

OBSTACLE AVOIDANCE FOR UNMANNED

SURFACE VEHICLES:

SIMULATIONS AND EXPERIMENTS

A thesis submitted to the

Department of Electrical Engineering, University of Moratuwa

in partial fulfillment of the requirements for the

Degree of Master of Philosophy

by

RANDOBAGEGEETHJAYENDRA

Supervised by: Dr. Sisil Kumarawadu

Department of Electrical Engineering

University of Moratuwa, Sri Lanka

2009

93025

Abstract

Sri Lanka ports authority and many other organizations are increasingly interested in

the use of Unmanned Surface Vehicles (USV) for harbor security and surveillance

applications. USVs can be used to collect information, samples and perform

experiments inside a harbor or outside by. Navigating through ships and other

objects.

This research study is focused on finding algorithms for obstacle avoidance (OA) of

USVs. The initial paradigm that is used to establish the solution was the OA of

Unmanned Ground Vehicles (UGV). The algorithms developed for UGV were

implemented practically with the limitations of hardware. Then, effort is taken to

apply those algorithms to the surface vehicles with some modifications.

In this study, a novel OA algorithm is proposed for static obstacles based on the

Morphin algorithm. This proposed algorithm and the previous algorithm which is

developed based on ground vehicles are compared with the potential field method.

Static OA without dynamic OA is not helpful for unmanned vehicles on sea. A lot of

researches have been carried out to avoid dynamic objects, but have failed to find an

optimum solution although comparatively good approaches have been presented.

Intelligent techniques have been rarely applied for dynamic obstacle avoidance. In

this research, the effectiveness of applying intelligent or mathematical techniques for

path prediction of dynamic obstacles is discussed with simulations to pick the best

for a given situation. Then a noval projected dynamic obstacle area method is

presented to avoid dynamic obstacles effectively. Comparative results are presented

at the end to prove the strength "of the noval dynamic obstacle area method.

DECLARATION

The work submitted in this thesis is the result of my own investigation, except where otherwise

stated.

It has not already been accepted for any degree, and is also not being concurrently submitted for any

other degree.

PL '-/
r-

R.G. Jayendra

(Candidate)

23rd March 2009

I endorse the declaration by the candidate.

\ \ \ (/ --c-···- --" \ - . \-- .--~- - - \ - - \ -~-
..,.__' ____ -- - ~--''' ---·-" ~ ·-· -

--,'
- _)- _

Dr. Sisil Kumarawadu

(Supervisor)

CONTENTS

Chapter Title Page

Abstract v

Acknowledgement Vl

List of Figures Vll

List of Tables Xll

List of Acronyms Xlll

1 Introduction 1

1.1 Applications of Unmanned Surface Vehicles

1.2 Obstacle Avoidance of Unmanned Ground Vehicles

1.3 Appling ground vehicle technologies for surface vehicles
,.,
.)

1.4 Potential field method for path planning 4

1.5 Morphin algorithm for path planning 5

1.6 Defining safety distance for path planning 6

1.7 Dynamic obstacle avoidance 6

1.8 Sensor considerations 7

1.8.1 Radar Contacts 8

2 Obstacle Avoidance of Unmanned Ground Vehicles 9

2.1 Sensor selection for prototypes 9

2.2 Development of prototypes 10

2.2.1 Digital Controller Selection 10

2.2.2 Digital Compass Module Selection 12

2.2.3 Digital Encoder and Encoder Wheel 14

2.2.4 Servo Motors 15

2.2.5 Ultra-Sonic Range Sensors 15

2.2.6 Inter Vehicular Communication scheme 17

2.2.7 ER400RS Receiver 18

2.2.8 ER400TX Transmitter 19

2.2.9 Serial Interface Circuit Design 20

2.2.1 0 Integr2.ting Sensors to the Controller 22

2.2.11 Interfacing Software for Prototypes 24

2.3 Experimenting with prototypes 24

2.3.1 Position Tracking Algorithm 25

2.3.2 Peripheral Obstacle A voidance 26

2.3.3 Collision A voidance 26

2.3.4 Position Tracking without the Digital Compass 26

2.3.5 Fuzzy Based Controlling 30

2.3.6 Collision Condition Function 31

2.3.7 Relative Distance Function 32

2.3.8 Master Slave Switching 32

2.3.9 Controlling Function
,.,,.,
.).)

2.4 Results 35

2.5 Summary 36

11

3

4

5

6

Design of Navigational Controller for USV 37

3.1 Implementing the controller 37

3.2 Mathematical model for USV 40

3.3 Results from the navigational controller 42

3.4 Summary 45

Static Obstacle Avoidance ofUSV 46

4.1 Utilizing Ground Vehicle Technologies for Surface Vehicles 46
4.1.1 Design of OA controller 46

4.1.1.1 Input Functim1s 46
4.1.1.2 Output Functions 52

4.1.2 Algorithms for simulation of the controller 55
4.1.3 Simulation Results from the Controller 57

4.1.4 Summary 59
4.2 Novel Algorithm for OA 60

4.2.1 Methodology of the Novel Algorithm 60
4.2.2 Developed Algorithms Utilized for Simulations 65

Dynamic Obstacle Avoidance of USV 67

5.1 Introduction to Novel Dynamic Obstacle Avoidance Method
5.2 Area Prediction of Dynamic Obstacles
5.3 Path Prediction of Dynamic Obstacles

5.3. I Polynomial Approximation Method for Path Prediction
5.3 .2 Generalized Regression Neural Network for Path Prediction

Simulation Results

67
69
71
73
73

74

6.1 Simulation Results by Applying UGV theories for USV 74
6.2 Simulation Results from the Novel Algorithm 75
6.3 Simulation Results from Potential Field Method 80
6.4 Comparison of Obstacle avoidance methods 82
6.5 Simulation Results Dynamic Obstacle A voidance 84

6.5.1 Simulation Results for path prediction ofDynamic Obstacles 86
6.5.1.1 Polynomial approximation method for path prediction 86

6.5 .1.1.1 Simulations without sensor noise 86
6.5 .1.1.2 Simulations with sensor noise 89

6.5.1.2 RBNN method for path prediction 95
6.5.1.2.1 Simulations \Vithout sensor noise 95
6.5.1.2.2 Simulations with sensor noise 97

6.5.1.3 Summary of Simulation Results for path prediction 99
6.5.2 Simulation Results for Obstacle area prediction of Dynamic Obstacles 100

6.5.2.1 Simulation Results from V elosity obstacle method 100
6.5.2.2 Simulation Results from the novel method 104
6.5.2.3 Comparison Results 109

111

7 Conclusion and Recommendations 113

References

Appendix A

Appendix B

Appendix C

Appendix D

Appendix E

Appendix F

Appendix G

115

OOPic Basic Program for Vehicular Prototypes 119

MatLab Program of Fuzzy PD Navigational Controller with the

Dynamic model 129

MatLab Program for Appling UGV algorithms to USV 135

MatLab Program for Novel Algorithm to Avoid Static Obstacles 139

MatLab Program for Appling Polynomial Approximation to Path

Prediction 143

MatLab Program for Appling GRNN to Path Prediction 145

MatLab Program to Compare Velocity Obstacle Method

with Novel Method for Area Prediction of Dynamic Obstacles 149

lV

Acknowledgement

Many thanks are due first to my supervisor, Dr. Sisil Kumarawadu, for his great insights,

perspectives and guidance throughout the entire duration of the study.

Author extends his sincere gratitude to Dr. J.P. Karunadasa, Head of the Department of Electrical

Engineering, for providing him the Research Assistantship and excellent assistance during the study

period. Many thanks and appreciations are due to Professor H. Y.R. Perera, Commissioner General

of Public Utilities Commission of Sri Lanka as well.

Sincere thanks are also due to the officers in Post Graduate Office of the Faculty of Engineering,

University of Moratuwa for helping in various ways to clarify the things related to academic works

in time with excellent cooperation and guidance. Thanks are also due to the staff of the Department

of Electrical Engineering for the support extended during the study period. Also, I wish to

gratefully acknowledge the assistance extended by Mr. Ravipriya Ranatunga, Mr. Samitha Ransara,

Mr. Sanjeewa Priyadharshana, Mr. Gamini Jayasighe, Mr. Lackshan Piyasighe, Mr. Kolitha

Dharmapriya, Mr. J. Back, Mr. Harshana Somapriya, Mr. Nadun Chamikara and my brother

Chanuka Jayendra.

Many thanks are also due to many individuals, friends and colleagues who have not been mentioned

here by name in making this educational process as success.

Lastly, the author expresses his deep appreciation towards his family for their encouragement and

support. This work is dedicated to his beloved mother and late father.

VI

List of Figures

No. Description Page

1.1 Safety Distance for Obstacles 6

2.1 Basic Block Diagram of the system 10

2.2 OOPic R Micro Controller Board 12

') "l
_,.) Digital Compass Module 13

2.4 The Way of Mounting the Compass to the Prototype 13

2.5 Connection Arrangement of the Encoder 14

2.6 The way of mounting the Encoder to the Prototype 14

2.7 HS-422 Servo Motor 15

2.8 Beam Pattern of the SRF235 'Pencil beam' Ultra-sonic Sensor 16

2.9 SRF235 Pencil Beam Ultra-sonic Sonar Sensor 16

2.10 LPRS ER400 Radio Modules 17

2.11 Evaluation Software 17

2.12 Communication Channel Dedication 18

2.13 Receiver 19

2.14 Transmitter 20

2.15 Serial Interface Circuit 21

2.16 The Way of Mounting Transceiver Module 22

2.17 Proposed Prototype (Plan) 23

2.18 The Proposed Prototype (Side view) 23

2.19 Implemented Prototype 24

2.20 Position Tracking with Compass 25

2.21 Executed Program in OOPic 28

2.22 Position Tracking without Compass 29

2.23 Position Tracking without Compass (block diagram) 30

2.24 Fuzzy Based Controlling 31

2.25 Collision Condition Function after Training 34

2.26 Relative Distance Function after Training 34

2.27 Master-Slave Switching Function after Training 35

2.28 Screenshot of the Developed GUI 36

3.1 Boat vvith Fuzzy Based Navigational Controller 37
"l ")
J.-"- Fuzzy Based Navigational Controller 38

Vll

~ ,., Error Input Membership Function of).)

the Fuzzy based Navigational Controller 38

3.4 Rate of Change Error Input Membership Function

of the Fuzzy based Navigational Controller 39

3.5 Rate of Change Error Input Membership Function

ofthe Fuzzy-based Navigational Controller 39

3.6 Output Surface of the Fuzzy based Navigational Controller 40

3.7 Picture of the Actual Boat Model 41

3.8 Path Tracking of a Sinusoidal Trajectory with PD Controller 42

3.9 Path Tracking of a Sinusoidal Trajectory with Fuzzy Controller 43

3.10 Error in Lateral Direction of a Sinusoidal Trajectory with Fuzzy Controller 43

3.11 Error in Longitudinal Direction of a Sinusoidal Trajectory

with Fuzzy Controller 44

3.12 Path Tracking of a Straight Trajectory with Fuzzy Controller 44

4.1 Calculating Collision Direction 47

4.2 Calculating Collision Direction 48

4.3 Boats Path Near Obstacle without Obstacle Avoidance Controller 49

4.4 jJ Changes Near Obstacle 49

4.5 Names of Collision Direction Input Membership Function 50

4.6 Collision Direction Input Membership Function

to the Obstacle A voidance Controller 50

4.7 Relative Distance Input Membership Function

to the Obstacle A voidance Controller 51

4.8 X Direction V clocity Output Surface of the Obstacle A voidance Controller 53

4.9 Y Direction Velocity Output Surface of the Obstacle A voidance Controller 54

4.10 Algorithm of the Obstacle A voidance Controller 55

4.11 Simulation Setup of the Obstacle A voidance Controller 56

4.12 Path Starting Near Root of the Coordinate System 57

4.13 Path Starting Near Root of the Coordinate System 57

4.14 Path Starting near the Left Corner of the Coordinate System 58

4.15 Path Finishing Near Root 58

4.16 Path Starting Ncar Obstacle 59

4.17 Obstacle in the Grid 60

4.18 Obstacle Matrix with Obstacle 61

4.19 Possible Paths of the USV 61

Vlll

4.20 Possible Paths of the USV on the Obstacle Matrix 62

4.21 Obstacle Coordinate Conversion 63

4.22 Path Value Calculation 64

4.23 Simplified Flow Chart of the Novel Algorithm 66

5.1 Two Dynamic Obstacles with Projected Obstacle Areas 67

5.2 Two Dynamic Obstacles with their Reduced Projected Obstacle Areas 68

5.3 Path Planning Between three Dynamic Obstacles 68

5.4 Effective Time Prediction of Dynarnic O_bstaclcs 69

5.5 Area Calculations for Dynamic Obstacle 70

5.6 Simulation result of an Actual and Predicted path in 3D space 71

6.1 Obstacle Avoidance Using UGV Algorithms (Safety distance= 50m) 74

6.2 Obstacle Avoidance Using UGV Algorithn;s (Safety distance= 60m) 75

6.3 Possible Paths Matrix ofthe USV 76

6.4 Obstacle on the Obstacle Matrix A 76

6.5 Obstacle on the Obstacle Matrix B 77

6.6 Obstacle on the Obstacle Matrix C 77

6.7 Obstacle on the Obstacle Matrix D 77

6.8 Obstacle A voidance using Naval Algorithm (Safety distance = 40m) 78

6.9 Obstacle Avoidance using Naval Algorithm (Safety distance= 60m) 79

6.10 Contour Map of Potential Field with 3 obstacles 80

6.11 3D Surface of Potential Field with 3 obstacles 81

6.12 Obstacle Avoidance Using PFM 81

6.13 Comparison of Safety Distances 82

6.14 Comparison of Distances Towards two Obstacles 83

6.15 Dynamic Obstacle Avoidance with Time Values 84

6.16 Dynamic Obstacle A voidance with 3 Obstacles 85

6 17 Longitudinal Coordinates of Actual Path 86

6.18 Lateral Coordinates of Actual Path 86

6.19 Actual Path and Predicted Paths ofthe Obstacle for Different Degrees 87

6.20 Longitudinal Error of Predicted Paths for Different Degrees of Polynomials 88

6.21 Lateral Error of Predicted Paths for Different Degrees of Polynomials 88

6.22 Longitudinal Coordinates of Actual Path with Noise (noise=5m) 89

0.23 Lateral Coordinates of Actual Path with Noise (noise=5m) 89

6.24 Actual Path of the Obstacle with Noise (noise=5m) 90

6.25 Actual and Predicted Path of the Obstacle (Degree= 6, noise= lm) 91

lX

6.26 Actual and Predicted Path of the Obstacle (Degree= 5, noise= 1m) 92

6.27 Actual and Predicted Path of the Obstacle (Degree= 4, noise= 1m) 93

6.28 Actual and Predicted Path of the Obstacle (Degree = 4, noise = 5m) 94

6.29 Actual Path and Predicted Paths of the Obstacle for Different Spreads 95

6.30 Longitudinal Error of Predicted Paths for Different Spreads 96

6.31 Lateral Error of Predicted Paths for Different Spreads 96

6.32 Actual Path and Predicted Paths of the Obstacle for Different Noise Values 97

6.33 Longitudinal Error of Predicted Paths for Different Noise Values 98

6.34 Lateral Error of Predicted Paths for Different Noise Values 99

6.35 Longitudinal Velocity of the Obstacle 100

6.36 Lateral Velocity of the Obstacle 101

6.3 7 Upper and Lower Boundaries ofPrcdicted Obstacles Area ,Longitudinal Direction 101

6.38 Upper and Lower Boundaries of Predicted Obstacles Area ,Lateral Direction 102

6.39 Error towards Longitudinal Direction 103

6.40 Error towards Lateral Direction 103

6.41 Upper and Lower Boundaries of Predicted Obstacles

Area towards Longitudinal Direction (S = 0.5)

6.42 Upper and Lower Boundaries of Predicted Obstacles

Area Towards Lateral Direction (S = 0.5)

6.43 Error Towards Longitudinal Direction (S = 0.5)

6.44 Error Towards Lateral Direction (S = 0.5)

6.45 Upper and Lower Boundaries of Predicted Obstacles Area Towards

Longitudinal Direction for Different Sea Condition Values

6.46 Upper and Lower Boundaries of Predicted Obstacles Area towards

Lateral Direction for Different Sea Condition Values

6.47 Width of Predicted Obstacles Area Tov,:ards Longitudinal Direction

For Different Sea Condition Values

104

105

105

106

106

107

107

6.48 Error towards Longitudinal Direction for Different Sea Condition Values 108

6.49 Error towards Lateral Direction for different Sea condition values 108

6.50 Upper and Lov,·er Boundaries of Predicted Obstacles Area towards

Longitudinal Direction from Conventional and Novel Methods

6) 1 Upper and Lower Boundaries of Predicted Obstacles Area towards

Lateral Direction from Conventional and Novel Methods

109

110

6.52 Error Towards Longitudinal Direction forConventional andNovel Methods110

X

6.53 Error towards Lateral Direction for Conventional and Novel Methods 111

6.54 Width of Predicted Obstacle Area towards Longitudinal direction from

Conventional and Novel Methods 111

6.55 Predicted Distance reduction from Novel Method 112

Xl

List of Tables

No. Description Page

2.1 RF Channel Setting Commands 20

2.2 Centers of Gaussian Membership Functions 31

3.1 Rule Table for Fuzzy PD Controller - 40

Xll

usv
UGV

DMvfN

GPS

INU

PFM

YOM

DNC

GRNN

ACRONYMS

Unmanned Surface Vehicles

Unmanned Ground Vehicles

Distributed Architecture for Mobile Navigation

Global Position System

Inertial Navigation Unit

Potential field methoci

Velocity Obstacle method

Digital Nautical Chart

Generalized Regression Neural Network

Xlll

1.1 Applications of Unmanned Surface Vehicles (USV)

Chapter 1

Introduction

USV can be integrated for remotely controlled combat system ideally suited to meet

force protection requirements in all maritime settings. By providing long range stand­

off surveillance, identification and engagement capability, USV can be quickly

deployed to defend high value assets including naval vessels, port operations, oil rigs

and coastal power plants.

Protector is a name of an USV developed by Israel's Rafael Armament Development

Authority in response to emerging terrorist threats against maritime assets [27]. That

USV is stealthy, highly autonomous and can operate with general guidance from a

commander in port, harbor and coastal waterways in a variety of roles, thanks to the

plug-and-play design of its various mission modules, such as force protection, anti­

terror, surveillance and reconnaissance, mine warfare and electronic warfare.

With integrated navigational sensors including GPS, navigation radar and video

cameras, the USV can conduct harbor surveillance even in busy waterways. Highly

autonomous and remotely controlled, USV can successfully monitor waterways with

general guidance from a commander and operator at sea or from shore - no matter

how hazardous the condition [38]. The USV having an on-mount camera allowing for

day and night operation and has a forward-looking infrared laser range finder

capability to detect and track targets in the near vicinity. The Boat Control unit's

navigation sensors are used to obtain location, speed, heading and course data.

1.2 Obstacle Avoidance of Unmanned Ground Vehicles

An intelligent vehicular system which is a subtopic that comes under "Intelligent

autonomous systems" is an important research topic today, due to its importance in the

field of "Autonomous surface vehicles and intelligent transportation systems". These

- 1 -

systems can be classified according to the technology based on them and their method

of implementation. This lies from basic vehicular management systems such as traffic

lighting systems, container management systems and simple navigation systems to

more advanced systems such as the systems getting feedback from the other

compatible external systems, and external sources such as live feedback, whether

information and so on. Predictive techniques have been developed to implement better

inference systems.These methods allow some advanced modeling and comparison

with historical baseline data and real-time data hence to provide an intelligent

inference system which can deduct the best option at a time to control the system [31].

Collision avoidance techniques should be implemented within the platform or within

an external system and a proper communication scheme should be maintained in order

to prevent any life or material hazards, for these intelligent vehicular systems. In most

of the times these inter platform communication scheme for short ranges (less than

400 meters) is accomplished by using IEEE 802.11 protocols or the Dedicated Short

Range Communications standard being promoted by the Intelligent Transportation

Society of America and the United States Department of Transportation [31]. In the

case of long range communication schemes, this is accomplished by using

infrastructure networks such as WiMAX (IEEE 802.16) or Global System for Mobile

Communications (GSM).

Obstacle avoiding algorithms play major role in the overall process of navigation.

Waypoint navigation without obstacle avoidance is given only limited capabilities

to the USVs in a real-world mission. In order to provide more functionality and

reduce the reliance on operator oversight, a robust obstacle avoidance capability must

be added. More advanced behaviors can be added, such as autonomous recovery in the

case of lost communications, target tracking and interception, etc., after adding a

obstacle avoidance controller with algorithms.

In this research, a typical intelligent vehicle prototype was implemented and tested

under laboratory conditions for its mobility, controllability and communication

capabilities between the vehicle and a personal computer. Then another identical

prototype was implemented to test, the communication capabilities between the tvvo

prototypes (inter vehicular communication capabilities) and communication between

- 2 -

the vehicles and a personal computer. A dead reckoning algorithm is used as the

tracking algorithm for the vehicles.

The novel interactive control paradigms in here have been testified as effective

solutions for reliable collision avoidance of autonomous vehicular systems via

computer simulations will be experimentally validated. The so-called interactive

controller negotiates collision scenarios between two vehicular systems leading to

cooperative maneuvers. The key -point is that in order to avoid a probable collision

situation, both the vehicular systems interactively carry out maneuvers. The

hierarchical differentiation of the participatory vehicular subsystems is done by using

a mater-slave concept. In the experimental validation using the prototypes, the

advanced collision avoidance algorithms are implemented in the personal computer

due to the limitations of memory and computational speed in the prototype. RS 232

serial communication standard is used for the wireless communication between three

nodes (the computer and two prototypes) based on a suitable communication protocol

that is developed specially for this scenario [32].

The developed prototypes were fully equipped with required hardware such as sensors

and actuators. This has the motion control and position tracking abilities. The

communication scheme was implemented via the RF broadcasting. The obstacle

detection was done by ultrasonic sensors. Detection of the other prototype (as an

obstacle, in collision conditions) was done by the relative distance, relative angle and

relative velocity information, that are exchanged between vehicles via an inter­

vehicular communication scheme that was implemented. Micro controller board was

programmed in order to act as the central information processing unit [8].

