle matrix. 

---

l I 
I 

l_ 

Figure 4.17 - Obstacle in the grid 
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Figure 4.18- Obstacle matrix with obstacle 

Figure 4.19 shows number of arcs projected in front of the boat over the local world­

model obstacle map. The number of arcs considered is a function of the map size and 

grid spacing, with the arcs spaced such that one arc passes through each of the outer 

cells. This approach guarantees that each cell in the grid is covered by at least one arc 

so that all navigable paths are considered. Mathematical functions of the circles and 

lines are utilized to calculate the coordinates of the paths. They are put in to a path 

matrix with a path index. Straight line functions are employed for the middle path as 

their radius is tent to infinity . 
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Figure 4.19 - Possible paths of the USV 
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The projected paths and the obstacle matrix is shown in Figure 4.20. Here the paths on 

the obstacles are assigned small weight while other paths are assigned using high 

weights. A curtain weight values are further added for the paths heading towards the 

goal as well. So, the best path is chosen depending on the weights assigned at that 

time. Then the boat moves a certain distance along that path. Again, the new obstacle 

matrix is processed and obstacle matrix is added to the system for other iterations . 
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Figure 4.20 - Possible paths of the USV on the Obstacle matrix 

Coordinates of the obstacles in the navigation area is necessary to be inse1ied in to 

obstacle matrix. The way of extracting obstacle coordinates in to the obstacle matrix is 

presented in the Figure 4.21. 

The transformation is given by Equation 4.1 where obstacles on obstacle matrix are 

presented as OOM and obstacle on world frame is given as Oeff. 
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Figure 4.21 -Obstacle coordinate conversion 

Yom£ = sinB -c~sB Yoeff -ynew + GL [ ] [ ]-] [ ] ro J 
XOOM COS 8 Sill 8 XOejJ -X new 2 ---------- ( 4.1) 

Where (} represents the heading of the boat. 
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Figure 4.22 - Path value calculation 

GL GL 
Path val(i) = --

(Gd, +k) (Td, +k) 
--------------------------- (4.2) 

.J5 r;:: 
vvhere -GL > Td, > 0, '.!2GL > Gd1 > 0 

2 

Equation 4.2 is utilized to calculate the path values. 10 is assigned in to the constant k 

for the simulations in this study. Here the paths on the obstacles are assigned small 

\alues while other paths are prearranged using high values. A curtain weight values 

are further added for the paths heading towards the goal as well. So the best path is 

chosen depending on the weights are assigned at that time [6]. 
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Then the boat is moved certain distance on that path. Again the new obstacle matrix 

is processed and obstacle matrix is added to the system for other iteration of the same 

path. 

4.2.2 Simulation of Algorithms 

. Initially the Novel path planner takes the grid size, sub grid size, goal point and 

obstacle map. Then the coordinates of the curved paths are evaluated and assigned in 

to the Ypaths matrix with pathindex. It was straightforward way to find obstacles on 

each path. Big gaps were formed when y coordinates of the straight line functions 

were utilized. So that another matrix for the straight line functions is defined for the 

sack of inconvenience. Then x coordinates of the straight lines are stored in X paths. 

Evaluation of the goal matrix is done by comparing the obstacle matrix with the path 

matrixes. Minimum distance that boat can travel on each path is stored in the 

Distance _Matrix function. The above process is continued for the each and every path. 

Then the goal direction is evaluated and that value is also employed with the obstacle 

liberated distance to choose the optimum path among each and every possible path. 

The boat is traveled 1;4 of the grid size on the chosen path their after. That whole 

process is presented in simply for the convenience of the reader. The above process is 

developed as a single module. Another module is needed to call that module 

sequentially until the chosen boat reaches the goal. That algorithm is appeared in the 

Figure 4.23. 
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Figure 4.23 -Simplified flow chart of the Novel algorithm 
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Chapter 5 

Dynamic Obstacle Avoidance of USV 

Obstacle avoidance without dynamic obstacle is not practical with obstacles on Sea. 

Dynamic obstacle avoidance is discussed in this chapter in detail. Simulation results 

relevant to dynamic obstacle avoidance is discussed in the next chapter. 

5.1 Introduction to Novel Dynamic Obstacle Avoidance Method 

Projected obstacle area method is a very famous method for dynamic obstacle 

avoidance. Dynamic obstacles can freeze time with the help of that method. Then any 

type of static obstacle avoidance method can utilize to avoid that. This method is 

employed in several places on ground and water. 

Dynamic obstacle is transformed to another static obstacle which is having large 

dimensions in the above method. That means it utilized the effective area of the path 

planning plan which can be employed for path planning. That may be coursed to plan 

inefficient paths to avoid dynamic obstacles. Then USV may able to travel longer or it 

may stops suddenly due to lack of effective areas on the path planning plan. So it is 

very vital to utilize the traveling area effectively as well as avoiding dynamic 

obstacles. So the novel method is proposed to avoid Dynamic obstacles by employing 

the minimum areas on the effective area of the path planning plane . 

• • 

~-

,,; 
I 

Figure 5.1- Two Dynamic obstacles with Projected Obstacle Areas 
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Figure 5.1 presents two dynamic obstacles which are freezed with time. Those two 

predicted areas have blocked the effective path from their edges. The following Figure 

5.2 shows the advantage of reducing that predicted areas. So the path planner is 

generated the efficient path between two obstacle areas. 
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Figure 5.2-Two Dynamic obstacles with their reduced projected obstacle areas 
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Figure 5.3 presents the predicted path among 3 dynamic obstacles. These obstacle 

areas are generated by freezing 3 dynamic obstacles with time. So the path planner 

considers those areas as another static obstacle and then it can avoid those by utilizing 

any static obstacle avoidance method. 

5.2 Area Prediction of Dynamic Obstacles 

The effective time estimation of Dynamic obstacles is very important to avoid them. 

Some dynamic obstacles near to USV may not cause any effect on the USV. They 

may travel away from the USV. Some dynamic obstacles may travel towards the 

USV. So that it is very important to estimate the effective time of a Dynamic obstacle. 

The time estimated is presented from tarea in Equation 5.2 . Equation 5.1 is utilized to 

calculate T after reveling t1 and t2 • t1 is calculated making use of the velocity of the 

obstacle while t2 is calculated by employing velocity of the USV. t2 is the time taken 

to the USV to cross the predicted path of a moving obstacle while t1 is the time taken 

for that moving obstacle to cross the defined path of the USV. The traveling path of 

the USV is known before hand and has to utilize a path prediction module to predict 

the path of obstacles. 
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"~~-~~ 

\ 
; 

Figure 5.4-Effectivc time prediction of Dynamic obstacles 
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T= <D 
It~- t21 

--------------------------------(5.1) 

I mm E [ (I' -~ ),(t, + ~)] ---------------------------------( 5. 2) 

Where t 2 is the time taken to the USV to cross the predicted path of a moving 

obstacle, t
1 

is the time taken for that moving obstacle to cross the defined path of the 

usv 
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Figure 5.5- Area Calculations for Dynamic obstacle 

t=O 

Figure 5.5 presents the area calculation of Dynamic obstacles. That area is depending 

on the relative velocity of the obstacle as well. K is chosen depending on the sea. 

Because the behavior of the obstacle is directly depend on the sea condition as well. 

The obstacle movement is very high on a ruff Sea. So that predicted areas for 

obstacles on a ruff sea should be comparatively larger than a normal Sea. High 

velocities are increasing the possibility of high deviations from the predicted paths. 

The importance of the obstacle velocity to the predicted area is reflected through new 

equation well. The constant in the above equations can be change at the practical 

implementation phase. The dimensions of that area can be changed by changing the 

constant in the above equation. 
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5.3 Path Prediction of Dynamic Obstacles 

It is very important to determine the path of dynamic obstacles to avoid them. Radars 

and other obstacle detection methods can utilize to take moving coordinates of the 

obstacles. Then those data are stored in an arr(!y. So, that array can utilized those data 

to predict the future movements of the obstacles in the next step. It is required to store 

lateral and longitudinal coordinates with time for path prediction purpose. It is quite 

complex thing to analyze. So two separate arrays consisting lateral coordinates with 

time and longitudinal coordinates with time are utilized for analyzes. Figure 5.6 

presents a simulation result showing the actual and predicted path in 3-D space. 
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Figure 5.7-Simulation result of an Actual and Predicted path in 3D space 
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Two prediction methods are utilized for path prediction in this study. First 

conventional mathematical method is attempted and then generalized regression 

neural network (GRNN) method is employed [26, 9]. All the results are collected and 

analyzed at the end. 

5.3.1 Polynomial Approximation Method for Path Prediction 

Conventional mathematical method, polynomial approximation is utilized to predict 

the moving path of the obstacles first. The data array which was utilized to store initial 

positions of that obstacle is taken to approximate the moving function of the obstacle. 

Two functions have approximates for lateral movement and longitudinal movements. 

Then those two polynomial functions are employed to predict the path of the obstacle. 

Several arrays can be employing easily for several Dynamic obstacles as explained 

earlier. The difference between predicted and actual path is analyze by changing the 

degree of the polynomial. Obviously the sensor noise cannot be neglected as it is part 

of the actual data. Because the GPS and Rader data having their own deferent noise. 

So sensor noise is added to the data and analyzed at the end. 

5.3.2 Generalized Regression Neural Network for Path Prediction 

GRNN is often used for function approximation. It has a radial basis layer and a 

special linear layer. It consists of two-layer network. The first layer has radial basis 

neurons and the second layer has linear neurons [9]. 

MatLab Neural Network tool box is utilized for the simulations of this study. It is 

customized by changing the variable name 'spread'. 

A larger 'spread' leads to a large area around the input vector where layer 1 neurons 

\\ill respond with significant outputs. Therefore if 'spread' is small the radial basis 

function is very steep, so that the neuron with the weight vector closest to the input 
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will have a much larger output than other neurons. The network tends to respond with 

the target vector associated with the nearest design input vector. 

As 'spread' becomes larger the radial basis function's slope becomes smoother and 

seYeral neurons can respond to an input vector. The network then acts as if it is taking 

a weighted average between target vectors whose design input vectors are closest to 

the new input vector. As 'spread' becomes larger more and more neurons contribute 

to the average, with the result that the network function becomes smoother. 
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Chapter 6 

Simulation Results 

6.1 Simulation Results by Applying UGV theories for USV 

The path planning with two obstacles by utilizing algorithms which are developed and 

tested for UGV is given below. Figure 6.1 shows planed paths with obstacles having 

50m safety distance. The safety distance is equal to 60m of the obstacles which are 

utilized for the next simulations, presented in figure 6.2. 
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Figure 6.1- Obstacle avoidance using UGV algorithms 

(Safety distance from Obstacles= 50m) 
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Figure 6.2- Obstacle avoidance using UGV algorithms 

(Safety distance from Obstacles= 60m) 

6.2 Simulation Results from the Novel Algorithm 

450 500 

Possible paths have to generate first to choose the best among them as discussed in the 

Chapter 5. So that possible paths of the USV are generated as shown in Figure 6.3 . 