1.3 Appling Ground Vehicle Technologies for Surface V chicles

Current unmanned vehicles adhere to different levels of autonomy as defined by

existing technology limitations and used sensors. Important operational characteristics

related to unmanned vehicle functionality (aerial, surface and ground), include

perception, intelligence and action. Here, the acquiring and use knowledge about the

environment and itself is called the perception [17]. This is done by taking

measurements using various sensing devices and then extracting meaningful

") - _) -

information that should be used in all later tasks such as localization, planning,

collision free motion control. The meaning of the Intelligence relevant to unmanned

vehicles, is operating for a considerable time period without human intervention. This

is associated with the learning and inference capabilities, which of the vehicle should

be able to adapt to the environment. The action is the way that unmanned vehicle

should travel from one point to another. The vehicle should utilize predefined and

acquired knowledge to move in dynamic environments without involving humans in

the navigation loop. So, the algorl.thms and technologies developed for unmanned

ground vehicles can apply for the surface vehicles as well due to those similarities.

1.4 Potential Field Method for Obstacle Avoidance

During the past few years, potential field methods (PFM) for obstacle avoidance have

gained increased popularity among researchers in the field of robots and mobile robots

[34]. The idea of imaginary forces acting on a robot has been suggested by Khatib in

1985 [18]. In these approaches obstacles exert repulsive forces onto the robot, while

the target applies an attractive force to the robot [41]. The sum of all forces, the

resultant force, determines the subsequent direction and speed of travel. One of the

reasons for the popularity of this method is its simplicity. Simple PFMs can be

implemented quickly and initially provide acceptable results without requiring many

refinements.

PFM cannot be applied for dynamic obstacles directly. An ongoing unpublished

research work is there to apply potential field method for dynamic obstacle avoidance.

The velocity dipole is used for that. The velocity dipole field is presented for real-time

collision avoidance of mobile robots. The direction of motion of the obstacle is used

as the axis of the dipole field, and the speed of the obstacle is used to proportionally

strengthen the dipole field. The elliptical field lines of the dipole field are useful to

skillfully guide the robot around obstacles, quite similar to the way humans avoid

moving obstacles. That system seems to have the capability of a new real-time

collision avoidance strategy and it will overcome the weaknesses in the conventional

potential field method.

- 4-

The Software developed by Lee Feng [20] for potential field applications was utilized

in this research to compare the proposed methods with the potential field method .

1.5 Morphin algorithm for path planning

Morphin is an area-based algorithm and it analyzes obstacles in the area which can

disturb its navigation. It projects all the possible paths to the front initially. To select

from among multiple paths, path evaluations are assigned to all possible candidate

paths according to how effectively each path would drive the rover toward its goal

point. The path that would lead directly toward the goal with less obstacles is given

the highest evaluation; other paths are assigned lesser values according a predefine

function [21]. These evaluations are then combined with the user's preferences to

determine the overall best command, which is then sent to the rover to be executed.

The cycle time for this process is about 1-2 seconds, with the stereo computations

taking up about 75% of the total time.

This algorithm is novel but the approach has a long history of applications in real­

world systems (including the Mars Rovers) and has its lineage back to the Carnegie

Mellon University Morphin algorithm and Distributed Architecture for Mobile

Navigation (DAMN) [29].

In the practical applications, the problems which are mainly attributable to an

abundance of noise, particularly in the stereo-produced obstacle maps and Global

Position Systems (GPS) are jammed or the Inertial Navigation Unit (INU) drifts can

create problems to the previous algorithms since they are heavily depend on Obstacle

positions. So another approach had to be chosen to develop new algorithms to

overcome above particulars for smooth and safe navigation of the USV.

An applying ground vehicles algorithm for surface vehicles and PFM were done

previously. So Morphin approach was chosen due to it's proven capabilities for

ground robots like famous Mars Rovers and Lunar Rovers [21]. The algorithm is

noveL but the approach has a long history of applications in real-world systems and

has its lineage back to the DAMN of Carnegie Mellon University .

- 5 -

1.6 Defining safety distance for path planning

Safety distances need to be defined for different obstacles considering their

geometrical shapes. They might change around obstacles center of gravity. That was

not considered in this study. Therefore circular safety distance is defined for the safety

of the USV. The ways of defining safety distance is shown in Figure 1.1.

Obstacle

Safety
Mprgi~
~~,
I I

I
ofsta~l•

I

Figure 1.1 -Safety Distance for Obstacles

Safety
Margin
:~

For an example the length of the USV named Protector used by IIsraeli Sea Corps is 9

meters.

1.7 Dynamic obstacle avoidance

A lot of researches has been carrying out to avoid dynamic objects and unable to find

a best solution for that although comparatively good approaches has been presented.

Canny and Reif [13] showed that motion planning for a point in a plane with bounded

velocity in the presence of moving obstacles is Non-deterministic Polynomial-time

hard. Aggarwal and Fujimura [22] show that a more optimal solution can be found by

adding a third dimension of time and plotting the location of the moving obstacles

along that three-dimensional (3D) structure. Fujimura and Samet [15] provide yet

another solution, but even they admit the solution is best with few moving obstacles.

- 6-

A solution for dynamic obstacle avoidance is presented by Space and Naval Warfare

Systems Center, San Diego for the requirement of robust USV operation in a real

world environment, primarily focusing on autonomous navigation, obstacle

avoidance, and path planning. Velocity Obstacle method (VOM) is one of the good

methods for dynamic obstacle avoidance is utilized mainly for those developments.

To avoid moving obstacles and maintain the desired path set by the user, the safe

velocity ranges using the Velocity Obstacle method [25] have to be determined by the

controller. This algorithm transforms a moving obstacle into a stationary one by

considering the relative velocity and trajectory of the USV with respect to the

obstacle. After producing a collision area called the Velocity Obstacle, defined using

the relative velocity vector, the algorithm returns a set of USV velocity vectors which

are guaranty the collision avoidance. This transformation and collision area detection

reduces the complexity of the path plmming among moving obstacles with respect to

time. This is used as a first pass to avoid moving obstacles. In the case that changing

velocity the controller has to change the path by creating projected obstacle areas for

each obstacle and determining a safe alternative route.

1.8 Sensor considerations

As with any unmanned vehicle attempting to navigate in a complex environment,

good sensor data is critical, and getting good data is often the most difficult part of the

project of developing a USV. The oceanic environment poses many challenges

including waves, spray, and a disordered obstacle setting. There are some advantages

to the marine environment including well charted operating areas, absence of negative

obstacles (holes or cliffs), a mostly planar surface (except for the waves), no

vegetation, etc. It's important that the sensors are selected to make the most of the

environmental advantages and to provide the best data possible in the challenging

territories.

The sensors for the obstacle avoidance need to provide data about obstacles in the far­

field (e.g., >200-300 yards) and provide state information (position, course, and

speed) for the moving obstacles.

- 7 -

High-resolution and at a much higher rate data is needed about the obstacles in close

proximity to the USV (e.g., <200-300 yards). Some of these sensors are typically not

found in the commercial marine industry but many have been used extensively in

UGV programs.

1.8.1 Radar Contacts

Standard marine radar (Furuno) with a third-party PC controller can be used for

USVs. The controller, developed by Xenex Innovations Ltd., provides a digital

networked interface for the radar. The Xenex system provides an API to access the

radar data and controls as well as an Advanced Radar Plotting Aid (ARPA) Software

Development Kit, which provides algorithms to automatically acquire and track up to

1 00 contacts [23].

One significant problem with the radar is that it tends to classify noise from the

shoreline return as contacts which are often shown to be moving at a significant

velocity and in the direction of the USV. These false contacts are obviously

detrimental to the successful operation of the path planner. To mitigate this problem,

the on-board nautical chart server can be used to calculated polygons that follow the

shoreline and structures along the shoreline. The radar contacts are compared with

these polygons and those that fall inside a polygon are rejected and deleted from the

radar's list [28].

Laboratory (JPL) for a number of years to transition technology to its UGV programs.

That work is now being extended to the USV domain [14]. The stereo vision system

provides high-resolution 3D data about the near-field environment, which can be

converted into a 2D obstacle map and fused with data from the other sensors.

Stereo vision is capable of providing very high quality 3D data but also has the

disadvantage of requiring precise calibration every time the cameras are mounted.

There is also the risk that the cameras may move relative to one another slightly which

will affect the calibration and result in erroneous data. So the monocular vision vvith

sophisticated algorithms can be utilized for that as well.

- 8 -

..

Chapter 2

Obstacle Avoidance of Unmanned Ground Vehicles

2.1 Sensor selection for prototypes

The proposed vehicular prototype has ultra-sonic range sensors to detect collision

conditions encountered by the prototype, a digital compass module to obtain the

heading angle, optical shaft encoder modules to get the position of the prototype, RF

transceiver module for communication, servo drivers, and a micro controller to

process the information and to give the control signals to the actuators. A block

diagram representation of the complete system is given in Figure 2.1.

The main objective of the developed prototypes is to test, fine tune, and

experimentally validate intelligent collision avoidance algorithms for ground vehicles.

So, the features expected in the vehicular platforms should be identified at the initial

stage of the project. Individual prototypes should include a suitable controller which is

capable of implementing the collision avoidance computational intelligence

algorithms. The motors selected need to be easy to control. Most importantly, the

prototypes should be able to communicate each other. The heading angles of the

vehicles are vital information in order to realize successful collision avoidance

maneuvers.

- 9-

~··--,;e. ;.r!'i ~~
~ ~ ' ...:- r ,:, : ; , "::'

_;L~t:+-
~· ~

r- C.• ·! ..

:!.

_/~ ~ ,h .··;.• f
•• ~!1. >F "-, ::..: ~'

') f
.··,,
.. _./

l_, f-'

. -, .. :;. ~ ~-~

:~~;J·t~'i;~ --------

-~~1 ;-~~-tt;,r.:/ .. ,,.r.
L .:!.

Figure 2.1 - Basic Block Diagram of the System

2.2 Development of prototypes

2.2.1 Digital Controller Selection

... :;·~~;(;.;.
~-:~ f"::
~:." ~ ·=~
~?~~7::~::

Digital controller is the heart of the system and should be carefully chosen. The

controller should have a good memory capacity and a very high frequency. Most

importantly, the programming of the controller should be straightforward. In this

application, the onboard controller controls two motors, while executing the other

instructions.

The OOPic-R [3] was selected for the project. It provides 16 digital l/0 lines

including power and ground connection. Its smaller size suits well for prototype

development.

- 10-

The speaker onboard OOPic-R is useful in the developmental stage. The speaker can

be used to take required outputs and warning signals at the development stage. All the

modules were tested separately before integrating. The speaker was deployed to check

the output values of those modules successfully.

ec network connector of OOPic-R can be used to network two or more OOPic-R s.

Multiple power lines are provided to use different power consuming modules (Figure

2.2). The jumpers onboard can be used to set the different power outputs. OOPic-R

contains 3 onboard LEDs having different colors. They are internally com1ected to

three different IO lines. Those LEDs are used in the development stage for debugging

and monitoring. The RS232 serial port connector can be used to communicate with PC

via MAX 232 chip. A separate three-pin connector provided direct and easy

connection for the LCD displays. The green LED connected near the programming

connector is lit brightly when power supply is good. It is a good indicator of supply

battery level. Reset button on the board can be used to reset the controller when that

becomes stuck.

OOPic has an object-oriented operating system that has been pre-programmed into a

Microchip PIC. It also provides an object-oriented language model design to interact

with the electrical hardware components that are attached to the PIC. Hardware

interface is designed using programming software by creating objects and setting their

properties to define their behavior and interaction with the hardware. These objects

can also be interconnected to form a virtual circuit and then utilize this hardware

interface and its associated virtual circuits by writing a program that controls and

responds to hardware events that occur.

- 11 -

[OOPic-Rj ! (. Di~tilal LO line:, with pHI\'Cr and j.!nmnd conncctidth

(Jf!angcd f<Jr RC Servo~. Tht nr~l 4 Cd!l he un;llog in.

h Dtt;lt<li 1.0 lines
.m:l11[!Cd t{H Du.Ji DC

\hll<•rs \\'llh ~<lnlr<ll

fiJr Sp..:cd. Dinxti•.>n
ami Brakes.

l Digit;il LO line f(•r
controlling PLHpul

dispttys sttdt as Si.Tinl
LCD & Snwl Vid..:o

{)

Yo\l'l:r Ci<'t'd LFD

RS212 S..:nJI f'tlrl liH' pn•gmmmin;t debugging
and n:nH'te nmtrol via PC. P,tlm f'ilo1. Etc.

I\lulttplc P•JWer
(>ptions with

up to 3 \'oltap:c
Rrgulator,; and

jumpers for
power selection.

Figure 2.2 - OOPic R Micro controller board

2.2.2 Digital Compass Module Selection

Path of the vehicle travels should be mapped to analyze the workability of the theories

.There are two major options to map those paths. They are GPS mapping and

employing a suitable dead reckoning algorithm. GPS module is needed for GPS

mapping. But even differential error correcting GPS has an error around 5m [16]. But

as each prototype developed is 30cm x 20cm in size, GPS mapping is not an option

and a dead reckoning algorithm is adopted for path mapping.

A digital compass and an optical encoder were used in the dead reckoning algorithm.

The CMP 03 digital compass module by Devantech Ltd was selected for this study

(Figure 2.3). Especially, together with the optical encoders, this compass is meant to

be used for dead reckoning purposes. The CMP 03 digital compass uses the Philips

KMZ51 magnetic field sensor, which detects the Earths magnetic field. The output

from the two of them mounted at right angles to each other is used to find the heading

angle. The compass readings can be obtained both from the ec channels as well as a

PWM signal. The resolution of the compass is 0.1 degrees.

The compass needs to be calibrated in the area it is being used.

- 12 -

Figure 2.3 -Digital compass module

I2C object in the OOPic multi-language compiler was used to access the digital

compass. ec node address was set to OxCO. Location 1 in the compass module was

access to take heading angle value from 8 bit value. The value that came from the

module was between 0 to 255. This was mapped to the 0-360 degree range.

Compass---~

Figure 2.4 -The way of mounting the compass to the prototype

The mounting position of the compass was very important due to its high magnetic

field sensitivity. Because the DC servos used to power the wheels generate magnetic

fields which may interfere with the digital compass, the digital compass was mounted

as far as possible from the DC servo motors as shown in Figure 2.4.

- 13 -

""

2.2.3 Digital Encoder and Encoder Wheel

The optical encoder module has three chmmel incremental encoders with a code wheel

is choosen as shown in Figure 2.5 [3]. The speed of the two wheels of the prototype is

intended to be measured using this. Optical encoder outputs together with that of the

digital compass can be used for dead reckoning in navigation purposes of the

prototypes.

·~V R=2.71o:O

Q
TO OUTPUT LOGIC
!ONE. TTl lOAD
PER OUTPUT)

Figure 2.5 - Connection arrangement of the encoder

Qencode encoder object was used to get data from the digital encoder. Position

property of the Qencode object was utilized to take the encoder position. Channel A

and Channel B were connected to IO lines on the OOPic and the numbers of the IO

lines were set to the Qencode object properties.

The encoder wheel and the Optical sensors should be mounted with care to have a

good alignment as shown in Figure 2.6.

Encoder Wheel

Figure 2.6 - The way of mounting the encoder to the prototype

- 14-

2.2.4 Servo Motors

The HS-422 standard deluxe servomotors, by Hitec RCD Inc., are 3-pole ferrite type

motor attached with an in-built potentiometer. Such a motor is shown in Figure 2.7.

These motors are with the control system of pulse width 1500,LLS neutral type [11].

Figure 2. 7 - HS-422 Servo Motor

The potentiometer \Vas removed from the servo and a gear wheel adjustment was done

for continuous run. The practical speed of the prototype was quite below the required

speed. So the controlling circuit of the servo was removed and power was directly

given to the motor through a motor driver (L298N) chip. A supply voltage of 7V was

given to the servo when maximum speed was required.

2.2.5 Ultra-Sonic Range Sensors

Sensing the obstacles around each vehicle prototype while moving, is important. The

SRF235 ultrasonic range sensors are chosen for that. Those by Devantech Ltd., are for

the purpose of detecting obstacles. The ultrasonic sensors are not meant to identify the

other vehicle prototypes in close proximity .The adjacent prototypes are meant to be

identified, by each other, with the RF communication between them or by adding a

shield to prototype (minor adjustments).

- 15 -

""

The selection of this type of ultra-sonic sensor with a narrow beam pattern, as

indicated in Figure 2.8, gives the opportunity to detect the obstacles, but not the floor

as an obstacle, a false alarm. Mounting arrangements of these sensors were also

considered with special concern.

0

2701 \ I l ~~ J l I f J90

180

Figure 2.8 - Beam pattern of the SRF235 'Pencil beam' ultrasonic sensor

The ultra-sonic sensor is with a single transducer for both transmit and receive.

Therefore, there is a blanking zone of 1 Ocm, so the effective range is 1 Ocm to 1.2m.

Communication with the SRF235 ultrasonic rangefinder is via the I2C bus. Therefore,

this is easily connected to the OOPic R+ with its capability of I2C. In order to connect

these sensors to the OOPic R+, the address of the sensors have to be changed. Figure

2.9 is the picture of SRF235.

+5v-
SO,D.,--­
SCL

No Connect/On
Ground (Ov)

Figure 2.9 - SRF235 Pencil beam ultrasonic sonar sensor

- 16 -

....

2.2.6 Inter Vehicular Communication scheme

Inter vehicular communication was the most important part of the system. ER400

radio modules, shown in Figure 2.1 0, were used for that. Few important features like

several channels, low power consumption, very stable operating frequency and good

bandwidth for data transmission, reliable communication and good data rates were

expected from the RF module. Several Channels were needed to establish a good
-

communication. The chosen modules can have 10 different channels, which meet our

requirement.

~ ,~//'_]·~

'~

r
/'J
//

J_)

Figure 2.10- LPRS ER400 Radio Modules

The programming software, which can download from the web, was used to grve

commands to the module as shown in Figure 2.11 [4].

?

'~

I r_vcJ~r,w-«::akn~l,,,h,;

MvJ)~ F1~-l'Jo>:'IK\' ~'ludtJ~ fttx-

:. EHGO l5

•• ,{<) fo.J1'c<;J>Je8ALV.:>Ifle

~ fPIJil

~C.xrw.-!>!d:

5q{yj(,'nYf1"lfl<l

"''" (R_CMD#lJ

14+00
lR .. lMO#!J

1"1100
!H LMO#T:l
[-R--lMD#13

"'

fRJMO#lJ':l
LH .. t:MO#IJ3
ACK
FRJMO#O
II(_(MO.#(I
lR.CMO.<tU
fRJMD#O
.t.n::
U> ·ljiiW 1 -..MiJ)'- 1 fULJ:J•~)'
[ll._(MOI'M?
(R_CM[),rtJ

Figure 2.11 - Evaluation Software

- 17 -

...

That software was used to change the baud rate, power level and channels of the

modules. The baud rate was set to 9600.The channels of RF modules were set

according to the requirements and to avoid jamming as shown in Figure 2.12.

~ ~annel3

ChannelS~

~

.,.. ... __ Channel 9

---~ Chann~--· : ll
lnl l===r~ ~'-'fr:=_ 8

\ (l)
'--./

Figure 2.12 - Communication Channel Dedication

2.2.7 ER400RS Receiver

The Block diagram of the receiver module is given in Figure 2.13. Pin numbers 6 was

used to give commands to micro processor to change the internal settings of the

module. A programming software was used to give commands to the module [4].

- 18 -

....

Antenna(1)

I

-
'-- r-- 1--

f--
RF Receiver ~

RF Ground (2)

l Regulator t-

Micro ~
Processo1· ~

~

-

!+

I

,___

+
~

1-+-

RSSI Output (3)

Vee (8)

BSY (4)

Senal Data Output (5)

Serial Data Input (6)

ROY (7)

Ground (9)

Figure 2.13-Receivcr

It was quite easy to work with these modules, because feedback characters were

received after every command. Thus, the verification of the changes was

straightforward.

2.2.8 ER400TX Transmitter

These transmitter modules do not provide any feedback to the programming software.

Only the serial data transmission line was provided as seen in Figure 2.14. So it was

quite difficult to change and verify the settings of the transmitter modules. Two

software windows were employed to change the settings of those transmitter modules.

One window connected to com 1 serial port was used to send serial data while the

other window connected to com2 serial port was used to receive data from the receiver

module. The RF Channel setting commarnds are presented in Table 2.1.

Initially, 19200bps baud rate was used to give command to the module. That baud rate

can be change by sending baud rate setting command. An unambiguous baud rate has

to be used when dealing with transmitter modules. The baud rate differences were

caused data corruptions.

; j , 1 t1 ... I
- 19 -

....

Antenna (2)

I/
1

Regulatorl-
f- Vcc(3)

I__

RF Transmitter

Micro
.... - TXD (5)

Processor

-

RF Gnd ("1 l Gnd (4)

Figure 2.14 - Transmitter

Table 2.1- RF Channel setting commands

Channel
Command Frequency

number

ER CMD#CO 0 433.23 MHz

ER CMD#C1 1 433.30 MHz

ER CMD#C2 2 433.45 MHz

ER CMD#C3 "\ 433.55 MHz .)

ER CMD#C4 4 433.68 MHz

ER CMD#C5 5 433.83 MHz

ER CMD#C6 6 433.88 MHz

ER CMD#C7 7 434.00 MHz

i ER_CMD#C8 8 434.15 MHz

I ER_CMD#C9 9 434.35 MHz

2.2.9 Serial Interface Circuit Design

RS232 serial work with 0 to 15V logic levels while RF modules work with 0 to 5V.

The MAX232 chip was used to do the level conversion. The circuit diagram of the

serial interface circuit is given in Figure 2.15.

- 20-

....

A two-way switch was employed in the circuit to change data transmission mode to

setting changing mode. Because the data transmission line from the serial port had to

connect to serial data transmission pin via chip when data transmission was need and

it had to be connected via chip to serial data input of the receiving module when the

settings change was needed.

The 7805 regulator was used to give power to the RF transmitter and receiver

modules. The RF modules were mounted to the board as shown in Figure 2.16. The

regulator module was used to achieve a smooth power supply to the transceiver, hence

minimized the error signals that can be caused by varying input power.

1N4148

PCAT

Figure 2.15 - Serial Interface Circuit

DCD
DSR
RXD
RTS
TXD
CTS
DTR
Rl
GND

- 21 -

....

Receiver

Transmitter

Figure 2.16- The way of mounting Transceiver module

2.2.10 Integrating Sensors to the Controller

Integrating sensors to the controller was done using the I2C bus. Different

hexadecimal addresses were assigned to different components to access through the

I2C bus. Five modules were connected to the I2C bus. Power for those modules was

given directly from the 5V regulator. Side elevation and plan of the proposed

prototype is presents in Figures 2.17 and 2.18. OOPic Basic Program for Vehicular

Prototypes is given in appendix A.