All possible paths are generated in a 20x20 matrix. That can be used to presents a 

20x20m area or multiples of that similarly ( 40x40m) on the Sea or water. 
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Figure 6.3 - Possible paths matrix of the USV 

Obstacle in sea can identify by utilizing Radars, stereo vision or any other methods 

successfully. But those obstacles data have to interpret to the algorithm. Figure 6.4 to 

6.7 is presented different obstacle matrix for different obstacle positions. The whole 

path matrix is plotted there with red color paths. Then square shape obstacles were 

placed on different locations of the grid. It obviously should be a 20x20 matrix since 

the dimensions of the possible path matrix should be equals to the dimensions of the 

obstacle matrix. Relavent MatLab program is given with appendix D. 
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Figure 6.4- Obstacle on the Obstacle matrix A 
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Figure 6.6- Obstacle on the Obstacle matrix C 
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Figure 6.7- Obstacle on the Obstacle matrix D 

Table 1 presents the maximum traveling units on each and every path. Then those 

table data is utilized to calculate path values. After considering path values ninth path 

is chosen for the obstacle matrix A. 5th, 1st and 2nd paths are chosen for the obstacle 

matrices B, C and D respectively. 
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~ X 

r1 1 I 2 I 3 I 4 I 5 I 6 I 7 I 8 I 9 

A 40 40 40 40 40 40 40 40 17 
B 40 40 40 40 18 40 40 40 40 
c 3 40 40 40 40 40 40 40 40 
D 40 3 40 40 40 40 40 40 40 

Table 6.1- Maximum Safe traveling distance on each path 

Figure 6.8 and 6.9 presents path planning with obstacles which are having safety 

distances 40m and 60m respectively. 
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6.3 Simulation Results from Potential Field Method 

Already developed software is employed for path planning with PFM. Figure 6.10 and 

6.11 present the contour map and 3 dimensional surfaces of 3 obstacles. Path planning 

with PFM is processed by considering minimum potential from starting point. 
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Figure 6.10- Contour map of Potential field with 3 obstacles 
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Figure 6.11- 3D surface of Potential field with 3 obstacles 
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Figure 6.12 - Obstacle avoidance using PFM 
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6.4 Comparison of Obstacle avoidance methods 

The other two obstacle avoidance methods were compared and results are presented in 

Figure 6.13 and 6.14. The travel distance verses safety distance is compared in the 

Figure 6.13. According to the results which are presented in the figure shows that 

Novel algorithm is capable of achieving the target with minimum traveling distance. 

Potential field method shows minimum travet distance at 50m safety distance since it 

was changed its traveling path between two obstacles to another path which was away 

from the two obstacles. 

Distance towards obstacles verses time were taken for all three methods and results 

are given using three different colors in the figure 6.14. It shows that the generated 

paths utilizing potential field method is far away from the safety area of the obstacle 

compared with other methods. That is the main reason for traveling longer when the 

potential field is used. 
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6.5 Simulation Results for Dynamic Obstacles Avoidance 

Figure 1 and 2 present the make use of static obstacle avoidance for dynamic 

obstacles. The time information ofthe USV and the obstacle} are shown in the figure 

1 for the convenience. Dynamic obstacles can freeze on their moving path with time. 

So they become another static obstacle at the end. But it is required to predict the 

moving path of the obstacle before hand. Simulation results from the path prediction 

methods which are discussed above are presented below. Effective area prediction is 

also equally important as path prediction. So set of simulations have done on that and 

those simulation results are presented after the path prediction results as shown below. 
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6.5.1 Simulation Results for path prediction of Dynamic Obstacles 

For the simulations of path prediction, Octomorphic path is generated as the actual 

path of the obstacle. But the path planning module is only supplied with past 100 

coordinates ofthe obstacle movements in USV frame. Then path prediction module is 

predicted another 50 coordinates. Then those coordinates and the error values are 

plotted. 

6.5.1.1 Polynomial approximation method for path prediction 

Simulations done utilizing Polynomial approximation method considering sensor 

noise and without noise. 

6.5.1.1.1 Simulations without sensor noise 
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Figure 6.19- Actual path and Predicted paths of the Obstacle for different 
degrees of Polynomials 

Figure 6.17 and 6.18 presents the lateral and longitudinal value changes respect to 

time. Then Figure 6.19 shows the actual Octomorphic path of the obstacle. Predicted 

paths after changing the degree of the polynomials are presented in a same figure to 

compare the effect of the degree. Figure 6.20 and 6.21 shows the lateral and 

longitudinal errors after changing the degree of the polynomial. A developed MatLab 

program for this is given in appendix E. 
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6.5.1.1.2 Simulations with sensor noise 
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Figure 6.22 and 6.23 shows the lateral and longitudinal value changes with noise 

respect to the time. Then Figure 6.24 presents the actual Octomorphic path of the 

obstacle with respect to time_ Then predicted path is generated for noisy data with 6 

degree polynomial. That is given in Figure 6.25. Then that degree is changed to 5 and 

4 respectively as shown in the Figure 6.26 and 6.27. 
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One meter noise is added to the figure 6.25,6.26 and 6.27. Quite improved predicted 

path is received with small (lm) noise when degree ofthe polynomial is equal to four. 

Then noise is increased by 4m to analyze the effect of noise. Normally even the 

improved GPS receivers are having error of two or three meters alone. So the noise is 

changed from lm to 5m of 4th degree polynomial. That result is given in figure 6.28 

and it proves that the polynomial approximations methods are not good with noise. 
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6.5.1.2 RBNN method for path prediction 

Simulations are done utilizing RBNN method considering and without considering 

sensor noise. 

6.5.1.2.1 Simulations without sensor noise 
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Actual and predicted paths for different spreads are given in figure 6.29 to analyze the 

effect of spread value efficiently. The number of neuron enrollments can be increased 

by increasing the spread value. That predicted path can be smoothed more by 

increasing the spread value. Longitudinal and Lateral error changes for different 

spread values are presented in Figure 6.30 and 6.31 respectively. 

6.5.1.2.2 Simulations with sensor noise 
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The data without sensor noise can not be expected in the field. So that the noise is 

introduced to the actual path data and then predicted paths are taken for different noise 

values with 3m spread. Those results are given below in Figure 6.32. It proves the 

validity of the RBNN method for successful path prediction with noises. Longitudinal 

and lateral errors for different noise values are given in Figure 6.33 and 6.34 

respectively. MatLab program for this is given in appendix F. 
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Figure 6.34- Lateral error of predicted paths for different noise values 

6.5.1.3 Summary of Simulation Results for path prediction 

Path predictions of dynamic obstacles are very important for dynamic obstacle 

avoidance. Polynomial approximation method is tried for that initially. Its quite good 

method and gave very good results at the beginning, without noises. But position data 

can not be expected without noise from the field. So noise was introduced and 

polynomial approximation method is not able to give considerable results as expected. 

RBNN method which is famous for function approximation is tried after that. It shows 

very good results with noises. Those predicted paths can smoothen more by increasing 

the spread value. 
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6.5.2 Simulation Results for Obstacle area prediction of Dynamic Obstacles 

6.5.2.1 Simulation Results from Velosity obstacle method 

Velocity obstacle method is a conventional method which is employed for Dynamic 

obstacle area predictions. It predicts triangular areas for Dynamic obstacles. The size 

of that area is depends on a constant . Following figures present the simulation results 

from that conventional method. A novel obstacle area prediction method is simulated 

after that. The main objective of that proposed method is to predict the areas of 

dynamic obstacle movements effectively. So that novel method is compared with the 

conventional method at the end. Those simulation results are presented finally. 
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Figure 6.35 - Longitudinal velocity of the obstacle 
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Figure 6.37 and 6.38 present upper and lower boundaries of predicted obstacle areas 

utilizing conventional method towards Longitudinal and Lateral directions. Those 

boundaries are generated for different constant values. This constant can be adjusted 

to take the efficient predicted area. The actual path may deviate out from the predicted 

obstacle areas. That mean those obstacles may collide with the USV. So those types of 

situations are calculated and plotted with time for Longitudinal and Lateral directions 

as shown in Figure 6.39 and 6.40. 
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6.5.2.2 Simulation Results from the novel method 

The predicted areas generated from the novel method are depending on the relative 

velocity of the obstacles as discussed in previous chapters. The relative velocity 

variation of the obstacle is presented in Figure 6.35 and 6.36. That variation is directly 

effecting the area prediction. So the upper and lower boundaries of predicted areas by 

means of novel method are presented in Figure 6.41 and 6.42. The error values of 

those are shown in figure 6.43 and 6.44. Then the Sea condition factor is changed and 

those simulation results are presented in Figure 6.45, 6.46, 6.47, 6.48 and 6.49. 
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Longitudinal direction for different Sea condition values 
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Figure 6.49 - Error towards Lateral direction for different Sea condition values 
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6.5.2.3 Comparison Results 

The proposed novel algorithm for obstacle area prediction is compared with the 

conventional method to prove the effectiveness of the novel method. The upper and 

lower bounds of the predicted obstacle areas from both methods are shown in figure 

6.50 and 6.51 and errors are presented in figure 6.52 and 6.53. Width of the predicted 

area from both methods towards longitudimrl direction is given in figure 6.54. The 

area reduction from the novel method is inspired from the differences between the 

widths of the novel method and conventional method. That difference is given in 

figure 6.55 and that proves the improvements from the novel method. Matlab program 

which is developed for this is given with appendix G. 
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Figure 6.55 -Predicted Distance reduction from Novel Method 

Above figure presents the effectiveness of employing Novel method for Dynamic 

obstacle avoidance well. But the Novel method is not reducing the predicted area 

totally. It may increase that area at sharp turns respect to the conventional method. It 

can be observed from the lower side of the graph given in Figure 6.55. But the overall 

performance of the proposed method is better than conventional one at the end. 
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Chapter 6 

Conclusion and Recommendations 

This \vork has presented and demonstrated some novel algorithms for static and 

dynamic obstacle avoidance. They have been compared with other famous obstacle 

avoidance methods as well. 

Other research works have presented and demonstrated the capabilities of utilizing 

OA methods of UGVs for USVs. Implementing UGV methods practically which 

were developed and validated via simulations, was done as the initiative for the 

development. It is obviously true that practical experiment results would contradict 

little bit with the simulation results due to the immaturity of the available hardware. 

HO\vcver those obstacle avoidance methods are transformed to achieve a better OA 

method for USV s. 

A good Fuzzy based navigational controller for dynamic model of a USV was 

developed and it gives results as expected, needed to perform obstacle avoidance 

algorithms. 

The fuzzy based obstacle avoidance controller is developed and legacy of that fuzzy 

controller is the algorithm which was developed for emergency collision avoidance of 

ground vehicles. That algorithm was practically implemented at the beginning of this 

research. That fuzzy-logic based system gives promising results in simulations. Even 

though it gives promising results for far away obstacles, the simulation results show 

that it is not much reliable for low speeds, noises and obstacles which appear 

suddenly. 

Then another novel algorithm was introduced, which is good for low speeds as well as 

high speeds. That was inherited from the Morphin algorithm of Carnegie Mellon 

Uni\·ersity. The exact details were not published and had to build novel algorithms for 

that. 

The potential field method is used for obstacle avoidance as well since it dominates 

path planning of robots. Software is utilized for those simulations successfully. 
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According to the results which are presented in the figures it can be concluded that the 

novel algorithm is capable of achieving the target with minimum traveling distance. 

Further all of those algorithms work well and need to be customized more with the 

situation and application since each and every one is having its own pluses and 

11lll1USeS. 

Obstacle avoidance without dynamic obstacles is not functional on in sea. Complete 

method for dynamic obstacle avoidance is yet to be solved in research field. But some 

practical dynamic obstacle avoidance methods are being employed today. Moving 

path prediction of a dynamic obstacle is the biggest problem to be solved by the 

researchers and two approaches are developed to solve that. RBNN and standard 

polynomial approximations are chosen as two approaches since RBNN are very 

famous for function prediction purposes. RBNN and Polynomial approximation 

methods are employed for path prediction and compared. It can be concluded that 

RBNN method is good for path prediction purposes because it can be utilized with 

high noise values as well. A smooth predicted path can be obtained by increasing the 

spread value of RBNN. A novel dynamic obstacle area prediction method is 

introduced and it is compared with the conventional velocity obstacle method. 

Simulation results prove the improvement of the novel method noticeably. 

Three static obstacle avoidance methods and novel dynamic obstacle avoidance 

method which is inherited from projected obstacle area method presented and 

simulations done to prove the validity of those methods with sensor noise. The 

hardware of the USV has to be developed first. Then these algorithms can be 

employed vvith those sensors. These algorithms have to be fine tuned. The 

performance of the USV can improve by utilizing Cutting-edge technology for 

sensors. 

This will lead to an eye opening for USV developers in the Sri Lanka and will be able 

to fill the gaps of research works on USVs in the world. 
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Appendix A 

OOPic Basic Program for Vehicular Prototypes 

Dim Ver As New oByte 
Dim SRFOB As New oi2C 

As oSpeaker Spk 
Dim 
lJim 
Dim 
Dim 

Rangel As New oh'ord' To store sonar values 
Range2 As New oWord 
Range3 As New oWord 
Range4 As New oWord 

Din Compass As New oi2C'Create the compass objects 
Dim Led As New oDIOl 
[Jim Bearing As New oByte 
Dim Bearingl As New oByte 
Dim Bearing2 As New oByte 

Dim A As New oSerialX 'Objects 
Dim B As New oSerialX 
Dim C As New oDIOl 
Dim D As New oDIOl 

for serial 

Jim ENC As New oQencode'Encorder objects 
Dim ENCpositionN As New oWord 
lJim ENCpositionO As New oWord 
Dim ENCposition As New oWord 
Dim EncPosl As New oWord 
Dim EncPos2 As New oWord 
Dim count As New oWord 

Dim E As New oDIOl'Motor control 
D.im F F,s New oDIOl 
:Jim G P"s New oByte 
')in H As New oDIOl 
Dim I As New oDIOl 

Dim Y As oByte 
Dim X As oByte 

'Pu~ition updates 

Dim TxCount As New oWord 

:~b main () 

Corr~unicationSetup 

Co:npassSetup 

E:ncorderSc:tup 

SonarSetup 

:~1otorSetup 

:._:ount=O 

;1 ,J li ...: , I 

communication 
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l-)() 

TxCount=O 

C. Invert 

EncorderValuesReading 

FormatEncPosition 

SonarValuesReading 

ObstalChecking 

CompassValueReading 

If ( (Bearing<5) Or (Bearing>250) ) Then 
'Spk.Beep(60757,100,200) 
End If 

FormatBearing 

C. Invert 

If G=1 Then 

MotorDrive 

Endif 

Data Transmission 

TxCount=TxCount+1 

If TxCount=4 Then 

TxCount=O 
Endif 

Loop 
:C:nd Sub 

Sub CompassSetup 
Compass.Node=96'Decimal of Hex address OxCOshifted right by 1 
Compass.Mode = cv10Bit' I2C mode is 10-Bit Addressing. 
Compass.Noinc = 1 ' Don't increment 
Led.IOLine = 30 ' Pin 28 on 40 way connector 
Led. Direction 
End Sub 

cvOutput 

Sub CommunicationSetup 
C.IOLine = 5 
D.IOLine = 6 
C.Direction cvOutput 'Starting communication 
D.Direction = cvOutput 
B.IOLineS = 25 
B.IOLineF = 18 
B.Baud = cv9600 
A.IOLineS = 26 
A.IOLineF = 16 
10". Ba-ed = cv9600 
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End Sub 

Sub EncorderSetup 
ooPIC.PullOp = 1 
ENC.IOLinel = 28 
ENC.IOLine2 
ENC.Operate 
End Sub 

Sub SonarSetup 

29 
cvTrue 

' For Encorder 

SRF08.Node = 112 'DecimalofHex addressOxEO shifted right by 1 
SRF08.Mode = cvlOBit' I2C mode i~ 10-Bit Addressing. 
SRF08.Noinc = 1 ' Don't increment 
SRF08.Width = cv8Bit' 1 byte wide transfer 
SRF08.Location = 0' Range Register 
SRF08 = 81 ' Limit 1st sonar Range to 6m, 140 x 43mm = 6m 

SRF08.Node = 113 'DecimalofHexaddressOxE2shiftedRight by 1 
SRF08.Mode = cvlOBit' I2C mode is ~O-Bit Addressing. 
SRF08.Noinc = 1 ' Don't increment 
SRF08.Width = cv8Bit' 1 byte wide transfer 
SRF08.Location = 0 ' Range Register 
SRF08 = 81 'Limit 2nd sonar Rangeto6m,140x 43mm = 6m 

SRF08.Node = 114'Decimal of HexaddressOxE4 shifted right by 1 
SRF08.Mode = cvlOBit' I2C mode is 10-Bit Addressing. 
SRF08.Noinc = 1 ' Don't increment 
Sl\F08.Width = cv8Bit ' 1 byte wide transfer 
SRF08.Location = 0 'Range Register 
SRF08 = 81 'Limit 3rd sonar Range to 6m, 140 x 43~~ = 6m 

SRF08.Node=ll5'Decimal of Hex address OxE6 shifted right by 1 
SRF08.Mode = cvlOBit' I2C mode is 10-Bit Addressing. 
SRF08.Noinc = 1 ' Don't increment 
SRF08.Width = cv8Bit' 1 byte wide transfer 
SRF08.Location = 0 ' Range Register 
SRF08 = 81 ' Limit 4th sonar Range to 6m, 140 x 43mm = 6m 

End Sub 

Sub SonarValuesReading 

SRF08. Node = 112 ' I2C Address of SRF08 sonar 
SRF08.Location = 0' Command Register 
SRF08.Width = cv8Bit' 1 byte wide transfer 
SRF08 = 81 ' Ranging Command - Result in em 

Do ' Wait for ranging to complete 
Ver SRF08 ' This will wait forever if your sonar 

Loop While Ver=255 ' becomes disconnected, so you may prefer 

SRF08.Width = cvl6Bit 
SRF08.Location = 2 

' 2 byte wide transfer 
' 1st Range Register 

Rangel = SRF08 
'SRF08.Location 
'Range2 = SRF08 

' Get Range to 1st object 
3 ' 2nd Range Register 

SRF08.Node = 113 
SRF08.Location = 0 

' Get Range to 2nd object 

' I2C Address of SRF08 sonar 
' Command Register 
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SRF08. V'Jidth 
SRF08 = 81 

cv8Bit ' 1 byte wide transfer 
' Ranging CorriDand - Result in em 

Do ' Wait for ranging to complete 
Ver SRF08 ' This will wait forever if your sonar 

Loop While Ver=255' becomes disconnected, so you may prefer 

SRF08.Width = cv16Bit' 2 byte wide transfer 
SRF08.Location = 2 ' 1st Range Register 
Range2 = SRF08 ' Get Range 

SRF08. Node = 114 ' I2C Addr€ss of SRF08 sonar 
SRF08.Location = 0 ' Command Register 
SRF08.Width = cv8Bit' 1 byte wide transfer 
SRF08 = 81 ' Ranging Command - Result ln ern 

Do ' Wait for ranging to complete 
Ver = SRF08 ' This will wait forever if your sonar 

Loop While Ver=255 ' becomes disconnected, so you may prefer 

SRF08.Width = cv16Bit ' 2 byte wide transfer 
SRF08.Location = 2 ' 1st Range Register 
Range3 = SRF08 ' Get Ran 

SRF08. Node = 115 ' I2C Address of SRF08 sonar 
SRF08.Location = 0 ' Command Register 
SRF08.Width = cv8Bit ' 1 byte wide transfer 
SRFO 8 = 81 ' Rang in;J Command - Result in ern 

Do ' Wait for ranging to complete 
Ver = SRF08 ' This will wait forever if your sonar 

Loop While Ver=255' becomes disconnected, so you may prefer 

SRF08.Width = cv16Bit' 2 byte wide transfer 
SRF08.Location = 2 ' 1st Range Register 
Range4 = SRF08 ' Get Ran 

End Sub 

Sub CornpassValueReading 
Compass.Location = 1 ' Address of single byte bearing 
Cornpass.Width = cv8Bit ' Compass Data is 1-byte wide. 
Bearing = Cornpass.Value' Get it 
End Sub 

Sub MotorSetup 
G=1 
E.IOLine 
F. IOLine 
H.IOLine 
I.IOLine 
E.Direction 
F.Direction 
H.Direction 
I.Direction 
End Sub 