- 22-

......

Ultrasonc: Ser~sor

U ltr<Jsoni<;

OOPic R Aomd

Ultr<Jsonic Sensor

Ultrasonic Sensor

Figure 2.17 - Proposed Prototype (Plan)

Ultrasonic Sensor
Tr~1

OOPic R Bot:HG

o.·.······""·
~

Aerials of l rar
Module

r.·iodt,:!e I Ultrasonic Sc:nsor

Drivin:J
VVheel

Figure 2.18 -The proposed prototype (Side elevation)

Ultra some

Driven
Vv'heel

- 23 -

i

L

The actual implementation of the prototype can be present as follows (figure 2.19).

Figure 2.19- Developed vehicle

2.2.11 Interfacing Software for Prototypes

Interfacing software was developed to give control signals to the vehicle. Visual Basic

6 was used to develop the software interface for the prototype. GMS ActiveX

controllers vvere used as joysticks and digital compass .. It has the ability to view the

current position of the prototypes in its sketch pad, the current heading angle of each

prototype, current coordinates of each prototype in sketch pad, communicate with

each prototype, give control signals to prototypes via the established RF link through

the serial port, and draw the path followed by each prototype in the sketch pad.

- 24-

~

2.3 Experimenting with prototypes

Two identical prototypes were developed to carryout the testing process of obstacle

avoidance and inter vehicular collision avoidance.

2.3.1 Position Tracking Algorithm

As GPS is not an option because af the small distances involved in the experiments

with scaled down prototypes, the following dead reckoning algorithm is adopted for

position tracking. The speed of the prototype was calculated within the program by

using the input values of two encoders and averaging its value similarly as m

equations 2.1 and 2.2. The x(k) and y(k) positions calculated as below.

x(k) = x(k - 1) + x x sin(B) x (llt)

y(k) = y(k -l) + x x cos(0) x (!lt)

----------------------- (2.1)

----------------------- (2.2)

Where, B is the heading angle of the prototype.

Figure 2.20 elaborates this further.

----.,---------
;
;

'
' '
'

Path of the
vehicle

Figure 2.20 - Position Tracking with Compass

x (m)

- 25-

Figure 2.21 shows the program that is executed in OOPic, which used to maneuver the

Yehicle with the compass. The program begins with initialization of the objects that

are used to represent the vehicle. Basically, the sensors and the objects are needed for

communication purposes. After that, inputs from the sensory devices are fed to the

execution through the input-output lines that are already set. Position manipulation

takes place after the inputs are analyzed to minimize the errors that can occur due to

wrong input values. Then, the program transmits the calculated current position of the

vehicle to the other vehicle, or to the computer via the RF link .

2.3.2 Peripheral Obstacle Avoidance

This obstacle avoidance algorithm is for stationary obstacles such as walls and other

barriers. This mode activates when the distance to the obstacle is less than 15 em [32].

The algorithm used in this study can be presented as follows.

If Obstacle on Left and distance decreasing, then Turn Right for 3 [s]

If Obstacle on Right and distance decreasing, then Turn Left for 3 [s]

If Obstacle on Front & Left and distance decreasing, then Turn Right for 3 [s]

If Obstacle on Front & Right and distance decreasing, then Turn Left for 3 [s]

If Obstacle on Front then Stop, Reverse for 2 [s], Stop and Turn Right for 3 [s]

If Obstacle on Back then Stop (if Reversing) and Turn Right for 3 [s]

2.3.3 Collision A voidance

This algorithm applies when the relative distance of the vehicles is less than or equal

to 30 em. This requires advance inference techniques, that processed by fuzzy based

inference engine.If a prototype in Collision situation then Stop and take a "right turn"

for 3 [s]. If still in collision situation Stop and take a "left turn" for 3 [s] Else

"reverse" the platform for 3 [s] .

2.3.4 Position Tracking without the Digital Compass

The compass module plays a vital role in the position tracking algorithm. But some

errors may occur due to the magnetic fields generated by servo motors. This can often

be the case in experimenting with the physically scaled down prototypes as keeping an

- 26-

.~

:l ~
ll
i
1
I

~.

adequate distance between the motors and the digital compass is not practical. Here,

we present a method to calculate the heading angles to be used when the compass

readings are not reliable [36].

Figure 2.22 shows a typical path that the vehicle follows and the footprint of its tires.

The change of angle from the previous position can be approximated using the wheel

movements and simple geometry as elaborates in equation 2.3 and 2.4.

- 27-

1
:!i t i
~

...

TLrn tho pl.Jtf,;:;rm tc J()t 1---~

Figure 2.21- Executed program in OOPic

- 28-

8,= SJ
r

e
2
= S2

r

, ... --
l . -
j r -

:t.. I "")
T 't··, I
/ I - •• I

I . I ---- I :J i
1

-r~z-.
I 1 ! T '- I I

-! '. I I I 7'!~.·-l 1 • I " / •. ·-· ' ' , '• ·- ~ ' J I " , or--- I , ·-/' -.. ~ e ---~- , / ' 2 '4~·-
,/~· ''... / . ·--

/ . ' I 'S
" / / ' '/ I •

';;,.. // ', r /"'"' Jl /

S
?' / ' il' . ')"'< ',,_ // •• '

I ' , ' ::/

12

1
I

' '

I / ' ">f ,
I I ', ,// /.

1 t 91~ .. / -' I
f- -------L~1' / ... /, 2

tv!otion Path

' ;:--~:.

I
I ',# t

!: ----- ·: .
I ---
1 I
' I I
I. _ r : I

---------- __ j_

of Volliclu

I
I

•

Figure 2.22 - Position Tracking without Compass

---(2.3)

---(2.4)

Where Sis the traveling distance of the wheel. r is length between two wheels.

Therefore, the total angle change within the course relative to the initial direction can

be obtained by considering the above instantaneous angular changes. The OOPic reads

the encoder readings every 2 seconds and executes the algorithm as illustrated in Fig 5

where Encl and Enc2 represent the readings of encoder 1 and 2, respectively .. One

limitation of this method is that floating points may occur during the execution

requiring some offset actions to minimize the errors caused by this.

If the difference between two encoder values is less than 20, previously calculated 8

value was fonvarded to the next step assuming a straight motion of the prototype or

the prototype is not moving. This program segment can be present in a flow layout as

in figure 2.23.

- 29-

I
'I
~
I

I
I

I

f

2.3.5 Fuzzy Based Controlling

The position information obtained via the methods explained previously is sent to the

central PC that implements the fuzzy controller. Position information was processed

and the fuzzy base controlling signals were given to both prototypes via RF link. The

block diagram of components including fuzzy inference engine is given in figure 2.24.

Enc=Enc1-Enc2

e Up(bte

Position
Update

Enc=Enc2-Enc 1

Same El e Upd<1te

Figure 2.23 - Position Tracking without Compass (block diagram)

The encryption module therein acts as a converter of defuzzyfied output to the code

that the communication module can understand.

The fuzzy based controlling functions were developed by means of MatLab

simulation software simulink. ANFIS tool box was employed for that. The input

membership functions were defined initially.

- 30-

: ~ •I;
' : ~

t

RF Lirk
Vch1de 1

! ink.

PositiOn Data

Encryption
fvlodule

Figure 2.24 - Fuzzy Based Controlling

2.3.6 Collision Condition Function

This as the name implies, to identify the vehicles are in collision states to trigger the

collision avoidance scenario. The theory of relative velocity between two vehicles was

employed for this process. The program virtually creates the inertial frame with

respect to one vehicle and check whether the vehicles are in collision condition by the

aid of the relative distance and velocity. By means of the path of a vehicle relative to

the other, some collision situations can be defined.

If the collisions between two vehicles occur in line, means that a direct collision, that

state was defined as 'in line collision'. The other two states, named as 'in line oflikely

collision' and 'not inline collision' following the same methodology that was

previously stated. This is essential to quantify the inputs, which needs for fuzzification

process. The range of valnes for the collision condition function was taken as -3 to 0,

and decided the center of the Gaussian membership function as follows[24].

Table 2.2 - Centers of Gaussian Membership Functions

Collision Situation Center of the Gaussian

membership function

In line collision -3

In line of likely -1.5

collision

Not inline collision 0

- 31 -

' I
' I

2.3.7 Relative Distance Function

This is the Euclidian distance between the vehicles, in an inertial frame of one vehicle.

A virtual circle is drawn around the vehicles such that it covers the whole parts of the

vehicle. The collision state can be stated as follows.

If the distance between the centers of the virtual circles is less than or equal to the

diameter of a virtual circle, then the vehicles are in collision state (Equation 2.5).

RelativeDistance = ((x1 - x2)
2
+ (y1 - y 2)

2)!i
---------------------------(2.5)

Therefore the breaking critical distance (dbr) can be present as

2~ (v2 +(v-vret)
2
), for head-on collisions

dbr = ~ 2~ (V 2
- (v- vrel)

2
)' for rear-end collisions

1 v2

otherwise
2 a' --------------------------(2.6)

Where v is the velocity of the vehicle and Vrel is the relative velocity of the vehicle

with respect to the other. a is, the maximum possible deceleration of the vehicle as

shown in equation 2.6 [3].

2.3.8 Master Slave Switching

This function is mainly for hierarchical controlling of the vehicles. This assigns the

labels 'Master' and 'Slave' for the vehicle and it is depends upon the current situation

of the vehicles. The 'Master vehicle' has more power relative to the 'Slave vehicle'.

This was used in the decision making process, inside the inference engine. A typical

label assignation criterion is the speed of the vehicle. When in Inter vehicular

communication mode, the master-slave status were calculated, transmitted and

acknowledged by each vehicle. When the communication scheme is through the

computer, it assigns the master-slave states to the vehicles by analyzing the motions of

them, according to pre programmed algorithm [32].

- 32-

·~ :
! ~ I ,
j

Master-Slave switching (MSSwitch) function has three variables. They are master,

slave, and driver control. In order to quantify these variables, 'master' is assigned 'l'

while the 'slave' is assigned with '0'. The value given to 'driver control' is '5'. As

discussed before, these values are taken as the initial centers of the Gaussian

membership functions of the corresponding fuzzy variables.

2.3.9 Controlling Function

These input membership functions were trained using 650 pairs. Those data pairs were

generated employing spread sheet program accordance with the controller algorithm,

considering the ranges of the input and output variables . The generated data set

enabled to train the ANFIS so that it mimics the behavior of an expert. The trained

input functions were taken from the MatLab software. The shapes of those functions

were adjusted at the learning according to the training data.

The Takagi-Sugeno type 54 output functions after training, for the braking controller

were taken and they are given below [15].

.h = 1.85 xJ + 1.566e-8Xr2.79e-21X3 -2.1894e-15 X4-1.48

J; = 0.0019X1- 0.039Xr 5.655e-23x1- 4.72e-17X4- 4.225

~ =-0.311 X1-2.892e-6 Xr5.577e-25X3 -5.667e-18 X4+0.0921

-----------------(2.7)

/~4=-1.710e-15 X1+4.911e-18 X2-4.910e-14 X3+5.677e-15 X4+5.679e-15

The Takagi-Sugeno type 54 output functions after training, for the steering controller

was taken and they are given below [32].

J; = -0.322 X1+ 0.0036X2+ 5.798e-22 X3+ 0.00459 X4+ 0.233

f; = -0.0141XJ + 0.00321X2+ l.069e-22X3+ 0.00021 X4+ 0.621

.~ = -0.151 xJ +0.000659 X2 + l.996e-23X3 +0.0039x4+0.0652

------------------(2.8)

/ 54 = 2.69c-24 X1+ 1.755e-24 X2 -3.911e-25 X3 + 2.691e-23x4-1.217e-23

- 33 -

'' 'I
I

t

In the prototype experiments, the above 108 (54X2) functions were implemented in

the PC by means of Microsoft Visual Basic 6 IDE. The position, heading, and speed

information from the prototypes was transmitted and taken via a serial port to the

central PC. This information is required to assess the input membership values [32].

The controlling signals generated were transmitted to the prototypes via the RF link.

Figure 2.25 to 2.27 illustrates the input membership functions after training. These

illustrations were created in the MatLab environment; with the aid of the ANFIS edit

tool, and Simulink.

.8-0 8

~ u

E! o6
E

NoCollision

0 ~--------~--------~----------~~

-3 -2.5 -2 -1.5 -1 -0.5 0

Coil isionCondition

Figure 2.25 - Collision Condition Function after Training

.§0 8

~
Q)

,D
~0.6
OJ
E
'-
~04
Q)

'"' bD
Q)

Clo 2

YervClose

0

CJose ModerateDistant

10 15 20 25
Relative Distance [m]

Figure 2.26 -Relative Distance Function after Training

- 34-

'' 'I
I

t

I
i

!
1
1
'

Slave

j~
.&0.8

~ u s 06
v
8

4-<

~ 04
2
oJ)
(.)

0 0.2

0
L._
0 0.5

Mnster

15 2.5

MSSwitch

DriverContro

3.5 4 4.5

Figure 2.27- Master-Slave Switching Function after Training

2.4 Results

Trajectories of the prototypes were taken from the graphical user interface of the

developed software. It was developed using shape objects in Visual basic 6 and

Joystick objects of Global Magic Software's. Predefined co-ordinate system was used

to map the prototypes. Two joysticks were used at the manual driver mode. When the

vehicles recognize a possible collision scenario, the joystick commands are simply

ignored and the automatic collision avoidance controller turns on. It is automatically

changed in to manual mode after avoiding collision scenarios.

Fig 28 represents a screenshot that was taken in a typical test case of the study that has

been carried out with the two prototypes. It illustrates the paths followed by the

prototypes and the encrypted data that has been received.

- 35 -

:c'(.. , .
I

.;, <t• r.r;:@

Figure 2.28 - Screenshot of the developed GUI

The speed of the prototypes was quite low due to the performance of the de servos.

But it was healthy with the whole system. Because of the serial communication, ec
bus and OOPic were mainly introduced delays to whole system. But those can be

minimizing by using appropriate hardware when this system is going to be

implemented for genuine vehicles.

This concept can be extended for multiple vehicles by considering them as

parrs.

2.5 Summary

This chapter has presented and experimentally validated an interactive intelligent

collision avoidance controller via testing on vehicular prototypes. A master-slave

mechanism is engaged to effectively negotiate the cooperative maneuvers by the

vehicle on the verge of a collision to optimally avoid the collision. The control

strategy was developed based on ANFIS fuzzy and has been thoroughly validated via

computer simulations in for all possible collision scenarios. The central

communication PC was used to avoid memory constrains in the digital controller

(OOPic) at the cost of some delays in the whole system. A better DSP can eliminate

the central PC to easily overcome this problem in practical implementation.

-36-

3.1 Implementing the controller

Chapter 3

Design of Navigational Controller for USV

A good navigational controller is a main requirement for traveling. So the Takagi­

Sugeno type fuzzy logic base controller was implemented successfully for navigation

[5]. The boat is traveling as shown in Figure 3.1.

y

Xboat

TAT,

~

f) X

Earth fix frame

Figure 3.1 - Boat with fuzzy based navigational controller

Tx and Ty are the thrust forces exerted by the propellers of the boat. The heading of

the boat is given by 0. The thrust force is controlled using a fuzzy controller. The

overall control system (navigation) is shown in Figure 3.2. If the required position of

the boat is (x,,yJ and the actual position is (x,y) then the errore is given by e=xr-X.

- 37-

~
~ ,,
)li

....

e

d

dt 1 e

Fuzzy
controller Boat

Figure 3.2 - Fuzzy based navigational controller

Five input membership functions were defined to represent the error input named

negative large (NL), negative small (NS), zero (Z), positive small (PS), positive large

(PL) and same names were used for the change rate of error as well. Input

membership functions to fuzzy controller and output membership functions from the

fuzzy controller are given in Figure 3.3,, 3.4 and 3.5.

Degree of membership

Negative large Negative Small Zero Positive Small Positive Large

Error

-3e -2e -e -e/4 0 e/4 e 2e 3e

Figure 3.3 - Error input membership function of the fuzzy based navigational

controller

- 38 -

~I ,,

Degree of membership

Negative large Negative Small
1

I Zero Positive Small

-3Ed -2Ed -Ed -Ed/4 0 Ed/4 Ed 2Ed

Positive Large

I
I
I
I
I
I
I
I
1 Rate of
1 changing error

3Ed

Figure 3.4 -Rate of change error input membership function of the fuzzy based

navigational controller

Degree. of membership

Zero
Positive Small Positive Large Negative large Negative Small

-2T -T 0 T 2T

Figure 3.5 - Rate of change error input membership function of the fuzzy based

navigational controller

Rule base is one of the important parts in the fuzzy controller. When Table 3.1 shows

that the "thrust is positive large" means that the fuzzy controller will give controlling

signab to the boat's thrust force controller to increase its thrust force by 2dT

(maximum safe thrust increase) by changing propeller angle and torque. "Thrust is

negative large" is represented the maximum thrust force reduction of the boat. The

Figure 3.6 presents the output surface of the fuzzy-logic navigational controller.

- 39-

0.5 i
!

Ul
2 0 i .r: .
1-

-0.5 •

I -1 I

5

Table 3.1 -Rule table for fuzzy PD controller

~ NL NS z PS PL

NL NL NL NS NS NS

NS NL NS NS NS NS

z NS NS z PS PS

PS PS PS PS - PS PL

PL PS PS PS PL PL

5

0
0

ErrorRate -5 -5
Error

Figure 3.6 - Output surface of the fuzzy based navigational controller

3.2 Mathematical model for USV

The mathematical model of the boat called Delfim (Figure 3.7), developed by

Dynamical Systems and Ocean Robotics Laboratory (Portugal) [37] is utilized for the

simulation purposes. The following dynamic equations are modeled in MatLab

- 40-

:j,}l

environment [19]. This mathematical model is controlled by using the fuzzy logic

navigational controller in the simulations which are performed

Figure 3. 7 - Picture of the actual boat model

The velocities of surge (XB-direction), sway (YB-direction), and yaw (rotation

about ZB-direction) are defined as u = u (t), v = v (t), and r = r (t) .Then the

dynamic equations for the model are given as below,

nni=-D (u,v,r)+mvr+T cosa +T cosa
X P p S ·'

---------------(3.1)

mv=-D (zt, v,r)-mur+ T sin a + T sin a
y p !' s s

---------------(3.2)

ml;=-D(u,v,r)+Tcosa xd +Tcosaxd +Tsina xd +Tsina xd.
f: !' !' flY ,\' S ·'Y P p X S S X ("' "'>)

---- .:l . .:l

Where Tis thrust delivered by port side and starboard side propellers, respectively the

a1) and as are inclinations to the X B -axis , dis diameter of the propeller.

R.tsic steps of the MatLab program are given below,

a) Define all the variables and set the dimensions of the boat

b) Calculate mass and inertia matrix of the boat

c) Calculate frictional, form and additional resistance forces

- 41 -

_f}l

e) Calculate the damping and total moments

f) Set all the variables to its initial values, including time t, t = 0

g) Define boundary conditions for all variables of input and output

h) Initialize the reference values, such as reference trajectory of the ship in 2-D

plane

i) While t < t stop

Calculate the position error

Feed the inputs to the controller (within equal intervals)

Process the rules according to the inputs, by means of MatLab FIS.

Get the defuzzified output

Solve dynamic equations to find new position

Plot the results

3.3 Results from the navigational controller

The perfonnance of the fuzzy based navigational controller is compared with the

performance of a PD controller to prove the brilliance of the fuzzy logic based

controllers. The results are presented in Figure 3.8 to 3.12 and MatLab progam is

given in Appendix B. The desired path is presented in red while blue is utilized for the

actual path.

Path tracking: Sinosoidal trajectory
10 .-----~---.----,-----.---~~---.-----.----,-----.

: : : 'a\:· : :
\

, , , I , ' , 'I : : : ' : : :
5t--1: ---- -- --\ --i--- -- -~- -- -----~--1-r -l------ ---~ --- -----+ ____ ----·---------'' ,, . . . I , . " . .

lj ~. : : : J : " : :
~E 1: ~ . : : : I : : ~\ : :

I : • : : : : : ~ : :
~ : t \: : :, .: : :\: :
~ 0 ------- - ---- :-\ - --- - --~-- ------ -1-! ------- ~-------- ~l- - --- ----:------ ----· ---------

: : : tl. : : ~ ~ : t:·
~ : ,, ' .. ' . '\ ' '•

~ : : , : : :: : 1: .. ' ' ., ' •' \ ' . 111 • • ' : · ' • ' I .• - "\ \ : II : : ~ , : : :
,g -5 --------- ---------- i-~L ___ [__ ---- '~ -~----- ____ ;___ _______ };_0J!, _ - __ _[____ __ If_ ~ - -----
111 .a ' , , , , : ' , ,
II :\ \ : : : : \ \ : :
.!§ : \ : : : : ' \ : :

j j j j j \ j j

-10 f---------- --- ------!---- --- : ---------~----------!----- --- ~---- -- : - -------~ --------
' I I I I f I
t I I I I I I
I I I I I I
I I I I I I
I I I f I
I I I I I
I I I I I
I I I I I

t I I I I
I I I I t

I I I I I

-15 L---~ ____ _L ____ ~ ____ L_ ____ L_ __ ~ ____ _L ____ ~--~

0 5 10 15 20 25 30 35 40 45
Longitudinal distance/ Xe- [m]

Figure 3.8 - Path tracking of a Sinusoidal trajectory with PD controller

-42-

Path tracking: Sinosoidal trajectory
15~--~--~--~--~--~--~--~--~~

I

10 I-

(\

' ' '-----------~---{:\------ ' --------· :-----------~---------- ------------------ - ------- ~ - , ' '

- I; I I I i I I E , .. , , , , , • . ,
~ . r i i i__ _ __ t _ L ·1 l -~ _ _
dl 5 - ~ · - . - -, - . - - -· ' ' ' ' >- • • ' ' ' ' • ' ' '

• : : : ' .: : Gl : : 4J I . , , , : .: , ;, , ,
; : : : : • : '..a : : oc: I · , , , --: ,a: - , -. ..

• ' !It ' ' • ' • ' ca .. • : "a : : : . : : •• :
.... ' ~· ' ' • ' tl• i ---------1---------) ---------j------ -- { ---------:------ -l -- -- ----------Jr ·--- --
Q) ' ' ' ' " \ t.
iii : ' : ;I : :. / ' ...J : :· : • : : :~ · :

i : ~\ : ; : i i : ~· i

-s l-- -- ____ J_ ---------r ~-1 -- -->---t -r·--- ------~ ------ j lc -- --- --:----------
. \ ' ~ ' ' ' \\ '

' .. ' ' ' "\ '
i I i i : - ·
' ' ' . . '
' ' ' ' ' '

-10 1 I '-I,L I '"' I I
0 5 10 15 20 25 30 35 40 45

Longitudinal distance/ Xe- [m]

Figure 3.9 - Path tracking of a Sinusoidal trajectory with Fuzzy controller

Error in Lateral direction
1 .2 ,----,----,----,---,.----,---,,----,---.----~

0.8 . ..
0.6 ~ ~~ -

i 0.4
.!!?..
' Q)

E 0.2
i=

..

I

t

" .. , . '
,: 4.·. ,.

c. • •• • 8 .., •

~

'·

..

. \,.~ ~
il\.:. . • • :(

. ,; · .;v ·:r, "' :· ··
. . ! -, -.; . . i 0 !i. . . . ~ li':- ' i· : .: ••• • ·!4..1 I\ •• 7 • . .

~21
" -{)_4 I

-<l.6
0 5 10 15

: "

20 25
Longitudinal error- [m]

. ..
"

30 35 40 45

Figure 3.10- Error in Lateral direction of a Sinusoidal trajectory with Fuzzy

Controller

-43-

0.6

0.4

0.2

J(
0 ! -0.2

I

CD
E -0.4
i=

-0.6
I •

"- . ..
-0.8 ~ "

"
-1 1- ••

. .

:t
) ,. :\

~-;;.;.
).. . .

Error in longitudinal direction

. , ..
:?.:':\ . -~ . t·· \ ..

; . ~·!\
/'1.: ~ ,; : ~ J

. . •..
" . .:• ' . ' . \ I\ • • ~ \(. • l

. .
·. , .

" \
:"

:; \. . ~· ~·
:r:· ~. , . . ~

!C :, ., .
·i

-1 .2 L__ _ _L _ ___JL_ _ _l_ _ ___l __ _l_ _ ___l __ _L_ _ ___L _ ___j

0 5 10 15 20 25 30 35 40 45
longitudinal error- [m]

Figure 3.11 - Error in Longitudinal direction of a Sinusoidal trajectory with

Fuzzy controller

Path tracking: straight trajectory
40

35 ---------- ----------------------------------- ____________ .__ _____ _

30 ----------·------------' ' _____ J _____ -------------------------------------- __ ,_

' ' ' '

.s
cD 25 ---------------------- ------- ---- ------------ ------- ___ -----,----------------------

>-
Q;
0
fii 20 ' ' --------.-- ----------·--
iii
'0
1! 15
Q) -"' ..J

' ' --------- -----------,------- --- -··-··- ------,-----·----- - -----------
' ' ' ' ' ' ' ' ' ' ' ' ' '

---------------------- ---··-------

' '
10 ' ' ' ' --· ---·- .. ------ ----- -.--- -------·- ---------------------

5 ' ' _________ .. ___________ -----------------------------------
' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '

5 10 15 20 25 30 35 40 45
Longitudinal distance/ Ye- [m]

Figure 3.12 - Path tracking of a Straight trajectory with Fuzzy controller

-44-

3.4 Summary

This chapter mainly described about designing and simulating a fuzzy logic-based

navigational controller for unmanned surface vehicles. An already developed dynamic

model of a boat is utilized for the simulations though out the report. The controller

considered in this study is a fuzzy based system. MatLab framework with Fuzzy-logic

toolbox was used to design and implementing the whole system. MatLab programs

were employed for the navigational controller simulations. The basic design procedure

and the simulation procedure were included in detail. The results including the desired

and actual paths are plotted at the end.

- 45-

Chapter 4

Static Obstacle Avoidance of USV

4.1 Utilizing Ground Vehicle Technologies for Surface Vehicles

4.1.1 Design of OA controller

Obstacle avoidance controller is essential - for autonomous, semi-autonomous

navigation or as a driver assistance system to encounter the collision situations for

safe navigation. The navigation controller and the obstacle avoidance controller are

synthesized independently but operate combined since both controllers are essential to

ensure safe navigation.

This OA controller is also implemented in Matlab framework, using fuzzy logic

toolbox and Fuzzy Inference systems (FIS) editor GUI. Trapezoidal membership

functions are selected as the input membership functions. Sugeno type inference

system is used for the controller synthesis [7].

4.1.1.1 Input Functions

Two auxiliary input functions are developed to be used as the inputs to the fuzzy

controller. They are

a) Collision direction function and

b) Relative distance function between the obstacle (stationary or dynamic) and the

vehicle

Collision direction function is used to take the obstacle direction with respective to the

boat heading. I1eading angle of the boat and obstacle angle with respective to the earth

are used to find this collision direction in the MatLab simulation. Collision direction

angle is measured from the Y axis of the boat frame. Figure 4.1 and 4.2 show the

measurement of collision direction angle. Calculation was corrected for the whole

Cartesian plan. The collision direction angle is defined as

-46-

f3 = 90+8-a ----------------------- (4.1)

Where e is heading angle of the boat and a is obstacle angle.

y

'-.

e"\\

Y Boat

I
I

I
I

I
(\\

1 a~~

Obstacle

X Boat

I
I

I

I

Figure 4.1 - Calculating collision direction

X

- 47-

....

y

a

~
8\

',

Y Boat

X Boat

I
(
\

'-------------- ----- -- --- -- -- ----0

Obstacle

X

Figure 4.2 - Calculating collision direction

jJ changes near obstacle alone a desired path is presented in Figure 4.4. That straight

path of the boat is given below (Figure 4.3).

- 48-

2ooo 1
------- ~----- --------- -----,---------

1800

1600

1400
I
!

1200.

1000 1-

800V ' ' ----~-------
__ L_ __ ~--

600 700 800 900 1000 1100 1200 1300 1400 1500 1600

Figure 4.3 - Boats path near obstacle without Obstacle avoidance controller

7

6·

5.

0 4-
Q) I

!!}_,
I

Q)

~ 3,
1-

I

2

1 -

ol __
0

Beta changes alone the path

\"-------

50 100

~\

150
Angle-[rad]

200

Figure 4.4 - jJ changes near obstacle

J

250 300

- 49-

X

XY XNY

Y NY

NXY NYNX

NX

Figure 4.5- Names of collision direction input membership function

Degree of
membership

YX X XNY NY NYNX NX NXY y

(I 7r

36 36 2 36

357r 7r 377r

36 36
537r 37r 557r

36 2 36
717r 27r

36

Figure 4.6 - Collision direction input membership function to the obstacle

avoidance controller

Eight ditierent membership functions are defined for the collision direction input

function. Triangular functions which are having 10° with were used to input collision

directions on main axes of the boat fixed frame. Centres of those functions are 0,

I1 /2. n. 3 TI /2 and 2 TI respectively. Triangular and trapezoidal functions are chosen

and these functions can be implements with out many complications. The approach of

naming the membership function is given in Figure 4.6 while Figure 4.5 presents the

membership functions of the Collision direction function. The radar maps and stereo

Yision can be used to find this collision direction in real world situations [14].

-50-

4.1.1.1.2 Relative Distance Function

Relative distance towards obstacle is calculated by means of coordinates in the

coordinate frame system [33]. This is the Euclidian distance between the center of

gravity of the boat and the obstacle. Two triangular membership functions are defined

as "Low" and "High" (Figure 4.7).

Low

08

~

j 06

~
0

~ 04
0

02

5
Rel-drstance

Htgh

10

Figure 4. 7 - Relative distance input membership function to the obstacle

avoidance controller

The x-scale of these functions may subject to changes according to the dimensions

and speed of the considered boat platform, but the design and simulation algorithm

remain same. Inputs for the relative distance function are defined in between 0 to

I OOm for the simulation. It means that "Low" fuzzy set is define from 0 to 50m while

·'High" is define from 50m to I OOm.

4.1.1.2 Rule base of the controller

rhe rules for the controller are given below. Xdot and Y dot are the velocity

components of the main direction. Here "DDD" presents the maximum velocity of the

boat while "DD" and "D" presents the 2/3 and 1/3 of the maximum velocity

correspondingly. Negative velocities of the above velocities are appeared as

.. NDDD", "NDD" and "ND".

-51 -

1. If(Col-direc is Y) and (Rei-distance is High) then (Xdot is Zero) and (Ydot is ND)

2. If (Col-direc is Y) and (Rei-distance is High) then (Xdot is Zero) and (Y dot is ND)

3. If (Col-direc is Y) and (Rei-distance is Low) then (Xdot is D) and (Y dot is NDD)

4. If (Col-direc is Y) and (Rei-distance is Low) then (Xdot is D) and (Y dot is NDD)

5. If (Col-direc is NY) and (Rei-distance is High) then (Xdot is Zero) and (Y dot is D)

6. If (Col-direc is NY) and (Rei-distance is Low) then (Xdot is D) and (Y dot is DD)

7. If (Col-direc is NX) and (Rei-distance is High) then (Xdot is D) and (Y dot is Zero)

8. If (Col-direc is NX) and (Rei-distance is Low) then (Xdot is DD) and (Y dot is D)

9. If (Col-direc is X) and (Rei-distance is High) then (Xdot is ND) and (Y dot is Zero)

10. If (Col-direc is X) and (Rei-distance is Low) then (Xdot is NDD) and (Y dot is D)

11. If(Col-direc is NXY)and(Rel-distance is Low)then(Xdot is D) and (Ydot is NDD)

12. If(Col-direc is NXY)and(Rel-distance is High)then(Xdot is Zero)and(Ydot is ND)

13. If (Col-direc is NXNY)and(Rel-distance is Low)then(Xdot is DD)and(Y dot is D)

14. If (Col-direc is NXNY)and(Rel-distance is High)then(Xdot is Zero)and(Y dot is D)

15. If (Col-direc is YX)and(Rel-distance is High)then(Xdot is Zero)and(Y dot is ND)

16. If (Col-direc is YX)and(Rel-distance is Low)then(Xdot is ND)and(Y dot is NDD)

17. If (Col-direc is XNY)and(Rel-distance is High)then(Xdot is Zero)and(Y dot is D)

18. If (Col-direc is XNY)and(Rel-distance is Low)then(Xdot is ND)and(Y dot is DD)

4.1.1.3 Output Functions

Only two output membership functions are used to reduce the complexity of the

controller. They are

1) Velocity component along x axis (x)

2) Velocity component along y axis (y)

Output surface of the x is given in Figure 4.8 and output surface of the y is given in

Figure 4.9 .Those velocities are given with respect to the boat frame and they are

converted to the world frame before calculating the desired boat positions. The

conversion matrix is given below :

-52-

0
"0
X

1
= (cos() -sine)

sin() cos())

0.8

0.6

0.4 I

o.2 I

0

-0 2 . . !

-0.4 1

10

5

Rei-distance

(5)

6

4

0 0
Col-direction

Figure 4.8 -X direction velocity output surface of the obstacle avoidance

controller

-53-

05

_g 0
>-

-0.5

10

Rel-di stance 0 0
Col-direction

Figure 4.9 - Y direction velocity output surface of the obstacle avoidance

controller

The algorithm for path planning with obstacle avoidance is given in figure 4.1 0. This

algorithm was developed as a module in MatLab. That module can be reused for

future works. Few results from the simulations are presented at the end of this chapter.

-54-

4.1.2 Algorithms for simulation of the controller

+
Evaluate fuzzy

outputs
FuzX,FuzY

-f
v, = FuzXxvx cosB

vv = FuzYxvxsinB

Define Goal, St~rt~~dl
Obstacle points

Do until the boat
reach the Goal

...
Index=indcx+ 1

Calculate Boat(B),

Obstacle(a) and Goal

direction angles . • jJ = 90+8-a
t

Calculate relative
distance (RD)

~
vx = vxcose

v = vxsinB

...
xnew = xo/d + v,. X Timelnterval

Ynew =Yo/(/ + vy X Timelnterval

j.
Plot the new point

on the plan

• Calculate

X desrred ' Y desrrcd

Xdcs1rcd' Y desired

X desired ' Y desrred

t
Store above

values with time

Figure 4.10- Algorithm of the obstacle avoidance controller

-55 -

Block diagram of the simulation program is shown in Figure 4.11. The algorithm of

the path planning module is given in Figure 4.1 0. The main module is defined the total

time span, initial configuration of the boat, goal point and the obstacle points. Then

those data is sent to the Path Planning Module. The time span, desired path and boat's

configurations are sent to the Boat's Dynamic Simulation Module. Then the actual

path and configurations of the boat is taken by the Main module to plot the actual

paths of the boat. Results from this module are presented from Figure 4.12 to 4.16.

Relavent MatLab program is given with Appendix C.

Path Planning Module

Time span
Initial configuration of the boat

Goal point
Obstacle points

Main Module

Path Plotting Module

Time span
Desired path and

boat's
configurations

Boat's Dynamic
Simulation Module

Actual
configurations of

the boat

Figure 4.11 - Simulation setup of the obstacle avoidance controller

-56-

4.1.3 Simulation Results from the Controller

Path near obstacles
1000

900
Goal point

800

700-

E' 600. Obstacle
Q)
ll c 500 C1l •
1i)
15
>- 400 i

300

200

100
Starting point

0 ~---- - ___]__ _________ l _[_ ______________ j ___________ _

0 1 00 200 300 400 500 600 700 800 900 1 000
X distance[m]

Figure 4.12 - Path starting near root of the coordinate system

Path near obstacles
1000 ~--

900
Goal point

800

700

'E 600
(i)
(.) Obstacle
c 500 ro u;
'6
>- 400 •

300
Starting point

200

100

oi L ---

0 1 00 200 300 400 500 600 700 800 900 1 000
X distance[m]

Figure 4.13 - Path starting near root of the coordinate system

-57-

Path near obstacles
1000

9001 I Doal point

800

7001 Obstacle

E 600.
Q) •
u c 5oo r ro
tl
i5
>- 400-

3oo I
I

2001

100 L

I
ot j ___________ _ -- ____:_ ________ ~_l __l_ _______ j_ __

0 1 00 200 300 400 500 600 700 800 900 1 000
X distance[m]

Figure 4.14 - Path starting near the left corner of the coordinate system

Path near obstacles
1ooo I - - --------~-------

-r----~----- ·--------- ---

I
I

900 ~ Starting point,///

8001

I 700
I

'E 600 ~
Q) Obstacle • u

500 ~ c
ro

!
Ul
"0

>- 400

300 ~ Goal point
I

200-

1001
!

0 -~- ~_l_ ____ - __,_ _____ _[___ --- -- __ L_ ___

0 100 200 300 400 500 600 700 800 900
X distance[m]

Figure 4.15 - Path finishing near root

-58-

1000

950-

900!
I

850 ~

E' 800
ill
0 c 750 Cll
UJ u
>- 700

I
I

650-

6001

550

500
300 400

4.1.4 Summary

Path near obstacles

Goal point

Obstacle

..
500 600 700

X distance[m]
800

J

-1

~
I

'·- --- ___ j
900 1000

Figure 4.16- Path starting near obstacle

This chapter presented obstacle avoidance algorithms for unmanned surface vehicles

which are already developed for unmanned ground vehicles. A previously developed

mathematical model and a fuzzy-based navigational controller is utilized with obstacle

avoidance algorithms, for simulations. This was also implemented in Matlab

framework, using fuzzy logic toolbox and fuzzy inference systems (FIS) editor GUI.

Trapezoidal and membership functions ware selected as the input membership

functions. Sugeno type inference system is used for the controller synthesis. All the

programs are developed in the MatLab environment.

Obstacle avoidance control is essential for autonomous, semi-autonomous operation

of vehicles or as a driver assistance system to encounter the collision situations for

safe navigation. The navigation controller and the obstacle avoidance controller are

synthesized independently but operate together, since both controllers are essential to

ensure the task of safe navigation.

-59-

4.2 Novel Algorithm for OA

4.2.1 Methodology of the Novel Algorithm

Although the Morphin algorithm has been used for many practical applications, none

of the detailed algorithms has is not published yet. So this section describes the

development of novel algorithm for USV s, based on Morphin algorithm.

In this method stereo cameras and Surveillance radars can be use to capture obstacles

in the field [21]. The captured data is transformed in to a grid. Then that grid is

utilized as obstacle matrix to avoid that obstacle. Figure 4.17 is presents an obstacle of

that grid and Figure 4.18 shows the corresponding obstacle matrix with values. Ones

and zeroes are used to represents obstacles and obstacles free areas. This morphin

algorithm is basically developed for unmanned ground vehicles but it is not possible

to use ones and zeroes for them. Because the height and appearance of the obstacles

on ground are needed to store obviously. But the case is somewhat different with the

surface vehicles because they cannot overcome obstacles as ground vehicles. So, it is

sufficient to use ones and zeroes in the obstacle matrix.

l I
I

l_

Figure 4.17 - Obstacle in the grid

- 60-

Figure 4.18- Obstacle matrix with obstacle

Figure 4.19 shows number of arcs projected in front of the boat over the local world­

model obstacle map. The number of arcs considered is a function of the map size and

grid spacing, with the arcs spaced such that one arc passes through each of the outer

cells. This approach guarantees that each cell in the grid is covered by at least one arc

so that all navigable paths are considered. Mathematical functions of the circles and

lines are utilized to calculate the coordinates of the paths. They are put in to a path

matrix with a path index. Straight line functions are employed for the middle path as

their radius is tent to infinity .

... .. r t
. I 1- -- -- __ _j

• I

I

~

I

L..

r--
""

•c "1----

I

--l
-Y·

J

J
!

---1 ..

Figure 4.19 - Possible paths of the USV

- 61 -

The projected paths and the obstacle matrix is shown in Figure 4.20. Here the paths on

the obstacles are assigned small weight while other paths are assigned using high

weights. A curtain weight values are further added for the paths heading towards the

goal as well. So, the best path is chosen depending on the weights assigned at that

time. Then the boat moves a certain distance along that path. Again, the new obstacle

matrix is processed and obstacle matrix is added to the system for other iterations .

. oT<f(b-~
··0 I /0 I 0 j

I 0 ~- \~(~ I ()-,
lo..,. ·mu, o o, \ 1 ·, I

f · .. 0 \\ j .· _.· -1

;-. ·_-~--_- ... ~ .. _-_~-.-_·\7 v/_; -_.---.~ ... ·.···rt·-~~----. -_.· r-o----o ~-, ,, _[. o -o,
~~- _--- -!-~ { __ -- -- _: ---

' ' I I
i, I

L_l

Figure 4.20 - Possible paths of the USV on the Obstacle matrix

Coordinates of the obstacles in the navigation area is necessary to be inse1ied in to

obstacle matrix. The way of extracting obstacle coordinates in to the obstacle matrix is

presented in the Figure 4.21.

The transformation is given by Equation 4.1 where obstacles on obstacle matrix are

presented as OOM and obstacle on world frame is given as Oeff.

- 62-

YEFF

Yobstacle

w,"C0Q-
• ~ : ,, '?.

. ',,~0

• '". fQ/ ,, _)
T ~~ .. ._,,,,

----· ''\4,

===~--··
Xoeff , Y Oeff

Xobstacle

e XEFF

Figure 4.21 -Obstacle coordinate conversion

Yom£ = sinB -c~sB Yoeff -ynew + GL [] []-] [] ro J
XOOM COS 8 Sill 8 XOejJ -X new 2 ---------- (4.1)

Where (} represents the heading of the boat.

- 63-

.Goal

., ?--.
• Gdl

Grid Length (GL)

--.-----,--- ..

~~- ------

r
I
-<11-

--~--;

•
Obstacle

l ,._,.
- y~--- I
/I'"' --l>j

---1-~~ ' / j__ I

:/ -

;·. ·~L~ . :
~'= -____ - c.'-c=-0 •/'c-. __ _

, Ynew) -

.:

Figure 4.22 - Path value calculation

GL GL
Path val(i) = --

(Gd, +k) (Td, +k)
--------------------------- (4.2)

.J5 r;::
vvhere -GL > Td, > 0, '.!2GL > Gd1 > 0

2

Equation 4.2 is utilized to calculate the path values. 10 is assigned in to the constant k

for the simulations in this study. Here the paths on the obstacles are assigned small

\alues while other paths are prearranged using high values. A curtain weight values

are further added for the paths heading towards the goal as well. So the best path is

chosen depending on the weights are assigned at that time [6].

- 64-

Then the boat is moved certain distance on that path. Again the new obstacle matrix

is processed and obstacle matrix is added to the system for other iteration of the same

path.

4.2.2 Simulation of Algorithms

. Initially the Novel path planner takes the grid size, sub grid size, goal point and

obstacle map. Then the coordinates of the curved paths are evaluated and assigned in

to the Ypaths matrix with pathindex. It was straightforward way to find obstacles on

each path. Big gaps were formed when y coordinates of the straight line functions

were utilized. So that another matrix for the straight line functions is defined for the

sack of inconvenience. Then x coordinates of the straight lines are stored in X paths.

Evaluation of the goal matrix is done by comparing the obstacle matrix with the path

matrixes. Minimum distance that boat can travel on each path is stored in the

Distance _Matrix function. The above process is continued for the each and every path.

Then the goal direction is evaluated and that value is also employed with the obstacle

liberated distance to choose the optimum path among each and every possible path.

The boat is traveled 1;4 of the grid size on the chosen path their after. That whole

process is presented in simply for the convenience of the reader. The above process is

developed as a single module. Another module is needed to call that module

sequentially until the chosen boat reaches the goal. That algorithm is appeared in the

Figure 4.23.

- 65-

Takes grid size, subgrid
size, pathindex, Goal
points, Obstacle map •
Create curved path~

Ypaths(pathindex,<For all x>) = y

Create straight paths

t=i~Ln .•-rl
ta

~__; '
~~· ,ru.~=-j--'1 . -

i

' '

l
I Xpaths(pathindex,<For ally>)= x

No

Evaluate
Distance_Matrix(pathindex)
=Min{ Obstacle distance}

f grid area
is covered

Yes

Evaluate goal direction

Choose the
optimum path

T
Move %of the grid size
(On the chosen path)

Figure 4.23 -Simplified flow chart of the Novel algorithm

- 66-

Chapter 5

Dynamic Obstacle Avoidance of USV

Obstacle avoidance without dynamic obstacle is not practical with obstacles on Sea.

Dynamic obstacle avoidance is discussed in this chapter in detail. Simulation results

relevant to dynamic obstacle avoidance is discussed in the next chapter.

5.1 Introduction to Novel Dynamic Obstacle Avoidance Method

Projected obstacle area method is a very famous method for dynamic obstacle

avoidance. Dynamic obstacles can freeze time with the help of that method. Then any

type of static obstacle avoidance method can utilize to avoid that. This method is

employed in several places on ground and water.