14 
12 
13 
15 

cvOutput 
cvOutput 
cvOutput 
cvOutput 

Sub MotorDrive 
If 8=100 Then'd 
D. Invert 
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E.Low 
F.Low 
H.Low 
I.Low 

Endif 
If 8=103 Then'g 

E.High 
F.Low 
H.High 
I.Low 

Endif 
If 8=104 Then'h 
E.Low 

F.High 
H.Low 
I. High 
Endif 
If 8=101 Then'e 

E.Low 
F.High 
H.Low 
I.Low 
Endif 
If 8=102 Then'£ 

E.Low 
F.Low 
H.Low 
I.High 
Endif 
End Sub 

Sub Obsta1Checking 'Check the Obstacles 

G=1 

If Range1<17 Then 
If Range1>0 Then 
G=O 
E.Low 
F.Low 
H.Low 
I.Low 
'Spk.8eep (60757,10, 200) 
Endif 

Endif 
If Range2<17 Then 
If Range2>0 Then 
G=O 
E.Low 
F.Low 
H.Low 
I.Low 
'Spk.8eep (60757,10, 200) 
Endif 
Endif 
If Range3<17 Then 
If Range3>0 Then 
G=O 
E. Lovr 
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F.Low 
H. Lovv 
I.Low 
'Spk.Beep (60757,10, 200) 
Endlf 
Endif 
If Range4<17 Then 
If Range4>0 Then 
G=O 
E.Low 
F.Low 
H.Low 
I.Low 
'Spk.Beep (60757,10, 200) 
Endif 
Endif 

End Sub 

Sub FormatBearing 

If Bearing<200 Then 
Bearing1=Bearing 
Bearing2=0 
End If 

If Bearing>199 Then 
Bearing1=199 
Bearing2=Bearing-199 
Endif 

End Sub 

Sub EncorderVa1uesReading 'Reads the Enc. Value 
ENCpositionN=ENC.Position 
count=count+1 

If count=100 Then 
ENCpositionO=ENCpositionN 
ENCpositionN=ENC.Position 
ENC.Position.Clear 
count=O 

PositionUpdate 

Endif 
End Sub 

Sub PositionUpdate 

If (ENCpositionN>ENCpositionO) Then 
ENCposition=ENCpositionN-ENCpositionO 
X=100+ENCposition*Cos(Bearing) 
Y=150+ENCposition*Sin(Bearing) 

Endif 

If (ENCpositionN<ENCpositionO) Then 
ENCposition=ENCpositionO-ENCpositionN 
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X=ENCposition*Cos(Bearing) 
Y=ENCposition*Sin(Bearing) 
Endif 

End Sub 

Sub FormatEncPosition 

EncPosl=ENCpositionN 
EncPos2=0 
If ENCpositionN>249 Then 

EncPosl=250 
EncPos2=ENCpositionN-250 

Endif 
End Sub 

Sub DataTransmission 

If TxCount=O Then 

A.Value=251 'u Sent Encorder values 
A.Value=X 

Else If TxCount=l Then 
A.Value=252 'u Sent Encorder values 

A.Value=Y 
Else If TxCount=2 Then 

A.Value=253' sent Compass value 
A.Value=Bearingl 
Else If TxCount=3 Then 

A.Value=254' 
A.Value=Bearing2 

End If 

End Sub 

sent Compass value 

~}-.::· 
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'This program creates two oSerialX Objects. One is used to receive a 
'serial signal and the other is used to send a serial signal. 
'1\ oDio1 is used to show that while the oSerialX object is waiting 
'for incoming serial data, the program flow is stopped. 

Dim A As New oSeria1X 
Dim B As New oSerialX 
Dim C As New oDI01 
Dim D As New oDI01 
Dim V As New Byte 

lhm L As New oP1i7M 
Dim R As New oPWM 

Dim Compass As New oi2C 
Dim Led As New oDI01 
Dim Bearing As New oByte 

.Sub Main () 
C.IOLine = 5 
D.IOLine = 6 
C.Direction cvOutput 
D.Direction = cvOutput 
B.IOLineS = 25 
B.IOLineF = 18 
B.Baud = cv9600 
1'\. IOLineS = 26 
A. IOLineF = 16 
l'L Baud = cv9600 

Compass.Node = 96 
right by 1 

Compass.Mode = cv10Bit 
Compass.Noinc = 1 
Led.IOLine = 30 
Led.Direction = cvOutput 

Do 

L.PreScale=2 
L.IOLine=17 
R.PreScale=2 
R. IOLine=18 
L.Period=79 
R.Period=79 

Cornpass.Location = 1 
Compass.Width = cv8Bit 
Bearing = Compass.Va1ue 

'A=B 
'A.Value=99'c 
A.Value=Bearing 
'A.String="B" 
C. Invert 
V=B 
'Cruising 
If V=100 Then'd 

' Create the compass objects 

' Decimal of Hex address OxCO shifted 

' I2C mode is 10-Bit Addressing. 
' Don't increment 
' Pin 28 on 40 way connector 

' Address of single byte bearing 
' Compass Data is 1-byte wide. 

' Get it 
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L.Value=lO 
R.Value=lO 
L.Operate=l 
R.Operate=l 

Endif 

'Left Turn 
If V=lOl Then'e 

L.Value=l4 
R.Value=lO 
L.Operate=l 
R.Operate=l 

Endif 

'Right Turn 
If V=102 Then'f 

L.Value=lO 
R.Value=14 
L.Operate=l 
R.Operate=l 

Endif 

'Reverse 
If V=103 Then'g 

L.Value=l6 
R.Value=16 
L.Operate=l 
R.Operate=l 

Endif 

' Stop 
If V=104 Then'h 
D. Invert 

L.Value=lO 
R.Value=lO 
L.Operate=O 
R.Operate=O 

Endif 

Loop 
F:!d Sub 
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Dim Ver As New oByte 
Dim SRF08 As New oi2C 
Spk As oSpeaker 
Dim Rangel As New oWord 
Dim Range2 As New oWord 
Dim Range] As New oWord 
Dim Range4 As New oWord 

~3ub main () 
SRF08.Node = 112 

shifted right by 1 
SRF08.Mode = cvlOBit 

J,ddressing. 
SRF08.Noinc = 1 
SRF08.Width = cv8Bit 
SRF08.Location = 0 
SRF08 = 81 

140 x 43mm = 6m 

Do 

em 

:_joop 

End 

SRF08.Node = 112 
SRF08.Location = 0 
SRF08.Width = cv8Bit 
SRF08 = 81 

Do 
Ver = SRF08 

Loop While Ver=255 

SRF08.Width = cvl6Bit 
SRF08.Location = 2 
Rangel = SRF08 
'SRF08.Location = 3 
'Range2 = SRF08 

If Rangel<l7 Then 
If Rangel>O Then 
Spk.Beep (60757,10, 200) 
Endif 
Endif 

' Decimal of Hex address OxEO 

I I2C mode is 10-Bit 

' Don't increment 
' 1 byte wide transfer 
' Range Register 

' Limit 1st sonar Range to 6m, 

' I2C Address of SRF08 sonar 
' Command Register 
' 1 byte wide transfer 
' Ranging Command - Result in 

' Wait for ranging to complete 
' This will wait forever if 

your sonar 
' becomes disconnected, so you 

may prefer 

' 2 byte wide transfer 
' 1st Range Register 
' Get Range to 1st object 
' 2nd Range Register 
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Appendix B 

MatLab Program of Fuzzy PD Navigational Controller with the Dynamic model 

- 0 0 0 0_ 0 0 0_ 0 0 0 0 0 0 0 0_ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
c o~~~~b~b~~bbbbbb66b~bbbbbbbb~~bbb~~~b~bbbbbbb~tibtibtibfififi~tififibbfi 

,fuzzy PO controller with Dynamic model 
12/12/2007 
~control Fuzzy_Navi.m 

%%%%%%%%%% 
%%%%%%%%%% 
%%%%%%9o%%% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

function Xdot=control Fuzzy_Navi(t,y)%program for speed control 

n=[y(l) y(2) y(3)] ';%Configuration vector=[x yep] 
V=[y(4) y(S) y(6)] ';%Velocity vector=[u v r] 
.jc[cos(y(3)) -sin(y(3)) O;sin(y(3)) cos(y(3)) 0;0 0 1;]; 
rotation matrix 

ndot=J*V;%velocities w.r.t. earth fixed frame 

dhpy=-0.4; 
dlisy=0.4;%distance from the CG to the Sboard & Port side hulls 
Lh=2.54;%length of the hull 
Bh=0.127;%beam 
Th=0.1524;%draft 
Ah=0.6452;%hull area 

p=l025;%density of sea water 
vis=1.4*10A(-6) ;%kinematic viscosity 
1=9.81; 

~p=(5*2)*2.2; %mass of both pontoons [kg] 
[pz=(1/12)*mp*(ThA2+8hA2); 
mass moment of inertia about mass-center z-axis [kg*mA2] 
misc. near pontoons 

::11 = 11 * 2 . 2; 
=(13*2)*2.2; 

r:ls=3.6*2.2; 
=33*2.2; 

%mass of strut [kg] 

.mise inside Gertler body 
~3=4*2.2; 

m4=(11+87)*2.2; 
m5=25*2.2; 

6=19*2.2; 

~.qcc=l; %Boat Max accelaration 
rest=405; 
·estarray=t; 
total 

%ver.icular mass :r:=mp+ms+mg+ml +m2+m3+m4+m5+m6; 
Iz=(3.94e5)*2.2*(0.0254A2); 
::=[rn,O,O; O,m,O; O,O,Iz]; %mass 

%(approximate value from pro-E) 
matrix for the rigid body 

: -= [ 0 -m * y ( 6) 0; m * y ( 6) 0 0; 0 0 0 ; ] ; 
Coriolis & centripetal terms for rigid 

% body 
=~=C*V;%Coriolis terms 

;c;=(y(4)-dhpy*y(6))*Lh/vis; %Renolds Number 
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if Re>O & Re<100 %at lamina to turbulant transistion point 
Cfhp=0.075/( (log(Re)-2)A2); 

ccoefficient of friction using ITTC formular 
elseif Re>100 

Cfhp=0.075/( (log(Re)-2)A2); 
else 

Cfhp=O; %coefficient of friction using ITTC formular 
end 

Fshpxur=Cfhp*Ah*p*(y(4)-dhpy*y(6) )*abs(y(4)-dhpy*y(6) ); 
~skin friction force for port side hull 
Fshsxur=Cfhp*Ah*p*(y(4)-dhsy*y(6))*abs(y(4)-dhsy*y(6) ); 
skin friction force for starboard side hull 

Fnpi= [.25 .3 .35 .4 .45 .5 .55 .6 .65 .7]; 
~to be used to find the wave drag (through interpolation) 
Cwf= [1.2 1.75 2.25 2.58 3.75 4.25 4.15 3.85 3.58 3.4]*1e-3; 
~The numbers were taken from fig 6 of journal of ship researech 

june2001pg 94 
Fnp=(y(4)-dhpy*y(6) )/(g*Lh)A0.5; 

for i=1:9 

end 

Fnp=(y(4)-dhpy*y(6) )/(g*Lh)A0.5; 
if (Fnp>Fnpi(i) & Fnp<Fnpi(i+1)) 

Cw=(Cwf(i)+Cwf(i+1))/2; 
else 
Cw=Cwf(i); 
end 

Erhpxur=Cw*Ah*p*(y(4)-dhpy*y(6) )*abs(y(4)-dhpy*y(6)); 
~wavw drag in Port hull 

for i=l:9 

end 

Fnp=(y(4)-dhsy*y(6) )/(g*Lh)A0.5; 
if (Fnp>Fnpi(i) & Fnp<Fnpi(i+1)) 

Cw=(Cwf(i)+Cwf(i+l) )/2; 
else 
Cw=Cwf(i); 
end 

frhsxur=Cw*Ah*p*(y(4)-dhpy*y(6) )*abs(y(4)-dhsy*y(6) ); 
wavw drag in Sboard hull 

XS=Lh/2;XS=Lh/2; 
CDh=2;%drag coefficient 
dx=-0.4;%distance from the CG to the hull centre in Xb direction 
V3=y(5)+(Lh/2+dx)*y(6) ;%velocity@ bow end 
VS=y(5)-(Lh/2-dx)*y(6);%velocity@ stern end 

Al=1/3*abs(VB-VS)*(VB-VS)*(XBA2*abs(XB)-XSA2*abs(XS) )/LhA2; 
~2=0.5*abs(VB-VS)*y(5)*(XB*abs(XB)-XS*abs(XS) )/Lh; 
~3=0.5*abs(VB-VS)*abs(y(5) )*(XBA2-XSA2)/Lh; 
A4=y(5)*abs(y(5) )*(XB-XS); 
Fhpyvr=0.5*CDh*Th*p*(Al+A2+A3+A4);%damping force 
Fhsyvr=0.5*CDh*Th*p*(A1+A2+A3+A4) ;%damping force 

n~xur=(Fshpxur+Frhpxur)*dhpy+(Fshsxur+Frhsxur)*dhsy;%damping moment 

31=1/4*abs(VB-VS)*(VB-VS)/LhA2*(XBA3*abs(XB)-XSA3*abs(XS) ); 
B2=1/3*abs(VB-VS)/Lh*( (VB+VS)/2)*(XBA2*abs(XB)-XSA2*abs(XS) ); 
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D3=1/3*(VB-VS)/Lh*abs( (VB+VS)/2)*(XBA3-XSA3); 
34=1/2*(VB+VS)/2*abs( (VB+VS)/2)*(XBA2-XSA2); 
~hpyvr=Oo5*CDh*Th*p*(B1+B2+B3+B4); 
mhsyvr=Oo5*CDh*Th*p*(B1+B2+B3+B4); 
I~huvr=mhxur+mhpyvr+mhsyvr;% total moment 

alpa=pi/18; 
CL=4o5837*alpa; 
CD=O; 

Sy=Oo0948;%projected area 
Ls=-1/2*p*abs(y(4)+y(5))*(y(4)+y(5))*Sy*CL;%lift force 
Ds=1/2*p*abs(y(4)+y(5))*(y(4)+y(5) )*Sy*CD;%Drag force 

Fffsxur=Ls*sin(alpa)+Ds*cos(alpa); 
bs=Oo025;%beam 
cs=Oo075; 
Sx=Oo0395;%projected area 
Vsx=y(4)-bs/2*y(6); 
F:1 s i = [ 0 0 o 1 o 2 o 3 o 4 o 5 o 6 o 7 
Crsi=[O 0 002 015 o47 1o12 1o02 o73 
for i=1:11 

Fns=(y(4)-dhsy*y(6) )/(g*cs)AOo5; 
if (Fns>Fnsi(i) & Fns<Fnsi(i+1)) 

Crs=(Crsi(i)+Crsi(i+1))/2; 
else 
Crs=Crsi(i); 
end 

end 
frsxur=1/2*p*Vsx*abs(Vsx)*Sx*Crs; 

Fffsyur=Ls*cos(alpa)-Ds*sin(alpa); 
Vsy=y(5)+cs/2*y(6); 
'::r·sy=2; 
frsyur=1/2*p*Vsy*abs(Vsy)*Sy*Crsy; 
dsy=O;dsx=Oo6; 

Oo8 1.12 3]'; 
Oo55 0023 0021 Oo2]'; 

::1suvr= (Fffsxur+frsxur) *dsy+ (Fffsyur+frsyur) *dsx; 

o1565;%sectional area of the gertler body 
'~q=1o875; 

<cogi= [2 4 6 8 10 12 14 16 18 20 22 24 26 28 30] '*1e6; 
~eynolds number to match w/ Cfg vector (for interpolation) 

'Jl= [3o9 304 302 3o05 209 2085 2075 207 2065 206 2o55 2o52 2o51 2o49 
·.46] '*1e-3; 
Taken for Gertler model 

··or i=1: 14 

r,d 

Reg=y(4)*Lg/vis; 
if (Reg>Regi(i) & Reg<Regi(i+1)) 

Cdg=(Cgi(i)+Cgi(i+1))/2; 
else 
Cdg=Cgi(i); 
end 

Igxu=l/2*p*y(4)*abs(y(4) )*Sg*Cdg; 
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for i=1:10 

fccld 

dgx=[0.2006 0.2103 0.2184 0.2260 0.2332 0.2401 0.2467 .... 
0.2531 0.2592 0.2651]; 

Vgy(i)=y(5)+dgx(i)*y(6); 
Cgy=[3.9 3.4 3.2 3.05 2.9 2.85 2.75 2.7 2.65 2.6 2.55 2.52 .... 

2.51 2.49 2.46] '*le-3; 
Cg3d=[105 59 20.5 9.9 4.4 2.8 1.9 1.4 1.3 1.0 .95 1.0 .... 

1.1 1.0 0.2 .24 .54]; 
Apg=[0.0373 0.0391 0.0406 0.0420 0.0434 0.0447 0.0459 .... 

0.0471 0.0482 0.0493]; 
Fgyvrr(i)=0.5*p*Apg(i)*abs(Vgy(i) )*Vgy(i)*Cgy(i)*Cg3d(i); 
mguvrr(i)=Fgyvrr(i)*dgx(i); 

Fgyvrr=[Fgyvrr(l) Fgyvrr(2) Fgyvrr(3) Fgyvrr(4) Fgyvrr(5) 
Fgyvrr(6) Fgyvrr(7) Fgyvrr(8) Fgyvrr(9) Fgyvrr(lO)]; 

mguvrr=[mguvrr(l) mguvrr(2) mguvrr(3) mguvrr(4) mguvrr(5) 
mguvrr(6) mguvrr(7) mguvrr(8) mguvrr(9) mguvrr(lO)]; 

Fgyvr=sum(Fgyvrr); 
mguvrl=sum(mguvrr); 
dgy=O; 
mguvr=fgxu*dgy+mguvrl; 

:JV=[ (Fshpxur+Fshsxur+Frhpxur+Frhsxur+Fffsxur+Fffsxur+frsxur+fgxu); 
(Fhpyvr+Fhsyvr+Fffsyur+frsyur); 
(mhuvr+msuvr+mguvr) ;]; 

jpx=0.85; 
'1Vl=[DV(l) DV(2) DV(3)] '+Cr; 
1V=-[hVl(l) hV1(2) hV1(3)/dpx]'; 

distance from CG to propellers in X-direction 
~ ncw=[m 0 0;0 m 0;0 0 Iz/dpx;];%Mass matrix required 

Desired Profile 
LX d,xdot d,xddot d,y d,ydot d,yddot d] 

............................. 
error 
~x=x_d-y(l); 

~y=y d-y(2); 
error dot 
~xdot=xdot_d-ndot(l); 

~ydot=ydot d-ndot(2); 

a= readfis('Navi'); 
if ex>4 

ex=4; 
end 
if exdot>4 

exdot=4; 
end 
if ey>4 

ey=4; 
end 
if eydot>4 

eydot=4; 
end 

if ex<-4 
ex=-4; 

DesiredPath(t); 

.., t 
'' ' 
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end 
if exdot<-4 

exdot=-4; 
end 
if ey<-4 

ey=-4; 
end 
if eydot<-4 

eydot=-4; 
end 
FisX=evalfis( [ex exdot], a); 
FisY=evalfis([ey eydot], a); 

acc_x=xddot_d+( (FisX*2-1)*10); 
0cc y=yddot d+( (FisY*2-1)*10); 

Gddot xy=[acc x ace y] 1 %; 

J_xy=[cos(y(3)) -sin(y(3)); sin(y(3)) ccs(y(3));]; 
Jdot_xy=[-sin(y(3)) -cos(y(3)) ;cos(y(3)) -sin(y(3)) ;] ; 
Vxy=[y(4) y(S)] 1

; 

;f x y= [ m 0 ; 0 m; ] ; 
X y= [ h V ( 1 ) h V ( 2 ) ] 1 

; 

Vcot_xy=inv(J_xy)*(nddot_xy-Jdot xy*V_xy); 
:J_xy=l.2S*M_xy*Vdot_xy;-l.S*h_xy;%with M hat and h hat or f hat 
gx=g_xy(l); 
gye=g_xy(2); 
gU=[gx gye gye] 1

; 

Vdot=inv(M new)*(hV+gU); 

~hrust=sqrt(gxA2+gyeA2)%thrust 

d~lta=atan(qye/qxl%steerinq angle 

Xdot=[ndot;Vdot;]; 

;, £o ·~, ~%% 9o% go%%%%%%%%%%%% %End0fPrograrnme%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%% 

Note:-

The above MatLab cording for Dynamic model is taken from the reference 26 and 

Fuzzy PD controller is added for simulations later. 
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~I%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
~Plot position error on sinosoidal path 
~12/12/2007 

_positions error pd_Sin.m 

%%%%%%%%%% 
%%%%%%%%%% 
%%%%%%%%%% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

CT=O: 0. 1: 4 0; 