Dynamic obstacle is transformed to another static obstacle which is having large

dimensions in the above method. That means it utilized the effective area of the path

planning plan which can be employed for path planning. That may be coursed to plan

inefficient paths to avoid dynamic obstacles. Then USV may able to travel longer or it

may stops suddenly due to lack of effective areas on the path planning plan. So it is

very vital to utilize the traveling area effectively as well as avoiding dynamic

obstacles. So the novel method is proposed to avoid Dynamic obstacles by employing

the minimum areas on the effective area of the path planning plane .

• •

~-

,,;
I

Figure 5.1- Two Dynamic obstacles with Projected Obstacle Areas

- 67-

Figure 5.1 presents two dynamic obstacles which are freezed with time. Those two

predicted areas have blocked the effective path from their edges. The following Figure

5.2 shows the advantage of reducing that predicted areas. So the path planner is

generated the efficient path between two obstacle areas.

••

~

I

' I

1-

I

Figure 5.2-Two Dynamic obstacles with their reduced projected obstacle areas

/ --

I
1

I
I

/

2

/

,......--..--"""'

End
point

I
I

/

Figure 5.3-Path planning between three dynamic obstacles

")
,j

- 68-

Figure 5.3 presents the predicted path among 3 dynamic obstacles. These obstacle

areas are generated by freezing 3 dynamic obstacles with time. So the path planner

considers those areas as another static obstacle and then it can avoid those by utilizing

any static obstacle avoidance method.

5.2 Area Prediction of Dynamic Obstacles

The effective time estimation of Dynamic obstacles is very important to avoid them.

Some dynamic obstacles near to USV may not cause any effect on the USV. They

may travel away from the USV. Some dynamic obstacles may travel towards the

USV. So that it is very important to estimate the effective time of a Dynamic obstacle.

The time estimated is presented from tarea in Equation 5.2 . Equation 5.1 is utilized to

calculate T after reveling t1 and t2 • t1 is calculated making use of the velocity of the

obstacle while t2 is calculated by employing velocity of the USV. t2 is the time taken

to the USV to cross the predicted path of a moving obstacle while t1 is the time taken

for that moving obstacle to cross the defined path of the USV. The traveling path of

the USV is known before hand and has to utilize a path prediction module to predict

the path of obstacles.

I
Moving path :of /

the obstacle--" /,/

"~~-~~

\
;

Figure 5.4-Effectivc time prediction of Dynamic obstacles

'>
I

usv

- 69-

T= <D
It~- t21

--------------------------------(5.1)

I mm E [(I' -~),(t, + ~)] ---------------------------------(5. 2)

Where t 2 is the time taken to the USV to cross the predicted path of a moving

obstacle, t
1

is the time taken for that moving obstacle to cross the defined path of the

usv

t=t2+ T/2

I
I

I

~I

I
I

I

I
I

I

/sxt~

t=t2 _,_ __
I

I

I

I
I

I

/d

l t,-t2-T/2

Obstacle path

Figure 5.5- Area Calculations for Dynamic obstacle

t=O

Figure 5.5 presents the area calculation of Dynamic obstacles. That area is depending

on the relative velocity of the obstacle as well. K is chosen depending on the sea.

Because the behavior of the obstacle is directly depend on the sea condition as well.

The obstacle movement is very high on a ruff Sea. So that predicted areas for

obstacles on a ruff sea should be comparatively larger than a normal Sea. High

velocities are increasing the possibility of high deviations from the predicted paths.

The importance of the obstacle velocity to the predicted area is reflected through new

equation well. The constant in the above equations can be change at the practical

implementation phase. The dimensions of that area can be changed by changing the

constant in the above equation.

- 70-

5.3 Path Prediction of Dynamic Obstacles

It is very important to determine the path of dynamic obstacles to avoid them. Radars

and other obstacle detection methods can utilize to take moving coordinates of the

obstacles. Then those data are stored in an arr(!y. So, that array can utilized those data

to predict the future movements of the obstacles in the next step. It is required to store

lateral and longitudinal coordinates with time for path prediction purpose. It is quite

complex thing to analyze. So two separate arrays consisting lateral coordinates with

time and longitudinal coordinates with time are utilized for analyzes. Figure 5.6

presents a simulation result showing the actual and predicted path in 3-D space.

1400

1200

1000

800
~
Q)

E 600 ;:;

400

200

0
3000

2500

2000

1500

Y coordinates

Predicted path in the time space

1000

500
500

0 0

1000

X coordinates

1500

Actual path

Predicted path

Figure 5.7-Simulation result of an Actual and Predicted path in 3D space

- 71 -

Two prediction methods are utilized for path prediction in this study. First

conventional mathematical method is attempted and then generalized regression

neural network (GRNN) method is employed [26, 9]. All the results are collected and

analyzed at the end.

5.3.1 Polynomial Approximation Method for Path Prediction

Conventional mathematical method, polynomial approximation is utilized to predict

the moving path of the obstacles first. The data array which was utilized to store initial

positions of that obstacle is taken to approximate the moving function of the obstacle.

Two functions have approximates for lateral movement and longitudinal movements.

Then those two polynomial functions are employed to predict the path of the obstacle.

Several arrays can be employing easily for several Dynamic obstacles as explained

earlier. The difference between predicted and actual path is analyze by changing the

degree of the polynomial. Obviously the sensor noise cannot be neglected as it is part

of the actual data. Because the GPS and Rader data having their own deferent noise.

So sensor noise is added to the data and analyzed at the end.

5.3.2 Generalized Regression Neural Network for Path Prediction

GRNN is often used for function approximation. It has a radial basis layer and a

special linear layer. It consists of two-layer network. The first layer has radial basis

neurons and the second layer has linear neurons [9].

MatLab Neural Network tool box is utilized for the simulations of this study. It is

customized by changing the variable name 'spread'.

A larger 'spread' leads to a large area around the input vector where layer 1 neurons

\\ill respond with significant outputs. Therefore if 'spread' is small the radial basis

function is very steep, so that the neuron with the weight vector closest to the input

-72-

will have a much larger output than other neurons. The network tends to respond with

the target vector associated with the nearest design input vector.

As 'spread' becomes larger the radial basis function's slope becomes smoother and

seYeral neurons can respond to an input vector. The network then acts as if it is taking

a weighted average between target vectors whose design input vectors are closest to

the new input vector. As 'spread' becomes larger more and more neurons contribute

to the average, with the result that the network function becomes smoother.

- 73 -

Chapter 6

Simulation Results

6.1 Simulation Results by Applying UGV theories for USV

The path planning with two obstacles by utilizing algorithms which are developed and

tested for UGV is given below. Figure 6.1 shows planed paths with obstacles having

50m safety distance. The safety distance is equal to 60m of the obstacles which are

utilized for the next simulations, presented in figure 6.2.

500

450

400

350

300
e ..
"ii
~ 250

~
200 1

150

100

50

Obstacle 1

•

50 100 150 200 250
X..Coordinate[m]

300

Obstacle 2

350 400

Figure 6.1- Obstacle avoidance using UGV algorithms

(Safety distance from Obstacles= 50m)

-74-

500

450

400

350

300
E'
Q;'
iii
~ 250
0
0
u .;.

200

I
150

100

50

50

Obstacle 1

•

100 150 200 250
X-Coordinate[m]

•
Obstacle 2

300 350 400

Figure 6.2- Obstacle avoidance using UGV algorithms

(Safety distance from Obstacles= 60m)

6.2 Simulation Results from the Novel Algorithm

450 500

Possible paths have to generate first to choose the best among them as discussed in the

Chapter 5. So that possible paths of the USV are generated as shown in Figure 6.3 .

All possible paths are generated in a 20x20 matrix. That can be used to presents a

20x20m area or multiples of that similarly (40x40m) on the Sea or water.

- 75-

2

4

6

CD 8
-ro
c
'E 10
0
0
(.)

~ 12
ct

14

16

18

20
2 4 6 8 10 12 14 16 18 20

Column Coordinate

Figure 6.3 - Possible paths matrix of the USV

Obstacle in sea can identify by utilizing Radars, stereo vision or any other methods

successfully. But those obstacles data have to interpret to the algorithm. Figure 6.4 to

6.7 is presented different obstacle matrix for different obstacle positions. The whole

path matrix is plotted there with red color paths. Then square shape obstacles were

placed on different locations of the grid. It obviously should be a 20x20 matrix since

the dimensions of the possible path matrix should be equals to the dimensions of the

obstacle matrix. Relavent MatLab program is given with appendix D.

2r----------------------------,

&

.II B

~
~ Hl
u
! 12

H

I&

IB

:.1] I I

2 ~ & B IC ~ H I& IB OlD
c...,"c.nJ .. ~

Figure 6.4- Obstacle on the Obstacle matrix A

- 76-

2

E

., B

l!
~ ID

u ! 12

H

::IJ
;zn

2 4 E B Ill 12 H IE IB Zl
co~ ... "c_.,..,

Figure 6.5- Obstacle on the Obstacle matrix B

21~
4

E

IE

18

;zn~2=-~,~~,~-s=-~I~D--7.12~-1~4~~1~E--~IB=-~;zn~
Clll..mnC-IIINie

Figure 6.6- Obstacle on the Obstacle matrix C

2

E

.II B

~ i Ill
u

! 12

H

IE

IB

;zn
2 E B ID 12 H IE m ;zn

CIIIL.Iftn C_.lll~le

Figure 6.7- Obstacle on the Obstacle matrix D

Table 1 presents the maximum traveling units on each and every path. Then those

table data is utilized to calculate path values. After considering path values ninth path

is chosen for the obstacle matrix A. 5th, 1st and 2nd paths are chosen for the obstacle

matrices B, C and D respectively.

-77-

~ X

r1 1 I 2 I 3 I 4 I 5 I 6 I 7 I 8 I 9

A 40 40 40 40 40 40 40 40 17
B 40 40 40 40 18 40 40 40 40
c 3 40 40 40 40 40 40 40 40
D 40 3 40 40 40 40 40 40 40

Table 6.1- Maximum Safe traveling distance on each path

Figure 6.8 and 6.9 presents path planning with obstacles which are having safety

distances 40m and 60m respectively.

500

450

400

350

'E 3oo
ar ro
.!::: 250
'E
0
0
y 200
>-

150

100

50

•
Obstacle 2

Obstacle 1

II

Starting point
0~--~--~----~--~----~--~--~-----~--~--~

0 50 100 150 200 250 300 350 400 450 500
X-Coordinate[m]

Figure 6.8- Obstacle avoidance using the Naval algorithm

(Safety distance from Obstacles= 40m)

-78-

'E ..
;;
c

500

450

400

350

300
•

Obstacle 2

'2 250
0
0

~
>-

2001
Obstacle 1

•
150

100

~----~------~------~-------L------~------i-------L------~~----~---~
1 00 150 200 250 300 350 400 450 500 0 50

X-Coordinate[m]

Figure 6.9- Obstacle Avoidance using the Naval Algorithm based on Morphin

Algorithm

(Safety distance from Obstacles= 60m)

- 79-

·4

.a

6.3 Simulation Results from Potential Field Method

Already developed software is employed for path planning with PFM. Figure 6.10 and

6.11 present the contour map and 3 dimensional surfaces of 3 obstacles. Path planning

with PFM is processed by considering minimum potential from starting point.

-~...._J...._,__

-8 0 2 4

' '
~--~---·--·--------

' ' .
-----~---------y·-------

-------~--------~-------
' . I

' I
' -----J·--·---·-'····----

6 8

Figure 6.10- Contour map of Potential field with 3 obstacles

10

- 80-

,15

10

5

!3ll

460

«XX

::a!

.,.3)0

i
~
~:.EO
~ ..
u
;;:m

150

100

50

0
0

········ ··· ·,
·········

·····
····--······· ··

............... :·;· · ·

0

-5

• '• • ' ' w~'' '• o

..... .. . :.. :.
·····': ····· ·· ·· • "i., : ... _

·········· , ······
n 5 10 15

-15

Figure 6.11- 3D surface of Potential field with 3 obstacles

50

' ' ' ', , ,... ~,.,. - ~-~,
• l • /

' ' '

100 150 :a:JO 250 :xJO 350 400 450

X-Ctoullnntes(nlJ

Figure 6.12 - Obstacle avoidance using PFM

(Safety distance from Obstacles= 50m)

500

- 81 -

6.4 Comparison of Obstacle avoidance methods

The other two obstacle avoidance methods were compared and results are presented in

Figure 6.13 and 6.14. The travel distance verses safety distance is compared in the

Figure 6.13. According to the results which are presented in the figure shows that

Novel algorithm is capable of achieving the target with minimum traveling distance.

Potential field method shows minimum travet distance at 50m safety distance since it

was changed its traveling path between two obstacles to another path which was away

from the two obstacles.

Distance towards obstacles verses time were taken for all three methods and results

are given using three different colors in the figure 6.14. It shows that the generated

paths utilizing potential field method is far away from the safety area of the obstacle

compared with other methods. That is the main reason for traveling longer when the

potential field is used.

850

BOO

750

..
::! 700 ;:;

.~
"" "" .,
-.;
~ 650
.=

600

550

500

.......

3D 35

- Potential fie ld method for USV

- uGV algorithms for USV
- Novel algo~thm for USV

40 45

~

50

S.1fety disto111Ce

55 60

Figure 6.13 - Comparison of safety distances

-

65 70

- 82-

550

500

450

400

I
~350
J!l
~
~ 300 r
~
£

~ 2so r
~
c5

200 "'
150

100

500 200

Distance towards obstacles

Novel algorithm

ApplingUGVtheories

PFM

Obstacle 1

400 600 600 1000
time[s)

Obstacle 2

1200 1400

/

/

1600 1600

Figure 6.14- Comparison of distances towards two obstacles

2000

- 83-

6.5 Simulation Results for Dynamic Obstacles Avoidance

Figure 1 and 2 present the make use of static obstacle avoidance for dynamic

obstacles. The time information ofthe USV and the obstacle} are shown in the figure

1 for the convenience. Dynamic obstacles can freeze on their moving path with time.

So they become another static obstacle at the end. But it is required to predict the

moving path of the obstacle before hand. Simulation results from the path prediction

methods which are discussed above are presented below. Effective area prediction is

also equally important as path prediction. So set of simulations have done on that and

those simulation results are presented after the path prediction results as shown below.

800

700

000

-500 .s
Ill

"' ~400
~
0
0
u

>- :nJ

200 1

100

Obstacle 2

~

100 200 :nJ 400
X-Coordinates [m]

500

\ \ Obstacle 3

000 700

Figure 6.15- Dynamic obstacle avoidance with time values

800

- 84-

600 -
Goal

t' 550

Obstacle 2

/ (625,590)

500

I
Ill
i14SO Obstacle 1
'e

8
I'

' >-

400 ~ Obstacle 31 i '\Om
350 ~. (350 ,350)

v
(325,330)

300
250 300 350 400 450 500 550 600 650

X<:oodnates lm]

Figure 6.16- Dynamic obstacle avoidance with 3 obstacles

6.5.1 Simulation Results for path prediction of Dynamic Obstacles

For the simulations of path prediction, Octomorphic path is generated as the actual

path of the obstacle. But the path planning module is only supplied with past 100

coordinates ofthe obstacle movements in USV frame. Then path prediction module is

predicted another 50 coordinates. Then those coordinates and the error values are

plotted.

6.5.1.1 Polynomial approximation method for path prediction

Simulations done utilizing Polynomial approximation method considering sensor

noise and without noise.

6.5.1.1.1 Simulations without sensor noise

40

30

20

:s

1 10

D 0

-e

} -10

-20 ,

-30

.4Q L
~

0 100 200 300 400 500 600 700
llme I [S]

Figure 6.17- Longitudinal coordinates of actual path

80 -

60

40

I 20 1 -
~ 0 Cii
!:l

~ -20
~

-40

-60 c

-80
0 100 200 300 400 500 600 700

llme I [S]

Figure 6.18- Lateral coordinates of actual path

j
800

,I

_j

BOO

- 86-

Figure 6.19- Actual path and Predicted paths of the Obstacle for different
degrees of Polynomials

Figure 6.17 and 6.18 presents the lateral and longitudinal value changes respect to

time. Then Figure 6.19 shows the actual Octomorphic path of the obstacle. Predicted

paths after changing the degree of the polynomials are presented in a same figure to

compare the effect of the degree. Figure 6.20 and 6.21 shows the lateral and

longitudinal errors after changing the degree of the polynomial. A developed MatLab

program for this is given in appendix E.

- 87-

4 ·

3

2

'E
.... g
w
"iii c 0
'6
::J

·g, -1 I
0
_J

-2

-3

-4
0 100

I

I
I

200 300 400
Time [S]

500

Degree= 3

Degree= 8

Degree= 5

600 700

' ~

--<

800

Figure 6.20 - Longitudinal error of predicted paths for different degrees of
Polynomials

0.5

OA

0.3

0.2

E 0.1
.... g
w 0
~
Q)

iii -0.1
_J

-0.2

-0.3 f

-0,4

-0.5
0

~

Degree= 3

Degree= 5

Degree= 8
1

'"

100 200 300 400
Time [S]

~

J

500 600 700 800

Figure 6.21 -Lateral error of predicted paths for different degrees of
Polynomials

- 88-

6.5.1.1.2 Simulations with sensor noise

50

I ltV' 1 11~·11) 40 1 r•lt
11 ,.;" ·'I r' ,. ''I

,,1 'I r ·~ ,, J d 30 rJ' ~
'. ·1 I'

11

E I'• ';
20 ' I -... ' ,

Q)
I, . J - I u I' c

ttl 10 e'l I
(jj
0

y

Cii ·\ I '
~I 1-c 0 ft '5 ' .a I'

t' -~

"g> -10 ,, ,, l
I 1

0 ' ,l ' _J I, ' ' r ' \

-20 I

" ~I Ill .r 'r II I' I ·''
-30 '· (I ·'~ t

·~~~ -~',f 'I t (. '(

1 ' I I ··t f I•~·' W1 ',\ ~ ', ·,· ...
-40 'j ~ ~.\

0 100 200 300 400 500 600 700 800
Time I [S]

Figure 6.22- Longitudinal coordinates of actual path with noise (noise=Sm)

100 ·

80

60

40

I
" 20
~
5
5 0

·20

-40

·60

·80
0

.11'
·' .)

lf''r' ·~},Ji! ·' '-~~~
·'IV•' '.rlli

r11"1' l'Yl~ ,. ~~~/'
(I'' ''-')

';'.• .l;,
. i ~~-
1' '

...
\''

50 100 150 200

I~ ,,,
'l

(I•
'I ~ J ~ r r~, l 1L ••t

250
lime / [SJ

f \1
11

1t i
1.'•. 1,1'

r ~·\1 I~ '
'1;,· J:l .

·' ·!·• ,. ;ly .,, .\•''J•' I •Ill" '
l lijll' ~'· -,' .,._.1'

300 350 400 450 500

Figure 6.23 -Lateral coordinates of actual path with noise (noise=Sm)

- 89-

~ -
"' u
c:
2!
en
i:S
!!!
"' n;

...../

100

80 L

~

y~- /7

--.....:.~: - "'
60 _:;Y',:

~ ..
~

40
~

20

0

-20

40 \-1

"'' '-~"---....
:.~ /·

-60 \,.-:->.

""' '~

< /
~

l

' ~

c--

<----~

:::;r~-~- ..

" ''\o

~·

~::---­
-----~" ~ .,._

-80
40 -30 -20

j' -

.::-t
K.

--

-10

Actual Path

,_ ' ""v -"<) ~

"), " -.... _~,.

~

'LS,_,

~ • . xf;4
-,?.--~

~~

1'\
-'-
~

\

~-

'\

- -~··\:~ ~/

- ,.7\-

Y, -

/ 1-

~~v
.,.t:.";;><. y_
--;7
~.

~""
'~ ,-f<~ ~-:..._

~ '\~-.. { _, /
10

--·-- .. --~ 7 "

0 20 30 40
Loogitudinal Distance I [m]

Figure 6.24- Actual path of the Obstacle with noise (noise=5m)

Figure 6.22 and 6.23 shows the lateral and longitudinal value changes with noise

respect to the time. Then Figure 6.24 presents the actual Octomorphic path of the

obstacle with respect to time_ Then predicted path is generated for noisy data with 6

degree polynomial. That is given in Figure 6.25. Then that degree is changed to 5 and

4 respectively as shown in the Figure 6.26 and 6.27.

- 90-

50

1400

1200

1000

800
g -Q)
0
c:

"' 600 iii
i5
~
Q)

iii
-' 400

200

0

-200
-1000

' ,,

'

\ \ /
\"

~\ <
~~ . ..--
'-'- """'

-500 0

Actual and Predicted Path

-

500
Longitudinal Distance I [m]

1000

Predicted Path (Degree=6,Noise =1 m) l
Actual Path

/
'

1500 2000

Figure 6.25 - Actual and Predicted path of the Obstacle

(Degree of Polynomial= 6, noise = lm)

- 91 -

250

200

150

E
::::'100
Q)

u
c::

"' Ill

::l

~ 50
;;; -
.J

0

-50

-100
-100

Predicted Path (Degree=5,Noise = 1m)

Actual Path

~ ,~ - '-

/" -~

"· I

! ~'

\
' I

/

f

/
/ ~ \ ,

I ·-,,
)i

(l
/- j

\~ / 1/ 'v -~ '
·,~, .~_.,_ ,L __,.

-50 0 50

Actual and Predicted Path

100 150 200
Longitudinal Distance I [m]

Figure 6.26 - Actual and Predicted path of the Obstacle

(Degree of Polynomial= 5, noise= lm)

/
~·

250 300

- 92-

100

80

60

40

E 20

-Q)

'-'
0::::

.";!
.!!!

0
Cl

~
Q)

<;; -20
_J

-40 '

.£0

-80

-100
-60

Actual and Predicted Path

~ l
Predicted Path (Degree=4,Noise = 1m) l
Actual Path

< / ~ -...:,. - - " -~
,...r-

,_

-'/ " -,'""'
; \

¥ '

,, I
f

s'

'\

"''
,,

." ,,"'-.

/
/

'"-. < '---..

"'"' '
,..-r_

' "
y \.

t ~> 't: -
~ -{

~ .. __ __.
' ~

:--....,~
~·

J
-40 -20 0 20 40 60

Longitudinal Distance I [m]

Figure 6.27- Actual and Predicted path of the Obstacle

(Degree of Polynomial = 4, noise= lm)

I -"' g
!
Cl)

0
~
"' §

500

400

300

200

100

0

-100

Actual and Predicted Path

t:M~.A-~~ -->
' ..;:s_,..;, -....