XO=[O 0 0 0 0 0]; 
options 
l J ) ; 

odeset('RelTol',le-l,'AbsTol',[le-lle-lle-lle-lle-lle-

''" Y]=ode4S('control Fuzzy_Navi',T,XO,options); 

m~length ( T) ; 

~': d,xdot d,xddot d,y_d,ydot d,yddot d] DesiredPath(T); 

for i=l:m 

%pause(O.l) 

figure(2) 
title('Error in Longitudinal direction') 
ylabel('Longitudinal error- [m] ') 

PI~d 

xlabel ('Time - [sec] ') 
ex(i)=x_d(i)-Y(i,l); 
plot (i/lO,ex(i), '--b'); 

hold on 

figure(3) 
title('Error in Lateral direction') 
xlabel('Longitudinal error- [m] ') 
ylabel ('Time - [sec] ') 
ey(i)=y_d(i)-Y(i,2); 
plot(i/lO,ey(i), '--b'); 
hold on 

%%%%%%%%%%%%%%%~%%%%%%%%%%%%EndOfPrograMue%%%%%%%%%%%%%%%%%%%%% 
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Appendix C 

MatLab Program for Appling UGV algorithms to USV 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
~MatLab Program for Appling UGV algorithms to USV 
~12/12/2007 

:oAfuzzybase.m 

9--9--9--9--9--9--9--9--9--9. 
0000000000 

%%%%%%%%%% 
%%%%%%%%%% 

~%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

clear all 
Ymax=2000;%Max Y of the grid 
Xmax=2000;%Max X of the grid 
timeint=1;%Plot time intervals 
Plottime=800;% Max plating time 

Xg=950;%Goal point cordinates 
Yg=10; 
Xs=30;%Starting point of the boat 
Ys=915; 
Xo=500;%0bstacle codinates 
Yo=450; 

Xact(1)=Xs;% actual position 
Yact(1)=Ys; 

oldX=Xs; 
oldY=Ys; 
13o!I=O; 

RE=O;%Heading towards goal 
Gradiant=O;%tan(RH) 
Re1Dis=1000;%Relative distance 
index=1; 
v~~s; 

z=O; 
x(l)=Xs; 
y(1)=Ys; 
tor t=1:timeint:Plottime 
time(index)=t; 
if ( (x(index)-Xg)A2+(y(index)-Yg)A2) > (V*timeint*2+1)A2 
,objective function 
index=index+1; % Increments the indexing term so that 

% index=1 corresponds to time t=O. 

1Calculating required heading 
if (Xg>x(index-1)) 
if Yg>y(index-1) 
Gradiant=(Yg-y(index-1))/(Xg-x(index-1)); 
RE=atan(Gradiant); 
end 
if y(index-1)>Yg 
Gradiant=(y(index-1)-Yg)/(Xg-x(index-1) ); 
RH=2*pi-atan(Gradiant); 
end 
end 

if (x(index-1)>Xg) 
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if Yg>y(index-1) 

Gradiant=(Yg-y(index-1) )/(x(index-1)-Xg); 
RH=pi-atan(Gradiant); 
end 
if y(index-1)>Yg 

Gradiant=(y(index-1)-Yg)/(x(index-1)-Xg); 
RH=pi+atan(Gradiant); 
end 
end 

%Calculate obstacle heading 
if (Xo>x(index-1)) 

if Yo>y(index-1) 

end 

Gradiant=(Yo-y(index-1))/(Xo-x(index-1) ); 
ObH=atan(Gradiant); 

if y(index-1)>Yo 

Gradiant=(y(index-1)-Yo)/(Xo-x(index-1)); 
ObH=2*pi-atan(Gradiant); 

end 
if y(index-1)==Yo 

ObH=O; 
end 

end 

if (x(index-1)>Xo) 
if Yo>y(index-1) 

Gradiant=(Yo-y(index-1))/(x(index-1)-Xo); 
ObH=pi-atan(Gradiant); 

end 

if y(index-1)>Yo 

Gradiant=(y(index-1)-Yo)/(x(index-1)-Xo); 
ObH=pi+atan(Gradiant); 

end 
if Yo==y(index-1) 

ObH=pi; 
end 

end 

if Yo>y(index-1) 

end 

if Xo==x(index-1) 
ObH=pi/2; 

end 

if Yo<y(index-1) 

end 

if Xo==x(index-1) 
ObH=pi/2*3; 

end 

% Calculate boat heading 
if (x(index-1)>oldX) 

if y(index-1)>o1dY 

end 

Gradiant=(y(index-1)-oldY)/(x(index-1)-oldX); 
BoH=atan(Gradiant); 

if oldY>y(index-1) 

Gradiant=(oldY-y(index-1) )/(x(index-1)-oldX); 
BoH=2*pi-atan(Gradiant); 
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end 

end 

if oldY==y(index-1) 
BoH=O; 

end 

if (oldX>x(index-1)) 

end 

if y(index-1)>oldY 
Gradiant=(y(index-1)-oldY)/(oldX-x(index-1)); 
BoH=pi-atan(Gradiant); 

end 

if oldY>y(index-1) 

end 

Gradiant=(oldY-y(index-1) )/(oldX-x(index-1) ); 
BoH=pi+atan(Gradiant); 

if oldY==y(index-1) 
BoH=pi; 

end 

if y(index-1)>oldY 

end 

if oldX==x(index-1) 
BoH=pi/2; 

end 

if y(index-1)<oldY 
if oldX==x(index-1) 

BoH=pi/2*3; 
end 

end 
oldY=y(index-1); 
oldX=x(index-1); 

if ( (pi/2)+ BoH-ObH)>=O 
Obstacle_angle=(pi/2)+ BoH-ObH; 
elseif ( (pi/2)+ BoH-ObH)>2*pi 
Obstacle angle=(pi/2)+ BoH-ObH-2*pi; 
elseif ( (pi/2)+ BoH-ObH)>4*pi 
Obstacle angle=(pi/2)+ BoH-ObH-4*pi; 
elseif \(pi/2)+ B0H-ObH)<O 
Obstacle_angle=(pi/2)+ BoH-ObH+2*pl; 
elseif ( (pi/2)+ BoH-ObH)<-2*pi 
Obstacle angle=(pi/2)+ BoH-ObH+4*pi; 
end 

Calculating the path codinates 

RelDis=sqrt( (Yo-y(index-l))A2 +(Xo-x(index-1) )A2); 
Calculating relative distance to Obsatacle 

if Re1Dis>100 
x(index)=x(index-1)+V*timelnt*cos(RH); 
y(index)=y(index-1)+V*timelnt*sin(RH); 
timeint=lO; 
lsc 

b = readfis('CAnew'); 
acc_CA=evalfis([Obstacle angle (RelDis)/100], b); 
acc_x=(acc_CA(1)-0.5)*2*cos(BoH)-(acc_CA(2)-0.5)*2*sin(BoH); 

cc y=(acc CA(2)-0.5)*2*cos(BoH)+(acc CA(1)-0.5)*2*sin(BoH); " r '' ' 

l 
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~(index)=x(index-l)+acc~x*timeint*cos(RH)*V; 

\·;index)=y(index-l)+acc y*timeint*sin(RH)*V; % 
,-nd 

.ci 
-La 

. Jld on 
' L gu:ce ( 2) 
title('Path near obstacles') 

label ('X distance [m] ') 
ylabel('Y distance[m] ') 
'l f 
nlot(x,y, 'rs', 'LineWidth',O.S, 

'MarkerEdgeColor', 'g', 
'MarkerFaceColor', 'g', ... 
'MarkerSize',l) 

il J1d on 

r· cOt (Xact, Yact, Irs I, I LineWidth I, 0. 5, 
'MarkerEdgeColor', 'k', 
'MarkerFaceColor', 'b', ... 
'MarkerSize',l) 

!',J1d on 

plot (Xo, Yo,' rs', 'LinevJidth', 1, 
'MarkerEdgeColor', 'k', 
'MarkerFaceColor', 'b', ... 
'MarkerSize',S) 

:tle('Path near obstacles') 
x~abel('X distance[m] ') 
label('Y distance[m] ') 

'', ~%%%%%%%%%%%% %%%% %%EndOfProgramme%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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Appendix D 

MatLab Program for Novel Algorithm to Avoid Static Obstacles 

~ %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
~Module for Plot Novel obstacle avoidance algorithm 
c, 12/12/2007 
\OAMainProForOA.m 

%%%%%%%%%% 
%%%%%%%%%% 
%%%%%%%%%% 

t%%%%%%%%%!t%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

function [xnew,ynew] MorphinOA(xcur,ycur,Gx,Gy,O) 

t)%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% create map grid: 
0 = zeros(20); 
create obstacles: 

W(1:3,1)=1; 
'0(1:3,3)=1; 
0(1,1:3)=1; 

,0(3,1:3)=1; 
~0(2,2)=1; 

0(10,15:90)=1; 
for n=0:20; 

0(30-n,30+n)=1; %diagonal line 
end 

~~% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

create map grid: 
M = zeros(size(O) ); 
subgrid=S; 

ForGridSize=size(M); 

gridsize=ForGridSize(1,2); 

Ypathindex=1; 
Xpathindex=1; 

pathYL=zeros(gridsize); 
pathYR=zeros(gridsize); 
pathX=zeros(gridsize); 

:.?;%Path grids 

for centre=1: subgrid: ( gridsize/2); 

for x=1: (gridsize/2); 

i: (gridsize/2-centre)A2- (x-centre)A2 >0 

y=round(sqrt( (gridsize/2-centre)A2- (x-centre)A2) ); 

end 

Jf (x-centre)A2-(gridsize/2-centre)A2 >0 
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y=round(sqrt(x-centre)A2-(gridsize/2-centre)A2); 

end 

if (x-centre)==(gridsize/2-centre) 

y=1; 

end 

if gridsize>y 
if y>O 

M(y,x)=1; 
M(y, (gridsize-x) )=1; 
pathYL(Ypathindex,x)=y; 
pathYR(Ypathindex, (gridsize-x)) =y; 

end 
end 

end 

Ypathindex=Ypathindex+1; 

end 

for y1=0:subgrid:gridsize 

Xpathindex=Xpathindex+1; 

for lx=1:gridsize 

ly=round( (lx-1)*(y1-gridsize/2)/(gridsize)+gridsize/2); 

c'1 ( lx, ly) =1; 

pathX(Xpathindex,lx)=ly; 

end 

cond 

~J_ o o o o o o o o o o o o_ o o o o o o o o q__ o o o o o_ o o_ o o o o c o o_ o o o o o o o o g._ o o o o o o o_ o o o o o o o o o o o_ o o o o u~~~~~~~~~~~~6~b~~6~~o~~~~b~b~~~~6~~~~~~~~~~o~~~~~~b~~~~bb~~~~b~~~~ 

DGoalXL(l:round(gridsize/subgrid*2) )=0; 
DGoalXR(l:round(gridsize/subgrid*2) )=0; 
DGoalY(1:round(gridsize/subgrid*2) )=0; 

for Ypathindex=1:gridsize 

b~gridsize*2; 

for x=l:gridsize 

if (pathYL(Ypathindex,x)>O) 
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end 

end 

if (O(pathYL(Ypathindex,x),x)==l) 

end 

a=pathYL(Ypathindex,x); 

if a<b 
b=a; 

end 

DGoalXL(Ypathindex)=b; 

end 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
for Ypathindex=l:gridsize 

end 

b=gridsize*2; 

for x=l:gridsize 

if (pathYR(Ypathindex,x)>O) 

end 

end 

if (O(pathYR(Ypathindex,x),x)==l) 

end 

a=pathYR(Ypathindex,x); 

if a<b 
b=a; 

end 

DGoalXR(Ypathindex)=b; 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

for Xpathindex=l:gridsize 

a=gridsize*2; 

for y=l:gridsize 

if pathX(Xpathindex,x)>O% Here x andy should be interchange 

if (0 ( y, (pathX (Xpathindex, y))) ==1) 
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end 
end 

end 

a=y; 

DGoalY(Xpathindex)=a; 
end 

%%%%Required heading angle 
p=O; 

theta=atan( (Gy-ycur)/(Gx-xcur)); 
if Gy==ycur 
else 

p=round(((Gx-xcur)/(Gy-ycur) )*(4-ycur)+xcur); 
end 
ynew=l+ycur; 
xnew=p; 

6 %%%%%%%%%%%%%%%%%%%%EndOfProgramme%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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Appendix E 

MatLab Program for Appling Polynomial Approximation to Path Prediction 

t-~~%%%%~%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
~Polynomial Approximation for path prediction 
Sl2/10/2008 
IForThesisPolyPlot.m 

%%%%%%%%%% 
0000000000 -oooo-ooooo-o 

%%%%%%%%%% 
~%~%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

c:lcar 
tf=20; 
rf=250; 
tb=SO % time block 
time= [0:0.05:40]*tf; %from 0 to 100000 seconds 
Tl = [O.S*sin( (time*0.1*pi)/tf)]; 
T1=Tl*rf%+2*rand(size(Tl)); 
T2 = [sin( (time*0.1*pi/2)/tf)]; 
T2=T2*rf%+2*rand(size(T2) ); 
Lndex=tb-1; 
for z=1: ( index-1) 

prett(z)=time(z); 
preFy(z)=O; 
preFx(z)=O; 

end 
tor k=O:tb: (length(time)-tb) 

if k>tb 
for i=-tb:1:tb 

end 
else 

if length(time)>(k+i) 
fxd(i+tb+1)=T1(k+i); 
fyd(i+tb+1)=T2(k+i); 
tt(i+tb+1)=time(k+i); 
end 

for i=1:tb 

end 

if length(time)>(k+i) 
fxd(i)=T1(k+i); 
fyd(i)=T2 (k+i); 
tt(i)=time(k+i); 
end 

end 
polydeg=10; 
py = polyfit(tt,fyd,polydeg); 
px = polyfit(tt,fxd,polydeg); 
:or i=l:tb 
index=index+1; 
if length(time)>index 
prctt(index)=time(index); 
prcFy(index)=polyval(py,prett(index) ); 
preFx(index)=polyval(px,prett(index)); 
end 

end 
end 

:igure(l) 
plot(time,T1) 
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xlabel('Time I [S]'); 
ylabel ('Longitudinal Distance I [m] '); 

figure (2) 
plot(time,T2) 
xlabel('Time I [S]'); 
ylabel ('Lateral Distance I [m] ') ; 

figure(]) 
plot(Tl,T2) 

xl abel ('Longitudinal Distance I [m] ') ; 
ylabel ('Lateral Distance I [m] '); 
title('Actual Path'); 

figure(4) 

plot(Tl,T2, 'r',preFx,preFy, 'b') 
xlabel('Longitudinal Distance I [m] '); 
ylabel ('Lateral Distance I [m] '); 
title('Actual and Predicted Path'); 

r=l:min(length(Tl),length(preFx)); 
efx(r)=preFx(r)-Tl(r); 

s=l:min(length(T2),length(preFy) ); 
efy(s)=preFy(s)-T2(s); 

figure(S) 
plot((efx+efy)l2, 'r') 
xlabel('Time [S]'); 
y label ('Error [m] ') ; 

~~%%%~%%%%%%%%%%%%%%%%EndOfProgramme%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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Appendix F 

MatLab Program for Appling GRNN to Path Prediction 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%GRNN for path prediction 
12/10/2008 

%ForThesisNNErrorPlot.m 

%%%%%%%%%% 
%%%%%%%%%% 
%%%%%%%%%% 

%%%%%%%%%%%%%%%%%%%%%%%%~%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

clear 
t f=2 0; 
rf=250; 
tb=50 % time block 

time= [0:0.05:40]*tf; %from 0 to 800 seconds 
T1 = [0.5*sin( (time*0.1*pi)/tf)]; 
TA1=T1*rf; 
T2 = [sin( (time*0.1*pi/2)/tf)]; 
TA2=T2*rf; 

T1 = [0.5*sin( (time*0.1*pi)/tf)]; 
T1=T1*rf%+5*rand(size(T1)); 

T2 = [sin( (time*0.1*pi/2)/tf)]; 
T2=T2*rf%+5*rand(size(T2) ); 

index=tb-1; 

for z=1: ( index-1) 
prett(z)=time(z); 
preFy(z)=O; 
preFx(z)=O; 

end 

for k=O:tb: (length(time)-tb) 
if k>tb 
for i=-tb:1:tb 

end 
else 

if length(time)>(k+i) 
fxd(i+tb+1)=T1(k+i); 
fyd(i+tb+1)=T2(k+i); 
tt(i+tb+1)=time(k+i); 
end 

for i=l:tb 

end 

if length(time)>(k+i) 
fxd(i)=Tl(k+i); 
fyd(i)=T2 (k+i); 
tt(i)=time(k+i); 
end 

end 
spread 1; 
netY = newgrnn(tt,fyd,spread); 
netX = newgrnn(tt,fxd,spread); 

for i=1:tb 
index=index+1; 
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end 
end 

if length(time)>index 
prett(index)=time(index); 
preFy(index)=sim(netY,prett(index) ); 
preFx(index)=sim(netX,prett(index) ); 

end 

r=1:min(length(T1),length(preFx) ); 
efx(r)=preFx(r)-T1(r); 

s=1:min(length(T2),length(preFy)); 
efy(s)=preFy(s)-T2(s); 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

index=tb-1; 

for z=1: ( index-1) 
prett(z)=time(z); 
preFy2 (z)=O; 
preFx2(z)=O; 

end 

for k=O:tb: (length(time)-tb) 
if k>tb 
for i=-tb:1:tb 

end 
else 

if length(time)>(k+i) 
fxd(i+tb+1)=T1(k+i); 
fyd(i+tb+1)=T2(k+i); 
tt(i+tb+1)=time(k+i); 
end 

for i=1:tb 
if length(time)>(k+i) 
fxd(i)=T1(k+i); 
fyd(i)=T2(k+i); 
tt(i)=time(k+i); 
end 

end 
end 

spread = 5; 
netY = newgrnn(tt,fyd,spread); 
netX = newgrnn(tt,fxd,sprGad); 

end 

for i=1:tb 
index=index+1; 

end 

if length(time)>index 
prett(index)=time(index); 
preFy2(indcx)=sim(netY,prett(index)); 
preFx2(index)=sim(netX,prett(index)); 
end 

r=1:min(length(T1),length(preFx2) ); 
efx2(r)=preFx2(r)-T1(r); 

s=1:min(length(T2),length(preFy2)); 
efy2(s)=preFy2(s)-T2(s); 
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%~%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

index=tb-1; 
for z=1:(index-1) 

prett(z)=tirne(z); 
preFy3(z)=O; 
preFx3(z)=O; 

end 
for k=O:tb: (length(tirne)-tb) 

if k>tb 
for i=-tb:1:tb 

if length(tirne)>(k+i) 
fxd(i+tb+1)=T1(k+i); 
fyd(i+tb+1)=T2(k+i); 
tt(i+tb+1)=tirne(k+i); 
end 

end 
else 

for i=1:tb 

end 

if length(tirne)>(k+i) 
fxd(i)=T1(k+i); 
fyd(i)=T2(k+i); 
tt(i)=tirne(k+i); 
end 

end 
spread 10; 
netY = newgrnn(tt,fyd,spread); 
netX = newgrnn(tt,fxd,spread); 

for i=1:tb 
index=index+1; 
if length(tirne)>index 
prett(index)=tirne(index); 
preFy3(index)=sirn(netY,prett(index) ); 
preFx3(index)=sim(netX,prett(index) ); 

end 
end 

end 
r=l:rnin(length(T1),length(preFx3) ); 
efx3(r)=preFx3(r)-T1(r); 
s=1:rnin(length(T2),length(preFy3) ); 
efy3(s)=preFy3(s)-T2(s); 

'~t%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

figure(1) 
plot(tirne,T1) 
xlabel('Tirne I [S]'); 
ylabel('Longitudinal Distance I [m] '); 

figure(2) 
plot(tirne,T2) 
xlabel('Time I [S]'); 
ylabel ('Lateral Distance I [m] '); 

:igure(3) 
ot(T1,T2) 

xlabel('Longitudinal Distance I [m] '); 
ylabel ('Lateral Distance I [m] '); 
title('Actual Path'); 

~,. 

f .. 
' 
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figure ( 4) 
plot (TAl 1 TA2 1 'k' I preFx 1 preFy 1 'g' 1 preFx2 1 preFy2 1 'b' 1 pre fx3 1 preFy3 1 'r') 
xJabel('Longitudinal Distance I [m] '); 
ylabel ('Lateral Distance I [m] '); 
title('Actual and Predicted Paths'); 

figure(6) 
plot (efxl2 1 'g') 
xlabel ('Time [S] '); 
ylabel('Longitudinal Error [m] '); 
hold on 

figure(7) 
plot (efyl2 1 'g') 
xlabel ('Time [S] '); 
ylabel('Lateral Error [m] '); 
hold on 

figure(6) 
plot(efx3l2 1 'r') 
xlabel ('Time [S] '); 
ylabel('Longitudinal Error [m] '); 
hold on 

figure(7) 
plot(efy3l2 1 'r') 
xlabel ('Time [S] '); 
ylabel ('Lateral Error [m] '); 
hold on 

figure(6) 
plot (efx212 1 'b') 
xlabel ('Time [S] '); 
ylabel('Longitudinal Error [m] '); 
r,old off 

figure(7) 
plot (efy2l2 1 'b') 
xlabel('Time [S]'); 
ylabel('Lateral Error [m] '); 
hold off 