,-.".i-t< ... r ~ ~ ... '< • ~ ~~

C . __ "~?:-

Predicted Path (Degree~4. Noise~ Sm)

Actual Path

-200 ,

-300 ~

-400
-150 -100 -50 0 50 100 150 200 250 300

Longitudinal Distance I [m]

Figure 6.28 - Actual and Predicted path of the Obstacle

(Degree of Polynomial = 4, noise = 5m)

One meter noise is added to the figure 6.25,6.26 and 6.27. Quite improved predicted

path is received with small (lm) noise when degree ofthe polynomial is equal to four.

Then noise is increased by 4m to analyze the effect of noise. Normally even the

improved GPS receivers are having error of two or three meters alone. So the noise is

changed from lm to 5m of 4th degree polynomial. That result is given in figure 6.28

and it proves that the polynomial approximations methods are not good with noise.

- 94-

--1

350

6.5.1.2 RBNN method for path prediction

Simulations are done utilizing RBNN method considering and without considering

sensor noise.

6.5.1.2.1 Simulations without sensor noise

-
Actual and Predicted Paths

80 - ~

~ I I ---":"', ------'-'~- - ~

60 ,

"' ' ' ,_
............

40
,.. ~
/"

20 ~
E. I Actual Path I
- spread = 1
Ql
<J spread= 5 c:
~ 0
"'

spread= 10
i5
T!!
Ql

iii
..J -20

/
/1' ~/ ~

"~I -40 / ~

~------/

' _.
-60 ' /

/

~

----.. _;;.--~
«_

·80
-40 -30 -20 -10 0 10 20 30 40

Longitudinal Distance I [m]

Figure 6.29 - Actual path and Predicted paths of the Obstacle for different

Spreads

- 95-

20 ,

spread= 1
15 1 spread= 10

spread= 5

10 ' --j

'E
5 ... g / . w J

'iii 0 . ~

c: I
\ '6 f,

I
f.

::J I ' \
1 ~, I - \ ,, l ·c;,

-5 I c: I I j 0
I _J

I
-10

-15

-20
0 100 200 300 400 500 600 700 800

Time [S)

Figure 6.30 - Longitudinal error of predicted paths for different Spreads

40

30

20

~ 10
E. ...
g
w 0
~
Q)

c;;
_J -10

-20

-30

-40
0 100

spread= 1

spread= 10

spread= 5

I

200

I

300

i1
; I

400
Time [S]

500

1
\I

600 700 800

Figure 6.31 -Lateral error of predicted paths for different Spreads

~ 96 ~

Actual and predicted paths for different spreads are given in figure 6.29 to analyze the

effect of spread value efficiently. The number of neuron enrollments can be increased

by increasing the spread value. That predicted path can be smoothed more by

increasing the spread value. Longitudinal and Lateral error changes for different

spread values are presented in Figure 6.30 and 6.31 respectively.

6.5.1.2.2 Simulations with sensor noise

Actual and Predicted Paths
100 ' T T -,

r
Actual Path

Noise= Om
80 _ _ ___ Noise= 5m

_H:<- ""'-- , ~ Noise = 1Om
,._,~

60 ~
~~

\'\.

40 '

~ ~
E "' '

Q) 20
u
c::

"'

~, X
-'

-20
/

-40 //'

(".\ /

.(

-60 \

~ · /
""~ ~

-80
-50 -40 ·30 ·20 -10 0 10 20 30 40 50

Longitudinal Distance I [m]

Figure 6.32 -Actual path and Predicted paths of the Obstacle for different noise

values

- 97-

The data without sensor noise can not be expected in the field. So that the noise is

introduced to the actual path data and then predicted paths are taken for different noise

values with 3m spread. Those results are given below in Figure 6.32. It proves the

validity of the RBNN method for successful path prediction with noises. Longitudinal

and lateral errors for different noise values are given in Figure 6.33 and 6.34

respectively. MatLab program for this is given in appendix F.

40

Noise= 10m

30 l Noise= 5m

f .11 Noise= Om · ~ r' ~ ~ l I I V
20 ' • tllll I : ~li f

,[r, ~~ 'if J i n~ '· ~ ~ " I~ • I

.s 10 • , . 1 ~· · r~r r, •. ~ I J ' I ~ I I' II 'II j I
0 I 'I' I I(' ~ II \'•'' I I' I /'' I

t\j , ~,~~~~ , , r~ 1~t . 1r ~· ~·~-' ~~ I
.. 0 , l , . • . ~ r tj .!.
~ ;: 1'1'' i ,,, ll> ~I ~ • .• . ' ' ~'• , l
:J ,\ I\· 1\1 ~~ ~ ~ ~j. ' I!~'' ,

:!::: J .. '' ' t· · ~ y It I~
g> -1 0 ;~ ,·tr1 I l \~1 ' i ~~ t' r\ I 0 . I I i I • I . ; ~
...J H. I t) I j '

h !J1 I ',

-2o I I ''I I t1 1 t't I' . I

)1~\ l t ~J lt1

-30 ~~ I /1

-40
0 100 200 300 400 500 600 700 800

Time [S]

Figure 6.33 -Longitudinal error of predicted paths for different noise values

- 98-

40

30

20

E 10
-.....
g

0

~
w

~ I
Q) I.

j -10 I I 'I~
l.

"' ;\(
I j.,

-20 I ·~
,I,

·il'.

-30 II

~

·I ·I' I~ ~ ~~
,~ l 'i
If' I(~

/,1 ~~- i_, ~
,' .. tl . J ~ ,i t 1. Jli'l
I ·' ' ~ ~ I \1

1:· ./~ •1, r.' ~'{ ~1 , t ,,, ·I I' ' I J .

. ~ ~~ I ·A \ - l i)" ~t ,

Noise= 10m

Noise= 5m

Noise= Om

j . ~, . . . · ' . 'i. 'rl~ ttl 1 ·1 ~· ,. ~~: .. ~. ~. , ~~ nt ~· h~~ II ill ' ' t~~ I' M , .. · ~1 1 1 .
1
·.v \iJ'/i I I ', ~ ru . ' I t~. , .. ', I lhl r\1, r\1 \

(11\ 1 '\ •i \ ' '\
I •) \ , ':

I ,

In
't
II

-40
0 100 200 300 400

lime [S]
500 600 700 800

Figure 6.34- Lateral error of predicted paths for different noise values

6.5.1.3 Summary of Simulation Results for path prediction

Path predictions of dynamic obstacles are very important for dynamic obstacle

avoidance. Polynomial approximation method is tried for that initially. Its quite good

method and gave very good results at the beginning, without noises. But position data

can not be expected without noise from the field. So noise was introduced and

polynomial approximation method is not able to give considerable results as expected.

RBNN method which is famous for function approximation is tried after that. It shows

very good results with noises. Those predicted paths can smoothen more by increasing

the spread value.

- 99-

6.5.2 Simulation Results for Obstacle area prediction of Dynamic Obstacles

6.5.2.1 Simulation Results from Velosity obstacle method

Velocity obstacle method is a conventional method which is employed for Dynamic

obstacle area predictions. It predicts triangular areas for Dynamic obstacles. The size

of that area is depends on a constant . Following figures present the simulation results

from that conventional method. A novel obstacle area prediction method is simulated

after that. The main objective of that proposed method is to predict the areas of

dynamic obstacle movements effectively. So that novel method is compared with the

conventional method at the end. Those simulation results are presented finally.

2

1.5

100 200 300 400
lime I [s]

500 600 700

Figure 6.35 - Longitudinal velocity of the obstacle

800

- 100-

2 i
1

/

1.5

VI ..._
.s 0.5 ..._

.?:-·g 0
Qi
>
~ -0.5
Q)

iii
_.J

-1

-1 .5

-2 I

0 100

400

200 300 400
Time I [s]

500 600 700

Figure 6.36- Lateral velocity of the obstacle

800

Ac tual Path

300
k = 0.6

1 ' 1

': ~ ' ! ~~c,~ l 1 ~ ~~. II ·. l I \ l. '. ~ ,/. ~ / l ~ ' I . / . r '~ . . . ' .

! /1 " '
l - ' ' J··' ~

k = 0.9

k = 1.2

. . ' ' ' ' ·000 ' . i \ >
·200 j

-300 1

-400
0 100 200 300 400

1ime]S]
500 600 700 800

Figure 6.37- Upper and Lower Boundaries of Predicted Obstacles Area towards

Longitudinal direction

- I 0 I -

soo ,

400

300

200 •

I 100 /

j / f
cS 0

~
~ -100

-200

-300

-400

-soo '
0

(k l l
f~~ I

/' ' . "-,'\,,

100 200 300

L
""'-

~\

400
lime[S)

,""­
""-

500

Actual Path 1'

k = 0.6

k = 0.9

k = 1.2

1

/1
---~~ //~ f I

r
, r

I j ,
- j

500 700 BOO

Figure 6.38- Upper and Lower Boundaries of Predicted Obstacles Area towards

Lateral direction

Figure 6.37 and 6.38 present upper and lower boundaries of predicted obstacle areas

utilizing conventional method towards Longitudinal and Lateral directions. Those

boundaries are generated for different constant values. This constant can be adjusted

to take the efficient predicted area. The actual path may deviate out from the predicted

obstacle areas. That mean those obstacles may collide with the USV. So those types of

situations are calculated and plotted with time for Longitudinal and Lateral directions

as shown in Figure 6.39 and 6.40.

- 102-

100
~=ll.l'>

k = 0.9

90 1 I k = 1.2 I

' 80 I -I
I

70 I
I

60
I

'E I i 50
w

I 40

30 I I

' I l
I :)1

20 1
I

~ I I i ' ! ~ ,•:

10 ;

I I '

I

'
0

0 100 200 300 400 500 600 700 BOO

lime(S(

Figure 6.39 - Error towards Longitudinal direction

100
k = 0.6

k = 0.9

90

r
k = 1.2

80

I 70

60

'E

J
~ 50
w

I

40 I
30 1
20 I I. • .\')

I '~ ,.
10 I

,Y' \

0 l
0 100 200 300 400 500 600 700 BOO

lime(S)

Figure 6.40 - Error towards Lateral direction

6.5.2.2 Simulation Results from the novel method

The predicted areas generated from the novel method are depending on the relative

velocity of the obstacles as discussed in previous chapters. The relative velocity

variation of the obstacle is presented in Figure 6.35 and 6.36. That variation is directly

effecting the area prediction. So the upper and lower boundaries of predicted areas by

means of novel method are presented in Figure 6.41 and 6.42. The error values of

those are shown in figure 6.43 and 6.44. Then the Sea condition factor is changed and

those simulation results are presented in Figure 6.45, 6.46, 6.47, 6.48 and 6.49.

I
Q)
t.l

" "' 1;j
i5
1i!

" 'C
~ ·c;,

" s

300

200

100

0

-1 00

-200

-300
1

0

..

I

,-

~

\

\
\. <

\,

100 200 300

A

400
Time [S]

./' '

500

'

' 1

'

600

1

I I

"'
'\

~ / ·,

"''''"""

700 BOO

Figure 6.41- Upper and Lower Boundaries of Predicted Obstacles Area towards

Longitudinal direction (S = 0.5)

- 104-

400

300

~

200 /

100

I
CD

!!
;)! 0
i5
jj!
CD

§
-100

-200

-300

-400
0 100

'

200 300 400 500 600
lime[S]

j_

700

/

.'1

/

-l

600

Figure 6.42- Upper and Lower Boundaries of Predicted Obstacles Area towards

Lateral direction (S = 0.5)

100 -

90

80

70 ,

60

s
g 50

w
40

30 1 --i

I

20

10

0 I' • I(

0 100 200 300 400 500 600 700 800
1ime [S]

Figure 6.43 -Error towards Longitudinal direction (S = 0.5)

- 105 -

100 :

90

80

70

60

'E
..... 50 g
w

40

30

20

10 '

0
0

300

200

100 200 300 400
lime [S]

500

-1

600 700 800

Figure 6.44 - Error towards Lateral direction (S = 0.5)

~ l

Actual Path 1
1 I l y l S = 0.4

1
l I I ' s = 0.6

I I A

' 00 ,Y~~"\ . ~ /~"- I : " H"~
E / f \ I 1 \ ' / \" 1 I '\ 1

"§" 0 / r \ .. \ ' / I • 1 ' '
)!l ' ' \ y 1 ' ' 0 '. " ~.. r
~ . , /, 1·., .. • .

~ -100 ~ t i

-200

·300

-400
0 100

I
200 300 400

lime[S]
500 600

}

700 600

Figure 6.45- Upper and Lower Boundaries of Predicted Obstacles Area towards

Longitudinal direction for different Sea condition values

- 106-

500

400

300

200

I tOO

Ill
u
c .,
1ij 0
0
1!!
Ill

j -100

-200

-300

-400

-500
0

Actual Path

s = 0.4

'
s = 0.6

I I ~~~ l s = 0.8

/ - "" '
r / I l ; '~, 1 l;/ ' "-,

/ I ' ~

: I , ,>,~ - I
~I

y

'
/

~---.~ ~

100 200 300 400 500 600 700 BOO
Time (S]

Figure 6.46- Upper and Lower Boundaries of Predicted Obstacles Area towards

Lateral direction for different Sea condition values

700

600

500

I 4oo
"' ;;
~

~
'§ 300
0

"'

200

100

0
0

t 1
. r

100 200 300 400
llme[S]

l ' l
500 600

l
700

S=O~
s = 0.6

s = 0.8 JI

800

Figure 6.47- Width of Predicted Obstacles Area towards Longitudinal direction

for different Sea condition values

- 107-

100 ·

90

80

70

60

E I

..... 50 I
g

r
w

40
i

3o I
I
I

20 I

I
10 ;
0

0

'
I
J
(

100 200 300 400
Time [S]

500

\

600

S = OA

s = 0.6
s = 0.8

700 800

Figure 6.48- Error towards Longitudinal direction for different Sea condition

100 ·

90

80

70

60

'E
g 50

I
w

4o I
I

3o I

20 I
I

1 o I
I

0
0

I
' J
I

I
I ,

100 200 300

values

400
Time [S]

500 600

S = OA

s = 0.6
s = 0.8

700 800

Figure 6.49 - Error towards Lateral direction for different Sea condition values

- 108-

6.5.2.3 Comparison Results

The proposed novel algorithm for obstacle area prediction is compared with the

conventional method to prove the effectiveness of the novel method. The upper and

lower bounds of the predicted obstacle areas from both methods are shown in figure

6.50 and 6.51 and errors are presented in figure 6.52 and 6.53. Width of the predicted

area from both methods towards longitudimrl direction is given in figure 6.54. The

area reduction from the novel method is inspired from the differences between the

widths of the novel method and conventional method. That difference is given in

figure 6.55 and that proves the improvements from the novel method. Matlab program

which is developed for this is given with appendix G.

400 ,

Actual Path

300 N01.el Method

Con'-'lnt ional Method

200

'

I 100

/_r __ _

/r~,,~, / "' <.l
c:

"' ~ 0/
g!
'6
2
-~
..J -100

-200

-300

-400
0

r

""'.
1'

100 200

"'"'---~

300

/

400
lime [S)

r ,,~

500 600
l

700 800

Figure 6.50 - Upper and Lower Boundaries of Predicted Obstacles Area towards

Longitudinal direction from Conventional and Novel Methods

- 109-

500

Actual Path

400
N<Mll Method

300 Comentional Method

200

I 100

//~~
/ "~

. .:/ ' "-._ "
"' 0

ffi
Ui 0
i5 "" ~
"' ~ -100

~ --~;~ -200

-300

-400

-500
0 100 200 300 400

Time [S]

~
"'-"--

500

'\,

600 700 BOO

Figure 6.51- Upper and Lower Boundaries of Predicted Obstacles Area towards

Lateral direction from Conventional and Novel Methods

1()()

90

80

70

60

I
g 50

w

40

30 ;

I

20

,o .i
I

0
0 100 200 300 400

lime[S]
500 600

NoYel Method
Conventional Method

700 BOO

Figure 6.52 -Error towards Longitudinal direction for Conventional and Novel

Methods

- 110-

100

90

80

70

60

'E
i 50
w

40

30

20

10

0
0

~~\;

100 200 300 400
lime(S]

500 600

NoYel Method

Conwntional MethOO

700 800

Figure 6.53 -Error towards Lateral direction for Conventional and Novel

Methods

500

450

400

350

:[300

~

i5
3'250
"' ~
g 200

150 ,

100

50

0
0 100 200

!

300 400
lime(S]

500 600

Nowl Method

Conwntional Method

I

700 800

Figure 6.54 - Width of Predicted Obstacle Area towards Longitudinal direction

from Conventional and Novel Methods

100

80

60

40

I
"' '5
3:: 20
al
1.1
:J

al
a:

0

-20

-40

-60
0 100 200 300 400 500 600 700 BOO

lime[S)

Figure 6.55 -Predicted Distance reduction from Novel Method

Above figure presents the effectiveness of employing Novel method for Dynamic

obstacle avoidance well. But the Novel method is not reducing the predicted area

totally. It may increase that area at sharp turns respect to the conventional method. It

can be observed from the lower side of the graph given in Figure 6.55. But the overall

performance of the proposed method is better than conventional one at the end.

- 112-

Chapter 6

Conclusion and Recommendations

This \vork has presented and demonstrated some novel algorithms for static and

dynamic obstacle avoidance. They have been compared with other famous obstacle

avoidance methods as well.

Other research works have presented and demonstrated the capabilities of utilizing

OA methods of UGVs for USVs. Implementing UGV methods practically which

were developed and validated via simulations, was done as the initiative for the

development. It is obviously true that practical experiment results would contradict

little bit with the simulation results due to the immaturity of the available hardware.

HO\vcver those obstacle avoidance methods are transformed to achieve a better OA

method for USV s.

A good Fuzzy based navigational controller for dynamic model of a USV was

developed and it gives results as expected, needed to perform obstacle avoidance

algorithms.

The fuzzy based obstacle avoidance controller is developed and legacy of that fuzzy

controller is the algorithm which was developed for emergency collision avoidance of

ground vehicles. That algorithm was practically implemented at the beginning of this

research. That fuzzy-logic based system gives promising results in simulations. Even

though it gives promising results for far away obstacles, the simulation results show

that it is not much reliable for low speeds, noises and obstacles which appear

suddenly.

Then another novel algorithm was introduced, which is good for low speeds as well as

high speeds. That was inherited from the Morphin algorithm of Carnegie Mellon

Uni\·ersity. The exact details were not published and had to build novel algorithms for

that.

The potential field method is used for obstacle avoidance as well since it dominates

path planning of robots. Software is utilized for those simulations successfully.

- 113-

9
' ;,_
.?
~~

According to the results which are presented in the figures it can be concluded that the

novel algorithm is capable of achieving the target with minimum traveling distance.

Further all of those algorithms work well and need to be customized more with the

situation and application since each and every one is having its own pluses and

11lll1USeS.

Obstacle avoidance without dynamic obstacles is not functional on in sea. Complete

method for dynamic obstacle avoidance is yet to be solved in research field. But some

practical dynamic obstacle avoidance methods are being employed today. Moving

path prediction of a dynamic obstacle is the biggest problem to be solved by the

researchers and two approaches are developed to solve that. RBNN and standard

polynomial approximations are chosen as two approaches since RBNN are very

famous for function prediction purposes. RBNN and Polynomial approximation

methods are employed for path prediction and compared. It can be concluded that

RBNN method is good for path prediction purposes because it can be utilized with

high noise values as well. A smooth predicted path can be obtained by increasing the

spread value of RBNN. A novel dynamic obstacle area prediction method is

introduced and it is compared with the conventional velocity obstacle method.

Simulation results prove the improvement of the novel method noticeably.

Three static obstacle avoidance methods and novel dynamic obstacle avoidance

method which is inherited from projected obstacle area method presented and

simulations done to prove the validity of those methods with sensor noise. The

hardware of the USV has to be developed first. Then these algorithms can be

employed vvith those sensors. These algorithms have to be fine tuned. The

performance of the USV can improve by utilizing Cutting-edge technology for

sensors.

This will lead to an eye opening for USV developers in the Sri Lanka and will be able

to fill the gaps of research works on USVs in the world.

- 114-

9 .,

References

[11 Borenstein, J. and Koren, Y., "Real-time Obstacle Avoidance for Fast Mobile

Robots in Cluttered Environments." The 1990 IEEE International Conference

on Robotics and Automation, Cincinnati, Ohio, May 1990, pp. 572-577.

[2] Dawn J. Wright, 'The First Three-Dimensional Nautical Chart', Undersea with

GIS, Chapter 7, ESRI. Inc., 2002.

[3] ·Digital Encorders', Agilent Technologies Inc., 5301 Stevens Creek Blvd,

Santa Clara, CA 95051, USA, 2006.

l4 J 'ER-400 Transceiver Modules', LPRS Ltd., Two Rivers Industrial Estate,

Station Lane, Witney, Oxon, OX28 4BH, UK, 2007.

l5] Geeth Jayendra, Sisil Kumarawadu, Lakshan Piyasighe, "Fuzzy Logic-Based

Navigator for an Unmanned Surface Vehicle" 14111 ERU Symposium-2008,

Colombo, Sri Lanka, October 2008.

[6] Geeth Jayendra, Sisil Kumarawadu, Lakshan Piyasighe, "Morphin based

Obstacle Avoidance Controller for USV", 14th ERU Symposium-2008,

Colombo, Sri Lanka, October 2008.

[7] Geeth Jayendra, Sisil Kumarawadu, Lakshan Piyasighe, "Obstacle Avoidance

Controller for an Unmanned Surface Vehicle", 14th ERU Symposium-2008,

Colombo, Sri Lanka, October 2008.

[8] Geeth Jayendra, Sisil Kumarawadu, Ravi Ranathunga and Samitha Ransara,

''Intractive Intelligent Collision A voidance Controller : Theory and

Experiments", Proceedings of 2nd International Conference of Industrial and

Information Systems, Peradeniya, Sri Lanka, August 2007.

[9 J ·Generalized Regression Networks', Math works Inc. available

wvvw.mathworks.com , accessed on December 2008.

[1 OJ H. Lee and M. Tomizuka, "Coordinated longitudinal and lateral motion

control of vehicles for IVHS", ASME Journal of Systems, Measurement, and

Control, Vol. 123,2001, pp.535-543.

fl1] 'HS-422 Standard Deluxe Servomotor', Hitec RCD USA, Inc., 12115 Paine

St, Poway, CA 92064, USA.

[12] I. Fantoni, R. Lozano, F. Mazenc, and K. Pettersen, "Stabilization of a

nonlinear under-actuated hovercraft", International Journal of Robust and

Nonlinear Control, vol. 10, 2000, pp. 645-654.

- 115 -

~' 7\
·~~
·~

/

ll3] J. Canny and J. Reif, "New lower bound techniques for robot motion

planning problem"., Proceedings of 28111 Annual IEEE Symp. on Foundation of

Computer Science, Los Angeles, CA 1987, pp. 49-60.

[14] J. Ebkcn, M. Bruch, J. Lum, "Applying unmanned ground vehicle

technologies to unmanned surface vehicles", Proceedings of SPIE Unmanned

Ground Vehicle Technology VII, vol. 5804, Orlando, FL, 2005, pp. 585-596.

[15] K. Fujimura and H. Samet, "A hierarchical strategy for path planning among

moving obstacles", IEEE Transactions ori Robotics and Automation, vol. 5,

1989, pp. 61-69.

[16] Kevin J. Walchko, Michael C. Nechyba, Eric Schwartz, Antonio Arroyo,

"Embedded Low Cost Inertial Navigation System" University of

Florida,Gaincsville,FL,32611-6200.

l17] Kevin M. Passino, "Intelligent Control: An Overview of Techniques",

Department of Electrical Engineering, The Ohio State University, 2015 Neil

A venue, Columbus, 2006.

[18] Khatib,. 0., "Real-Time Obstacle Avoidance for Manipulators and Mobile

Robots." 1985 IEEE International Conference on Robotics and Automation,

St. Louis, Missouri, March 1990, pp.S00-505.

[19] KJC Kumara and Sisil Kumarawadu, "On the Speed control for Automated

Surface V esse! Operation", Third International Conference on Information and

Automation for Sustainability, Melbourne, Australia, December 2007.

[20] Lee F., and Krovi, V., "A Standardized Testing-Ground for Artificial

Potential-Field based Motion Planning for Robot Collectives", Proceedings of

the 2006 Performance Metrics for Intelligent Systems Workshop,

Gaithersburg, MD, August 2006.

l21] Mark Maimone, Jeffrey Biesiadecki, Edward Tunstel, Yang Cheng, Chris

Leger, "Intelligence for Space Robotics", NASA Jet Propulsion Laboratory,

USA, 2006, pp. 53.

l22] N. Aggarwal and K. Fujimura, "Motion planning amidst planar movmg

obstacles", Proceedings of IEEE International Conference on Robotics and

Automation, vol. 3, San Diego, CA, 1994, pp. 2153-2158.

[23] 'NavNet 3D Brochure', Furuno Electric Co., Ltd., Available:

http://www.navnet.com/, accessed on May 2008.

- 116-

\
;'l

:t . ~
·)

f)

!24] ·overview of Fuzzy Logic Toolbox- Matlab Help Files and Documentation',

Mathworks Inc. available: www.mathworks.com , accessed on 05
111

Sep 2007.

[25] P. Fiorini and Z. Schiller, "Motion plmming in dynamic environments using

the relative velocity paradigm", Proceedings of lEEE International Conference

on Robotics and Automation, vol. l, Atlanta, GA, 1993, pp. 560-565.

l26j 'Polynomial curve fitting', Mathworks lnc. available

W'vVw.mathworks.com, accessed on December 2008.

[27] 'Protector, Unmanned Surface V chicle', Defense Update, International

Online Defense Magazine, 2006. Available: http://www.defenseupdate.com/

products/p/protector.htm, accessed on October 2008.

[28] 'Radar Problems', Sci Tech Publishing, Inc., Available:

http://radarproblems.com/, accessed on May 2008.

[29] Reid Simmons, Lars Henriksen, Lonnie Chrisman and Greg Whelan,

"Obstacle Avoidance and Safeguarding for a Lunar Rover", AIAA Forum on

Advanced Developments in Space Robotics, Madison, WI, August 1996.

[30] Renju Thomas, Manoj Franklin, Chris Wilkerson and Jared Stark.,

"Improving branch prediction by dynamic data flow based identification of

correlated branches from a large global history", Proceedings of the 30th

International Symposium on Computer Architecture, San Diego, California,

June 2003.

[31] Richard Bishhop, "Intelligent vehicle applications worldwide" , IEEE

Transactions on Intelligent Transportation Systems, vol. 5, 2000, pp. 78-81.

[32] S. R. Ranatunga, "On Interactive Control For Intelligent Collision Evasive

Emergency Intervention In Smart Vehicles", Master of Science Thesis

Submitted to Dept. Electrical Engineering, University of Moratuwa, Sri Lanka,

January 2007.

[33] S. R. Ranatunga and S.P. Kumarawadu , "Cooperatively Controlled

Collision Evasive Emergency Manoeuvres", Control and Intelligent Systems,

ACTA press, vol. 4, 2008 .

[34] Shingo Shimoda, Yoji Kuroda and Karl Iagnemma, "Potential Field

Navigation of High Speed Unmanned Ground Vehicles on Uneven Terrain",

Proceedings of the 2005 IEEE, International Conference on Robotics and

Automation, Barcelona, Spain, April 2005.

- 117 -

~
/ ,.

[35] Sisil Kumarawadu and Tsu-Tian Lee, 'Neuroadaptive Combined Lateral and

longitudinal Control of Highway Vehicles Using RBF Networks', IEEE

Transactions on Intelligent Transportation Systems, Vol. 17, No. 4, December

2006, pp. 500-512.

[36] Stephen W. Soliday, "Fuzzy Controller For Two Wheel Independent Drive

Pivot Steering Vehicle", North Carolina Agricultural and Technical State

University, Department of Electrical Engineering, 2006.

[37] Tannen S. VanZwieten, 'Dynamic simulation and control of an autonomous

surface vehicle', Master of Science thesis submitted to the Florida Atlantic

University, Florida, December 2003.

[38] 'The Protector Unmanned Surface Vehicle (USV) from on the Water',

Gizmag, St Kilda South, Victoria, Australia, 2008. Available:

http://www.gizmag.com/go/6023/, accessed on October 2008.

[39] Tilove, R. B., "Local Obstacle Avoidance for Mobile Robots Based on the

Method of Artificial Potentials." General Motors Research Laboratories,

Research Publication GMR-6650, September 1989.

[40] Tsoukalas, L. H. and Uhrig, R. E. 'Fuzzy and Neural Approaches m

Engineering', John Wiley and Sons, New York, 1997.

[41] Y. Koren and J. Borenstein, 'Potential Field Methods and Their Inherent

Limitations for Mobile Robot Navigation', Proceedings of the IEEE

Conference on Robotics and Automation, Sacramento, California, April 1991,

pp. 1398-1404.

- 118 -

~
\
:, .

::!"

/

Appendix A

OOPic Basic Program for Vehicular Prototypes

Dim Ver As New oByte
Dim SRFOB As New oi2C

As oSpeaker Spk
Dim
lJim
Dim
Dim

Rangel As New oh'ord' To store sonar values
Range2 As New oWord
Range3 As New oWord
Range4 As New oWord

Din Compass As New oi2C'Create the compass objects
Dim Led As New oDIOl
[Jim Bearing As New oByte
Dim Bearingl As New oByte
Dim Bearing2 As New oByte

Dim A As New oSerialX 'Objects
Dim B As New oSerialX
Dim C As New oDIOl
Dim D As New oDIOl

for serial

Jim ENC As New oQencode'Encorder objects
Dim ENCpositionN As New oWord
lJim ENCpositionO As New oWord
Dim ENCposition As New oWord
Dim EncPosl As New oWord
Dim EncPos2 As New oWord
Dim count As New oWord

Dim E As New oDIOl'Motor control
D.im F F,s New oDIOl
:Jim G P"s New oByte
')in H As New oDIOl
Dim I As New oDIOl

Dim Y As oByte
Dim X As oByte

'Pu~ition updates

Dim TxCount As New oWord

:~b main ()

Corr~unicationSetup

Co:npassSetup

E:ncorderSc:tup

SonarSetup

:~1otorSetup

:._:ount=O

;1 ,J li ...: , I

communication

- 119 -

\

~\ ,, 1
i)
·' i

l-)()

TxCount=O

C. Invert

EncorderValuesReading

FormatEncPosition

SonarValuesReading

ObstalChecking

CompassValueReading

If ((Bearing<5) Or (Bearing>250)) Then
'Spk.Beep(60757,100,200)
End If

FormatBearing

C. Invert

If G=1 Then

MotorDrive

Endif

Data Transmission

TxCount=TxCount+1

If TxCount=4 Then

TxCount=O
Endif

Loop
:C:nd Sub

Sub CompassSetup
Compass.Node=96'Decimal of Hex address OxCOshifted right by 1
Compass.Mode = cv10Bit' I2C mode is 10-Bit Addressing.
Compass.Noinc = 1 ' Don't increment
Led.IOLine = 30 ' Pin 28 on 40 way connector
Led. Direction
End Sub

cvOutput

Sub CommunicationSetup
C.IOLine = 5
D.IOLine = 6
C.Direction cvOutput 'Starting communication
D.Direction = cvOutput
B.IOLineS = 25
B.IOLineF = 18
B.Baud = cv9600
A.IOLineS = 26
A.IOLineF = 16
10". Ba-ed = cv9600

- 120-

)
I ,,
"

End Sub

Sub EncorderSetup
ooPIC.PullOp = 1
ENC.IOLinel = 28
ENC.IOLine2
ENC.Operate
End Sub

Sub SonarSetup

29
cvTrue

' For Encorder

SRF08.Node = 112 'DecimalofHex addressOxEO shifted right by 1
SRF08.Mode = cvlOBit' I2C mode i~ 10-Bit Addressing.
SRF08.Noinc = 1 ' Don't increment
SRF08.Width = cv8Bit' 1 byte wide transfer
SRF08.Location = 0' Range Register
SRF08 = 81 ' Limit 1st sonar Range to 6m, 140 x 43mm = 6m

SRF08.Node = 113 'DecimalofHexaddressOxE2shiftedRight by 1
SRF08.Mode = cvlOBit' I2C mode is ~O-Bit Addressing.
SRF08.Noinc = 1 ' Don't increment
SRF08.Width = cv8Bit' 1 byte wide transfer
SRF08.Location = 0 ' Range Register
SRF08 = 81 'Limit 2nd sonar Rangeto6m,140x 43mm = 6m

SRF08.Node = 114'Decimal of HexaddressOxE4 shifted right by 1
SRF08.Mode = cvlOBit' I2C mode is 10-Bit Addressing.
SRF08.Noinc = 1 ' Don't increment
Sl\F08.Width = cv8Bit ' 1 byte wide transfer
SRF08.Location = 0 'Range Register
SRF08 = 81 'Limit 3rd sonar Range to 6m, 140 x 43~~ = 6m

SRF08.Node=ll5'Decimal of Hex address OxE6 shifted right by 1
SRF08.Mode = cvlOBit' I2C mode is 10-Bit Addressing.
SRF08.Noinc = 1 ' Don't increment
SRF08.Width = cv8Bit' 1 byte wide transfer
SRF08.Location = 0 ' Range Register
SRF08 = 81 ' Limit 4th sonar Range to 6m, 140 x 43mm = 6m

End Sub

Sub SonarValuesReading

SRF08. Node = 112 ' I2C Address of SRF08 sonar
SRF08.Location = 0' Command Register
SRF08.Width = cv8Bit' 1 byte wide transfer
SRF08 = 81 ' Ranging Command - Result in em

Do ' Wait for ranging to complete
Ver SRF08 ' This will wait forever if your sonar

Loop While Ver=255 ' becomes disconnected, so you may prefer

SRF08.Width = cvl6Bit
SRF08.Location = 2

' 2 byte wide transfer
' 1st Range Register

Rangel = SRF08
'SRF08.Location
'Range2 = SRF08

' Get Range to 1st object
3 ' 2nd Range Register

SRF08.Node = 113
SRF08.Location = 0

' Get Range to 2nd object

' I2C Address of SRF08 sonar
' Command Register

- 121 -

>).· ;;"
... ,
I

~·

SRF08. V'Jidth
SRF08 = 81

cv8Bit ' 1 byte wide transfer
' Ranging CorriDand - Result in em

Do ' Wait for ranging to complete
Ver SRF08 ' This will wait forever if your sonar

Loop While Ver=255' becomes disconnected, so you may prefer

SRF08.Width = cv16Bit' 2 byte wide transfer
SRF08.Location = 2 ' 1st Range Register
Range2 = SRF08 ' Get Range

SRF08. Node = 114 ' I2C Addr€ss of SRF08 sonar
SRF08.Location = 0 ' Command Register
SRF08.Width = cv8Bit' 1 byte wide transfer
SRF08 = 81 ' Ranging Command - Result ln ern

Do ' Wait for ranging to complete
Ver = SRF08 ' This will wait forever if your sonar

Loop While Ver=255 ' becomes disconnected, so you may prefer

SRF08.Width = cv16Bit ' 2 byte wide transfer
SRF08.Location = 2 ' 1st Range Register
Range3 = SRF08 ' Get Ran

SRF08. Node = 115 ' I2C Address of SRF08 sonar
SRF08.Location = 0 ' Command Register
SRF08.Width = cv8Bit ' 1 byte wide transfer
SRFO 8 = 81 ' Rang in;J Command - Result in ern

Do ' Wait for ranging to complete
Ver = SRF08 ' This will wait forever if your sonar

Loop While Ver=255' becomes disconnected, so you may prefer

SRF08.Width = cv16Bit' 2 byte wide transfer
SRF08.Location = 2 ' 1st Range Register
Range4 = SRF08 ' Get Ran

End Sub

Sub CornpassValueReading
Compass.Location = 1 ' Address of single byte bearing
Cornpass.Width = cv8Bit ' Compass Data is 1-byte wide.
Bearing = Cornpass.Value' Get it
End Sub

Sub MotorSetup
G=1
E.IOLine
F. IOLine
H.IOLine
I.IOLine
E.Direction
F.Direction
H.Direction
I.Direction
End Sub

14
12
13
15

cvOutput
cvOutput
cvOutput
cvOutput

Sub MotorDrive
If 8=100 Then'd
D. Invert

- 122-

\

,t} ,,,
/ ,.

E.Low
F.Low
H.Low
I.Low

Endif
If 8=103 Then'g

E.High
F.Low
H.High
I.Low

Endif
If 8=104 Then'h
E.Low

F.High
H.Low
I. High
Endif
If 8=101 Then'e

E.Low
F.High
H.Low
I.Low
Endif
If 8=102 Then'£

E.Low
F.Low
H.Low
I.High
Endif
End Sub

Sub Obsta1Checking 'Check the Obstacles

G=1

If Range1<17 Then
If Range1>0 Then
G=O
E.Low
F.Low
H.Low
I.Low
'Spk.8eep (60757,10, 200)
Endif

Endif
If Range2<17 Then
If Range2>0 Then
G=O
E.Low
F.Low
H.Low
I.Low
'Spk.8eep (60757,10, 200)
Endif
Endif
If Range3<17 Then
If Range3>0 Then
G=O
E. Lovr

- 123 -

)\

}j''
·c'
/ ii.

F.Low
H. Lovv
I.Low
'Spk.Beep (60757,10, 200)
Endlf
Endif
If Range4<17 Then
If Range4>0 Then
G=O
E.Low
F.Low
H.Low
I.Low
'Spk.Beep (60757,10, 200)
Endif
Endif

End Sub

Sub FormatBearing

If Bearing<200 Then
Bearing1=Bearing
Bearing2=0
End If

If Bearing>199 Then
Bearing1=199
Bearing2=Bearing-199
Endif

End Sub

Sub EncorderVa1uesReading 'Reads the Enc. Value
ENCpositionN=ENC.Position
count=count+1

If count=100 Then
ENCpositionO=ENCpositionN
ENCpositionN=ENC.Position
ENC.Position.Clear
count=O

PositionUpdate

Endif
End Sub

Sub PositionUpdate

If (ENCpositionN>ENCpositionO) Then
ENCposition=ENCpositionN-ENCpositionO
X=100+ENCposition*Cos(Bearing)
Y=150+ENCposition*Sin(Bearing)

Endif

If (ENCpositionN<ENCpositionO) Then
ENCposition=ENCpositionO-ENCpositionN

- 124-

\
;:·}
·~' ') /l
,i

X=ENCposition*Cos(Bearing)
Y=ENCposition*Sin(Bearing)
Endif

End Sub

Sub FormatEncPosition

EncPosl=ENCpositionN
EncPos2=0
If ENCpositionN>249 Then

EncPosl=250
EncPos2=ENCpositionN-250

Endif
End Sub

Sub DataTransmission

If TxCount=O Then

A.Value=251 'u Sent Encorder values
A.Value=X

Else If TxCount=l Then
A.Value=252 'u Sent Encorder values

A.Value=Y
Else If TxCount=2 Then

A.Value=253' sent Compass value
A.Value=Bearingl
Else If TxCount=3 Then

A.Value=254'
A.Value=Bearing2

End If

End Sub

sent Compass value

~}-.::·

I
- 125-

'This program creates two oSerialX Objects. One is used to receive a
'serial signal and the other is used to send a serial signal.
'1\ oDio1 is used to show that while the oSerialX object is waiting
'for incoming serial data, the program flow is stopped.

Dim A As New oSeria1X
Dim B As New oSerialX
Dim C As New oDI01
Dim D As New oDI01
Dim V As New Byte

lhm L As New oP1i7M
Dim R As New oPWM

Dim Compass As New oi2C
Dim Led As New oDI01
Dim Bearing As New oByte

.Sub Main ()
C.IOLine = 5
D.IOLine = 6
C.Direction cvOutput
D.Direction = cvOutput
B.IOLineS = 25
B.IOLineF = 18
B.Baud = cv9600
1'\. IOLineS = 26
A. IOLineF = 16
l'L Baud = cv9600

Compass.Node = 96
right by 1

Compass.Mode = cv10Bit
Compass.Noinc = 1
Led.IOLine = 30
Led.Direction = cvOutput

Do

L.PreScale=2
L.IOLine=17
R.PreScale=2
R. IOLine=18
L.Period=79
R.Period=79

Cornpass.Location = 1
Compass.Width = cv8Bit
Bearing = Compass.Va1ue

'A=B
'A.Value=99'c
A.Value=Bearing
'A.String="B"
C. Invert
V=B
'Cruising
If V=100 Then'd

' Create the compass objects

' Decimal of Hex address OxCO shifted

' I2C mode is 10-Bit Addressing.
' Don't increment
' Pin 28 on 40 way connector

' Address of single byte bearing
' Compass Data is 1-byte wide.

' Get it

- 126-

\

.:•'.!t
~ {

f·)

L.Value=lO
R.Value=lO
L.Operate=l
R.Operate=l

Endif

'Left Turn
If V=lOl Then'e

L.Value=l4
R.Value=lO
L.Operate=l
R.Operate=l

Endif

'Right Turn
If V=102 Then'f

L.Value=lO
R.Value=14
L.Operate=l
R.Operate=l

Endif

'Reverse
If V=103 Then'g

L.Value=l6
R.Value=16
L.Operate=l
R.Operate=l

Endif

' Stop
If V=104 Then'h
D. Invert

L.Value=lO
R.Value=lO
L.Operate=O
R.Operate=O

Endif

Loop
F:!d Sub

- 127-

\
~·'}
'~· ~
/

i

Dim Ver As New oByte
Dim SRF08 As New oi2C
Spk As oSpeaker
Dim Rangel As New oWord
Dim Range2 As New oWord
Dim Range] As New oWord
Dim Range4 As New oWord

~3ub main ()
SRF08.Node = 112

shifted right by 1
SRF08.Mode = cvlOBit

J,ddressing.
SRF08.Noinc = 1
SRF08.Width = cv8Bit
SRF08.Location = 0
SRF08 = 81

140 x 43mm = 6m

Do

em

:_joop

End

SRF08.Node = 112
SRF08.Location = 0
SRF08.Width = cv8Bit
SRF08 = 81

Do
Ver = SRF08

Loop While Ver=255

SRF08.Width = cvl6Bit
SRF08.Location = 2
Rangel = SRF08
'SRF08.Location = 3
'Range2 = SRF08

If Rangel<l7 Then
If Rangel>O Then
Spk.Beep (60757,10, 200)
Endif
Endif

' Decimal of Hex address OxEO

I I2C mode is 10-Bit

' Don't increment
' 1 byte wide transfer
' Range Register

' Limit 1st sonar Range to 6m,

' I2C Address of SRF08 sonar
' Command Register
' 1 byte wide transfer
' Ranging Command - Result in

' Wait for ranging to complete
' This will wait forever if

your sonar
' becomes disconnected, so you

may prefer

' 2 byte wide transfer
' 1st Range Register
' Get Range to 1st object
' 2nd Range Register

- 128-

d

Appendix B

MatLab Program of Fuzzy PD Navigational Controller with the Dynamic model

- 0 0 0 0_ 0 0 0_ 0 0 0 0 0 0 0 0_ 0
c o~~~~b~b~~bbbbbb66b~bbbbbbbb~~bbb~~~b~bbbbbbb~tibtibtibfififi~tififibbfi

,fuzzy PO controller with Dynamic model
12/12/2007
~control Fuzzy_Navi.m

%%%%%%%%%%
%%%%%%%%%%
%%%%%%9o%%%

%%

function Xdot=control Fuzzy_Navi(t,y)%program for speed control

n=[y(l) y(2) y(3)] ';%Configuration vector=[x yep]
V=[y(4) y(S) y(6)] ';%Velocity vector=[u v r]
.jc[cos(y(3)) -sin(y(3)) O;sin(y(3)) cos(y(3)) 0;0 0 1;];
rotation matrix

ndot=J*V;%velocities w.r.t. earth fixed frame

dhpy=-0.4;
dlisy=0.4;%distance from the CG to the Sboard & Port side hulls
Lh=2.54;%length of the hull
Bh=0.127;%beam
Th=0.1524;%draft
Ah=0.6452;%hull area

p=l025;%density of sea water
vis=1.4*10A(-6) ;%kinematic viscosity
1=9.81;

~p=(5*2)*2.2; %mass of both pontoons [kg]
[pz=(1/12)*mp*(ThA2+8hA2);
mass moment of inertia about mass-center z-axis [kg*mA2]
misc. near pontoons

::11 = 11 * 2 . 2;
=(13*2)*2.2;

r:ls=3.6*2.2;
=33*2.2;

%mass of strut [kg]

.mise inside Gertler body
~3=4*2.2;

m4=(11+87)*2.2;
m5=25*2.2;

6=19*2.2;

~.qcc=l; %Boat Max accelaration
rest=405;
·estarray=t;
total

%ver.icular mass :r:=mp+ms+mg+ml +m2+m3+m4+m5+m6;
Iz=(3.94e5)*2.2*(0.0254A2);
::=[rn,O,O; O,m,O; O,O,Iz]; %mass

%(approximate value from pro-E)
matrix for the rigid body

: -= [0 -m * y (6) 0; m * y (6) 0 0; 0 0 0 ;] ;
Coriolis & centripetal terms for rigid

% body
=~=C*V;%Coriolis terms

;c;=(y(4)-dhpy*y(6))*Lh/vis; %Renolds Number

129

\

" r
'"' ,!