%%%%%%%%%%%%%%%%%%%End0£Programme%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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Appendix G 

MatLab Program to Compare Velocity Obstacle Method with Novel Method for 

Area Prediction of Dynamic Obstacles 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
~Comparing VOM with Novel method 

12/10/2008 %%%%%%%%%% 

%CompareAreaPre.m %%%%%%%%%% 
%%%%%%%%%% 

~%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%~%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

clear 
tf=20; 
rf=250; 
tb=SO % time block 
N=O % For noise 
s=0.6% Sea condition 
time= [0:0.05:40]*tf; % from 0 to 800 seconds 

Tl = [O.S*sin( (time*O.l*pi)/tf)]; 
TJ=Tl*rf+S*rand(size(Tl)); 
RVl= rf*[O.S*O.l*pi*cos((time*O.l*pi)/tf)]/tf; 
RVfl=l.2+(0.l*RVl/2); 

T2 = [sin((time*O.l*pi/2)/tf)]; 
T2=T2*rf+S*rand(size(T2)); 
RV2 = rf*[O.l*pi/2*cos((time*O.l*pi/2)/tf)/tf]; 
RVf2=1.2+(0.l*RVl/2); 

index=tb; 

for z=l: ( index-1) 
prett(z)=time(z); 
preFy(z)=O; 
ApreAFyl(z)=O; 
Jl"preAFy2 ( z) =0; 
preFx(z)=O; 
ApreAFxl ( z) =0; 
ApreAFx2(z)=O; 

r~nd 

for k=O:tb: (length(time)-tb) 

if k>tb 

for i=-tb:l:tb 

end 

else 

if length(time)>(k+i) 
fxd(i+tb+l)=Tl(k+i); 
fyd(i+tb+l)=T2(k+i); 
tt(i+tb+l)=time(k+i); 
end 

for i=l:tb 
if length(time)>(k+i) 
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end 

end 

fxd(i)=Tl (k+i); 
fyd(i)=T2(k+i); 
tt(i)=time(k+i); 
end 

spread = 7; 
netY newgrnn(tt,fyd,spread); 
netX = newgrnn(tt,fxd,spread}; 

for i=l:tb 
index=index+l; 
if (length(time)+l)>index 

prett(index)=time(index); 
preFy(index)=sim(netY,prett(index)); 
preFx(index)=sim(netX,prett(index)); 
ApreAFyl(index)=sim(netY,prett(index))+(N+s*(index-k-l)ARVf2(index)) 

ApreAFy2(index)=sim(netY,prett(index))-(N+s*(index-k-l)ARVf2(index)) 

ApreAFxl(index)=sim(netX,prett(index))+(N+s*(index-k-l)ARVfl(index)) 

ApreAFx2(index)=sim(netX,prett(index) )-(N+s*(index-k-l)ARVfl(index)) 

end 
end 

end 

r=l:min(length(Tl),length(preFx) ); 

AwidthFx(r)=ApreAFxl(r)-ApreAFx2(r); 
AwidthFx(r)=( (AwidthFx(r) .A2) .A(0.5)); 

AdisFxl(r)=Tl(r)-ApreAFxl(r); 
~.disFxl (r)=( (AdisFxl (r) .A2) .A (0.5)); 

AdisFx2(r)=Tl(r)-ApreAFx2(r); 
T~.ciisfx2 (r)=( (Adisfx2 (r) .A2) .A (0.5)); 

?lvJat=size (r); 

for e=l:RMat(1,2) 
l\erfx(e)=O; 

l?nd 

if AdisFxl(e)>AdisFx2(e) 
Aerfx(e)=AdisFxl(e)-AwidthFx(e); 
if AwidthFx(e)>=AdisFxl(e) 

Aerfx(e)=O; 
end 

else 
Aerfx(e)=AdisFx2(e)-AwidthFx(e); 
if AwidthFx(e)>=AdisFx2(e) 

Aerfx(e)=O; 
end 

end 
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s=l:min(length(T2),length(preFy)); 

AwidthFy(s)=ApreAFyl(s)-ApreAFy2(s); 
AwidthFy(s)=( (AwidthFy(s) .A2) .A(0.5)); 

AdisFyl(s)=T2(s)-ApreAFyl(s); 
A.disFyl (s) = ( (AdisFyl (s). A2). A (0. 5)); 

AdisFy2(s)=T2(s)-ApreAFy2(s); 
AdisFy2 ( s) = ( (AdisFy2 ( s) . A2) . A ( 0. 5)); 

RMat=size(s); 

for e=l:RMat(1,2) 
Aerfy(e)=O; 

end 

if AdisFyl(e)>AdisFy2(e) 
Aerfy(e)=AdisFyl(e)-AwidthFy(e); 
if AwidthFy(e)>=AdisFyl(e) 

Aerfy(e)=O; 
end 

else 
Aerfy(e)=AdisFy2(e)-AwidthFy(e); 
if AwidthFy(e)>=AdisFy2(e) 

Aerfy(e)=O; 
end 

end 

t%%%%%%%%%t%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
index=tb; 

for z=l: ( index-1) 
prett(z)=time(z); 
preFy(z)=O; 
BpreAFyl(z)=O; 
BpreAFy2(z)=O; 
preFx(z)=O; 
BpreAFxl(z)=O; 
BpreAFx2(z)=O; 

end 

for k=O:tb: (length(time)-tb) 

if k>tb 
for i=-tb:l:tb 

end 

else 

if length(time)>(k+i) 
fxd(i+tb+l)=Tl(k+i); 
fyd(i+tb+l)=T2(k+i); 
tt(i+tb+l)=time(k+i); 
end 

for i=l:tb 
if length(time)>(k+i) 
fxd(i)=Tl(k+i); 
fyd(i)=T2 (k+i); 
tt(i)=time(k+i); 
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end 

end 
end 

polydeg=l; 
py = polyfit(tt,fyd,polydeg); 
px = polyfit(tt,fxd,polydeg); 

for i=l:tb 

index=index+l; 

if (length(time)+l)>index 
prett(index)=time(index); 
preFy(index)=polyval(py,prett(index)); 
preFx(index)=polyval(px,prett(index)); 
BpreAFyl(index)=polyval(py,prett(index))+(N+s*(index-k-l)Arv) 
BpreAFy2(index)=polyval(py,prett(index) )-(N+s*(index-k-l)Arv) 
BpreAFxl(index)=polyval(px,prett(index) )+(N+s*(index-k-l)Arv) 
BpreAFx2(index)=polyval(px,prett(index))-(N+s*(index-k-l)Arv) 

end 
end 

end 

r=l:min(length(Tl),length(preFx) ); 

BwidthFx(r)=BpreAFxl(r)-BpreAFx2(r); 
BwidthFx(r)~( (BwidthFx(r) .A2) .A(0.5)); 

BdisFxl(r)=Tl(r)-BpreAFxl(r); 
BdisFxl (r)=( (BdisFxl (r) .A2) .A (0.5)); 

BdisFx2(r)=Tl(r)-BpreAFx2(r); 
BdisFx2(r)=((BdisFx2(r) .A2) .A(0.5)); 

PMat=size(r); 

for e=l:RMat(1,2) 
Berfx(e)=O; 

end 

if BdisFxl(e)>BdisFx2(e) 
Berfx(e)=BdisFxl(e)-BwidthFx(e); 
if BwidthFx(e)>=BdisFxl(e) 

Berfx(e)=O; 
end 

else 
Berfx(e)=BdisFx2(e)-BwidthFx(e); 
if BwidthFx(e)>=BdisFx2(e) 

Berfx(e)=O; 
end 

end 

s=l:min(length(T2),length(preFy)); 

BwidthFy(s)=BpreAFyl(s)-BpreAFy2(s); 
EvJidthFy(s)=( (BwidthFy(s) .A2) .A (0.5)); 

BdisFyl(s)=T2(s)-BpreAFyl(s); 
BdisFyl ( s) = ( (BdisFyl ( s) . A2) . A ( 0. 5)); 
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BdisFy2(s)=T2(s)-BpreAFy2(s); 
Bdi s Fy2 ( s) = ( ( Bdi s Fy2 ( s) . A 2) . A ( 0. 5) ) ; 
RMat=size(s); 
for e=l:RMat(l,2) 

Berfy(e)=O; 
if BdisFyl(e)>BdisFy2(e) 
Berfy(e)=BdisFyl(e)-BwidthFy(e); 
if BwidthFy(e)>=BdisFyl(e) 

Berfy(e)=O; 
end 

else 

Berfy(e)=BdisFy2(e)-BwidthFy(e); 
if BwidthFy(e)>=BdisFy2(e) 

Berfy(e)=O; 
end 

end 
end 

figure(l) 

plot (time, Tl, 'k', time, ApreAFxl, 'r', time, ApreAFx2, 'r', .... 
time,BpreAFxl, 'b',time,BpreAFx2, 'b') 
xlabel ('Time [S] '); 
ylabel('Longitudinal Distance [m] '); 

figure(2) 

plot (time, T2, 'k', time, ApreAFyl, 'r', time, ApreAFy2, 'r', .... 
time,BpreAFyl, 'b',time,BpreAFy2, 'b') 
xlabel('Time [S] '); 
ylabel ('Lateral Distance [m] '); 

figure ( 3) 

plot (time, Aerfx, 'r', time, Berfx, 'b') 
xlabel('Time [S]'); 
ylabel ('Error [m] '); 

figure(4) 

plot (time, Aerfy, 'r', time, Berfy, 'b') 
xlabel ('Time [S] '); 
yl abel ('Error [m] ') ; 

figure(6) 

plot(time,AwidthFx, 'r',time,BwidthFx, 'b') 
xlabel('Time [S]'); 
ylabel('Boundary Width [m] '); 

figure(7) 

plot(time,AwidthFy, 'r',time,BwidthFy, 'b') 
xlabel('Time [S]'); 
ylabel('Boundary Width [m] '); 

figure(8) 
plot(time,RwidthFy, 'r') 
xlabel ('Time [S] '); 
ylabel('Reduced Width [m] '); 

._~, 

·L 

%% ~%%%~%%%%%%%%EndOfProgramme%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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