7'

if Re>O & Re<100 %at lamina to turbulant transistion point
Cfhp=0.075/((log(Re)-2)A2);

ccoefficient of friction using ITTC formular
elseif Re>100

Cfhp=0.075/((log(Re)-2)A2);
else

Cfhp=O; %coefficient of friction using ITTC formular
end

Fshpxur=Cfhp*Ah*p*(y(4)-dhpy*y(6))*abs(y(4)-dhpy*y(6));
~skin friction force for port side hull
Fshsxur=Cfhp*Ah*p*(y(4)-dhsy*y(6))*abs(y(4)-dhsy*y(6));
skin friction force for starboard side hull

Fnpi= [.25 .3 .35 .4 .45 .5 .55 .6 .65 .7];
~to be used to find the wave drag (through interpolation)
Cwf= [1.2 1.75 2.25 2.58 3.75 4.25 4.15 3.85 3.58 3.4]*1e-3;
~The numbers were taken from fig 6 of journal of ship researech

june2001pg 94
Fnp=(y(4)-dhpy*y(6))/(g*Lh)A0.5;

for i=1:9

end

Fnp=(y(4)-dhpy*y(6))/(g*Lh)A0.5;
if (Fnp>Fnpi(i) & Fnp<Fnpi(i+1))

Cw=(Cwf(i)+Cwf(i+1))/2;
else
Cw=Cwf(i);
end

Erhpxur=Cw*Ah*p*(y(4)-dhpy*y(6))*abs(y(4)-dhpy*y(6));
~wavw drag in Port hull

for i=l:9

end

Fnp=(y(4)-dhsy*y(6))/(g*Lh)A0.5;
if (Fnp>Fnpi(i) & Fnp<Fnpi(i+1))

Cw=(Cwf(i)+Cwf(i+l))/2;
else
Cw=Cwf(i);
end

frhsxur=Cw*Ah*p*(y(4)-dhpy*y(6))*abs(y(4)-dhsy*y(6));
wavw drag in Sboard hull

XS=Lh/2;XS=Lh/2;
CDh=2;%drag coefficient
dx=-0.4;%distance from the CG to the hull centre in Xb direction
V3=y(5)+(Lh/2+dx)*y(6) ;%velocity@ bow end
VS=y(5)-(Lh/2-dx)*y(6);%velocity@ stern end

Al=1/3*abs(VB-VS)*(VB-VS)*(XBA2*abs(XB)-XSA2*abs(XS))/LhA2;
~2=0.5*abs(VB-VS)*y(5)*(XB*abs(XB)-XS*abs(XS))/Lh;
~3=0.5*abs(VB-VS)*abs(y(5))*(XBA2-XSA2)/Lh;
A4=y(5)*abs(y(5))*(XB-XS);
Fhpyvr=0.5*CDh*Th*p*(Al+A2+A3+A4);%damping force
Fhsyvr=0.5*CDh*Th*p*(A1+A2+A3+A4) ;%damping force

n~xur=(Fshpxur+Frhpxur)*dhpy+(Fshsxur+Frhsxur)*dhsy;%damping moment

31=1/4*abs(VB-VS)*(VB-VS)/LhA2*(XBA3*abs(XB)-XSA3*abs(XS));
B2=1/3*abs(VB-VS)/Lh*((VB+VS)/2)*(XBA2*abs(XB)-XSA2*abs(XS));

130
"' '"".;

_<j

D3=1/3*(VB-VS)/Lh*abs((VB+VS)/2)*(XBA3-XSA3);
34=1/2*(VB+VS)/2*abs((VB+VS)/2)*(XBA2-XSA2);
~hpyvr=Oo5*CDh*Th*p*(B1+B2+B3+B4);
mhsyvr=Oo5*CDh*Th*p*(B1+B2+B3+B4);
I~huvr=mhxur+mhpyvr+mhsyvr;% total moment

alpa=pi/18;
CL=4o5837*alpa;
CD=O;

Sy=Oo0948;%projected area
Ls=-1/2*p*abs(y(4)+y(5))*(y(4)+y(5))*Sy*CL;%lift force
Ds=1/2*p*abs(y(4)+y(5))*(y(4)+y(5))*Sy*CD;%Drag force

Fffsxur=Ls*sin(alpa)+Ds*cos(alpa);
bs=Oo025;%beam
cs=Oo075;
Sx=Oo0395;%projected area
Vsx=y(4)-bs/2*y(6);
F:1 s i = [0 0 o 1 o 2 o 3 o 4 o 5 o 6 o 7
Crsi=[O 0 002 015 o47 1o12 1o02 o73
for i=1:11

Fns=(y(4)-dhsy*y(6))/(g*cs)AOo5;
if (Fns>Fnsi(i) & Fns<Fnsi(i+1))

Crs=(Crsi(i)+Crsi(i+1))/2;
else
Crs=Crsi(i);
end

end
frsxur=1/2*p*Vsx*abs(Vsx)*Sx*Crs;

Fffsyur=Ls*cos(alpa)-Ds*sin(alpa);
Vsy=y(5)+cs/2*y(6);
'::r·sy=2;
frsyur=1/2*p*Vsy*abs(Vsy)*Sy*Crsy;
dsy=O;dsx=Oo6;

Oo8 1.12 3]';
Oo55 0023 0021 Oo2]';

::1suvr= (Fffsxur+frsxur) *dsy+ (Fffsyur+frsyur) *dsx;

o1565;%sectional area of the gertler body
'~q=1o875;

<cogi= [2 4 6 8 10 12 14 16 18 20 22 24 26 28 30] '*1e6;
~eynolds number to match w/ Cfg vector (for interpolation)

'Jl= [3o9 304 302 3o05 209 2085 2075 207 2065 206 2o55 2o52 2o51 2o49
·.46] '*1e-3;
Taken for Gertler model

··or i=1: 14

r,d

Reg=y(4)*Lg/vis;
if (Reg>Regi(i) & Reg<Regi(i+1))

Cdg=(Cgi(i)+Cgi(i+1))/2;
else
Cdg=Cgi(i);
end

Igxu=l/2*p*y(4)*abs(y(4))*Sg*Cdg;

131

\
\

. ..,r ,,

for i=1:10

fccld

dgx=[0.2006 0.2103 0.2184 0.2260 0.2332 0.2401 0.2467
0.2531 0.2592 0.2651];

Vgy(i)=y(5)+dgx(i)*y(6);
Cgy=[3.9 3.4 3.2 3.05 2.9 2.85 2.75 2.7 2.65 2.6 2.55 2.52

2.51 2.49 2.46] '*le-3;
Cg3d=[105 59 20.5 9.9 4.4 2.8 1.9 1.4 1.3 1.0 .95 1.0

1.1 1.0 0.2 .24 .54];
Apg=[0.0373 0.0391 0.0406 0.0420 0.0434 0.0447 0.0459

0.0471 0.0482 0.0493];
Fgyvrr(i)=0.5*p*Apg(i)*abs(Vgy(i))*Vgy(i)*Cgy(i)*Cg3d(i);
mguvrr(i)=Fgyvrr(i)*dgx(i);

Fgyvrr=[Fgyvrr(l) Fgyvrr(2) Fgyvrr(3) Fgyvrr(4) Fgyvrr(5)
Fgyvrr(6) Fgyvrr(7) Fgyvrr(8) Fgyvrr(9) Fgyvrr(lO)];

mguvrr=[mguvrr(l) mguvrr(2) mguvrr(3) mguvrr(4) mguvrr(5)
mguvrr(6) mguvrr(7) mguvrr(8) mguvrr(9) mguvrr(lO)];

Fgyvr=sum(Fgyvrr);
mguvrl=sum(mguvrr);
dgy=O;
mguvr=fgxu*dgy+mguvrl;

:JV=[(Fshpxur+Fshsxur+Frhpxur+Frhsxur+Fffsxur+Fffsxur+frsxur+fgxu);
(Fhpyvr+Fhsyvr+Fffsyur+frsyur);
(mhuvr+msuvr+mguvr) ;];

jpx=0.85;
'1Vl=[DV(l) DV(2) DV(3)] '+Cr;
1V=-[hVl(l) hV1(2) hV1(3)/dpx]';

distance from CG to propellers in X-direction
~ ncw=[m 0 0;0 m 0;0 0 Iz/dpx;];%Mass matrix required

Desired Profile
LX d,xdot d,xddot d,y d,ydot d,yddot d]

.............................
error
~x=x_d-y(l);

~y=y d-y(2);
error dot
~xdot=xdot_d-ndot(l);

~ydot=ydot d-ndot(2);

a= readfis('Navi');
if ex>4

ex=4;
end
if exdot>4

exdot=4;
end
if ey>4

ey=4;
end
if eydot>4

eydot=4;
end

if ex<-4
ex=-4;

DesiredPath(t);

.., t
'' '

132
;?

end
if exdot<-4

exdot=-4;
end
if ey<-4

ey=-4;
end
if eydot<-4

eydot=-4;
end
FisX=evalfis([ex exdot], a);
FisY=evalfis([ey eydot], a);

acc_x=xddot_d+((FisX*2-1)*10);
0cc y=yddot d+((FisY*2-1)*10);

Gddot xy=[acc x ace y] 1 %;

J_xy=[cos(y(3)) -sin(y(3)); sin(y(3)) ccs(y(3));];
Jdot_xy=[-sin(y(3)) -cos(y(3)) ;cos(y(3)) -sin(y(3)) ;] ;
Vxy=[y(4) y(S)] 1

;

;f x y= [m 0 ; 0 m;] ;
X y= [h V (1) h V (2)] 1

;

Vcot_xy=inv(J_xy)*(nddot_xy-Jdot xy*V_xy);
:J_xy=l.2S*M_xy*Vdot_xy;-l.S*h_xy;%with M hat and h hat or f hat
gx=g_xy(l);
gye=g_xy(2);
gU=[gx gye gye] 1

;

Vdot=inv(M new)*(hV+gU);

~hrust=sqrt(gxA2+gyeA2)%thrust

d~lta=atan(qye/qxl%steerinq angle

Xdot=[ndot;Vdot;];

;, £o ·~, ~%% 9o% go%%%%%%%%%%%% %End0fPrograrnme%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%

Note:-

The above MatLab cording for Dynamic model is taken from the reference 26 and

Fuzzy PD controller is added for simulations later.

133

c r . '

~I%%%%%% %%
~Plot position error on sinosoidal path
~12/12/2007

_positions error pd_Sin.m

%%%%%%%%%%
%%%%%%%%%%
%%%%%%%%%%

%%

CT=O: 0. 1: 4 0;

XO=[O 0 0 0 0 0];
options
l J) ;

odeset('RelTol',le-l,'AbsTol',[le-lle-lle-lle-lle-lle-

''" Y]=ode4S('control Fuzzy_Navi',T,XO,options);

m~length (T) ;

~': d,xdot d,xddot d,y_d,ydot d,yddot d] DesiredPath(T);

for i=l:m

%pause(O.l)

figure(2)
title('Error in Longitudinal direction')
ylabel('Longitudinal error- [m] ')

PI~d

xlabel ('Time - [sec] ')
ex(i)=x_d(i)-Y(i,l);
plot (i/lO,ex(i), '--b');

hold on

figure(3)
title('Error in Lateral direction')
xlabel('Longitudinal error- [m] ')
ylabel ('Time - [sec] ')
ey(i)=y_d(i)-Y(i,2);
plot(i/lO,ey(i), '--b');
hold on

%%%%%%%%%%%%%%%~%%%%%%%%%%%%EndOfPrograMue%%%%%%%%%%%%%%%%%%%%%

134

. ., r ,_.

/

Appendix C

MatLab Program for Appling UGV algorithms to USV

%%
~MatLab Program for Appling UGV algorithms to USV
~12/12/2007

:oAfuzzybase.m

9--9--9--9--9--9--9--9--9--9.
0000000000

%%%%%%%%%%
%%%%%%%%%%

~%%%

clear all
Ymax=2000;%Max Y of the grid
Xmax=2000;%Max X of the grid
timeint=1;%Plot time intervals
Plottime=800;% Max plating time

Xg=950;%Goal point cordinates
Yg=10;
Xs=30;%Starting point of the boat
Ys=915;
Xo=500;%0bstacle codinates
Yo=450;

Xact(1)=Xs;% actual position
Yact(1)=Ys;

oldX=Xs;
oldY=Ys;
13o!I=O;

RE=O;%Heading towards goal
Gradiant=O;%tan(RH)
Re1Dis=1000;%Relative distance
index=1;
v~~s;

z=O;
x(l)=Xs;
y(1)=Ys;
tor t=1:timeint:Plottime
time(index)=t;
if ((x(index)-Xg)A2+(y(index)-Yg)A2) > (V*timeint*2+1)A2
,objective function
index=index+1; % Increments the indexing term so that

% index=1 corresponds to time t=O.

1Calculating required heading
if (Xg>x(index-1))
if Yg>y(index-1)
Gradiant=(Yg-y(index-1))/(Xg-x(index-1));
RE=atan(Gradiant);
end
if y(index-1)>Yg
Gradiant=(y(index-1)-Yg)/(Xg-x(index-1));
RH=2*pi-atan(Gradiant);
end
end

if (x(index-1)>Xg)

135

c t ,,

;
/

if Yg>y(index-1)

Gradiant=(Yg-y(index-1))/(x(index-1)-Xg);
RH=pi-atan(Gradiant);
end
if y(index-1)>Yg

Gradiant=(y(index-1)-Yg)/(x(index-1)-Xg);
RH=pi+atan(Gradiant);
end
end

%Calculate obstacle heading
if (Xo>x(index-1))

if Yo>y(index-1)

end

Gradiant=(Yo-y(index-1))/(Xo-x(index-1));
ObH=atan(Gradiant);

if y(index-1)>Yo

Gradiant=(y(index-1)-Yo)/(Xo-x(index-1));
ObH=2*pi-atan(Gradiant);

end
if y(index-1)==Yo

ObH=O;
end

end

if (x(index-1)>Xo)
if Yo>y(index-1)

Gradiant=(Yo-y(index-1))/(x(index-1)-Xo);
ObH=pi-atan(Gradiant);

end

if y(index-1)>Yo

Gradiant=(y(index-1)-Yo)/(x(index-1)-Xo);
ObH=pi+atan(Gradiant);

end
if Yo==y(index-1)

ObH=pi;
end

end

if Yo>y(index-1)

end

if Xo==x(index-1)
ObH=pi/2;

end

if Yo<y(index-1)

end

if Xo==x(index-1)
ObH=pi/2*3;

end

% Calculate boat heading
if (x(index-1)>oldX)

if y(index-1)>o1dY

end

Gradiant=(y(index-1)-oldY)/(x(index-1)-oldX);
BoH=atan(Gradiant);

if oldY>y(index-1)

Gradiant=(oldY-y(index-1))/(x(index-1)-oldX);
BoH=2*pi-atan(Gradiant);

136

\
.~:'t
,, ' } y

i

end

end

if oldY==y(index-1)
BoH=O;

end

if (oldX>x(index-1))

end

if y(index-1)>oldY
Gradiant=(y(index-1)-oldY)/(oldX-x(index-1));
BoH=pi-atan(Gradiant);

end

if oldY>y(index-1)

end

Gradiant=(oldY-y(index-1))/(oldX-x(index-1));
BoH=pi+atan(Gradiant);

if oldY==y(index-1)
BoH=pi;

end

if y(index-1)>oldY

end

if oldX==x(index-1)
BoH=pi/2;

end

if y(index-1)<oldY
if oldX==x(index-1)

BoH=pi/2*3;
end

end
oldY=y(index-1);
oldX=x(index-1);

if ((pi/2)+ BoH-ObH)>=O
Obstacle_angle=(pi/2)+ BoH-ObH;
elseif ((pi/2)+ BoH-ObH)>2*pi
Obstacle angle=(pi/2)+ BoH-ObH-2*pi;
elseif ((pi/2)+ BoH-ObH)>4*pi
Obstacle angle=(pi/2)+ BoH-ObH-4*pi;
elseif \(pi/2)+ B0H-ObH)<O
Obstacle_angle=(pi/2)+ BoH-ObH+2*pl;
elseif ((pi/2)+ BoH-ObH)<-2*pi
Obstacle angle=(pi/2)+ BoH-ObH+4*pi;
end

Calculating the path codinates

RelDis=sqrt((Yo-y(index-l))A2 +(Xo-x(index-1))A2);
Calculating relative distance to Obsatacle

if Re1Dis>100
x(index)=x(index-1)+V*timelnt*cos(RH);
y(index)=y(index-1)+V*timelnt*sin(RH);
timeint=lO;
lsc

b = readfis('CAnew');
acc_CA=evalfis([Obstacle angle (RelDis)/100], b);
acc_x=(acc_CA(1)-0.5)*2*cos(BoH)-(acc_CA(2)-0.5)*2*sin(BoH);

cc y=(acc CA(2)-0.5)*2*cos(BoH)+(acc CA(1)-0.5)*2*sin(BoH); " r '' '

l
137

~(index)=x(index-l)+acc~x*timeint*cos(RH)*V;

\·;index)=y(index-l)+acc y*timeint*sin(RH)*V; %
,-nd

.ci
-La

. Jld on
' L gu:ce (2)
title('Path near obstacles')

label ('X distance [m] ')
ylabel('Y distance[m] ')
'l f
nlot(x,y, 'rs', 'LineWidth',O.S,

'MarkerEdgeColor', 'g',
'MarkerFaceColor', 'g', ...
'MarkerSize',l)

il J1d on

r· cOt (Xact, Yact, Irs I, I LineWidth I, 0. 5,
'MarkerEdgeColor', 'k',
'MarkerFaceColor', 'b', ...
'MarkerSize',l)

!',J1d on

plot (Xo, Yo,' rs', 'LinevJidth', 1,
'MarkerEdgeColor', 'k',
'MarkerFaceColor', 'b', ...
'MarkerSize',S)

:tle('Path near obstacles')
x~abel('X distance[m] ')
label('Y distance[m] ')

'', ~%%%%%%%%%%%% %%%% %%EndOfProgramme%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%

138

Appendix D

MatLab Program for Novel Algorithm to Avoid Static Obstacles

~ %%%
~Module for Plot Novel obstacle avoidance algorithm
c, 12/12/2007
\OAMainProForOA.m

%%%%%%%%%%
%%%%%%%%%%
%%%%%%%%%%

t%%%%%%%%%!t%%%

function [xnew,ynew] MorphinOA(xcur,ycur,Gx,Gy,O)

t)%%%

% create map grid:
0 = zeros(20);
create obstacles:

W(1:3,1)=1;
'0(1:3,3)=1;
0(1,1:3)=1;

,0(3,1:3)=1;
~0(2,2)=1;

0(10,15:90)=1;
for n=0:20;

0(30-n,30+n)=1; %diagonal line
end

~~% %%%

create map grid:
M = zeros(size(O));
subgrid=S;

ForGridSize=size(M);

gridsize=ForGridSize(1,2);

Ypathindex=1;
Xpathindex=1;

pathYL=zeros(gridsize);
pathYR=zeros(gridsize);
pathX=zeros(gridsize);

:.?;%Path grids

for centre=1: subgrid: (gridsize/2);

for x=1: (gridsize/2);

i: (gridsize/2-centre)A2- (x-centre)A2 >0

y=round(sqrt((gridsize/2-centre)A2- (x-centre)A2));

end

Jf (x-centre)A2-(gridsize/2-centre)A2 >0

139 ~

y=round(sqrt(x-centre)A2-(gridsize/2-centre)A2);

end

if (x-centre)==(gridsize/2-centre)

y=1;

end

if gridsize>y
if y>O

M(y,x)=1;
M(y, (gridsize-x))=1;
pathYL(Ypathindex,x)=y;
pathYR(Ypathindex, (gridsize-x)) =y;

end
end

end

Ypathindex=Ypathindex+1;

end

for y1=0:subgrid:gridsize

Xpathindex=Xpathindex+1;

for lx=1:gridsize

ly=round((lx-1)*(y1-gridsize/2)/(gridsize)+gridsize/2);

c'1 (lx, ly) =1;

pathX(Xpathindex,lx)=ly;

end

cond

~J_ o o o o o o o o o o o o_ o o o o o o o o q__ o o o o o_ o o_ o o o o c o o_ o o o o o o o o g._ o o o o o o o_ o o o o o o o o o o o_ o o o o u~~~~~~~~~~~~6~b~~6~~o~~~~b~b~~~~6~~~~~~~~~~o~~~~~~b~~~~bb~~~~b~~~~

DGoalXL(l:round(gridsize/subgrid*2))=0;
DGoalXR(l:round(gridsize/subgrid*2))=0;
DGoalY(1:round(gridsize/subgrid*2))=0;

for Ypathindex=1:gridsize

b~gridsize*2;

for x=l:gridsize

if (pathYL(Ypathindex,x)>O)

140

end

end

if (O(pathYL(Ypathindex,x),x)==l)

end

a=pathYL(Ypathindex,x);

if a<b
b=a;

end

DGoalXL(Ypathindex)=b;

end

%%%
for Ypathindex=l:gridsize

end

b=gridsize*2;

for x=l:gridsize

if (pathYR(Ypathindex,x)>O)

end

end

if (O(pathYR(Ypathindex,x),x)==l)

end

a=pathYR(Ypathindex,x);

if a<b
b=a;

end

DGoalXR(Ypathindex)=b;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

for Xpathindex=l:gridsize

a=gridsize*2;

for y=l:gridsize

if pathX(Xpathindex,x)>O% Here x andy should be interchange

if (0 (y, (pathX (Xpathindex, y))) ==1)

141 ~

end
end

end

a=y;

DGoalY(Xpathindex)=a;
end

%%%%Required heading angle
p=O;

theta=atan((Gy-ycur)/(Gx-xcur));
if Gy==ycur
else

p=round(((Gx-xcur)/(Gy-ycur))*(4-ycur)+xcur);
end
ynew=l+ycur;
xnew=p;

6 %%%%%%%%%%%%%%%%%%%%EndOfProgramme%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

142

Appendix E

MatLab Program for Appling Polynomial Approximation to Path Prediction

t-~~%%%%~%%%
~Polynomial Approximation for path prediction
Sl2/10/2008
IForThesisPolyPlot.m

%%%%%%%%%%
0000000000 -oooo-ooooo-o

%%%%%%%%%%
~%~%%%

c:lcar
tf=20;
rf=250;
tb=SO % time block
time= [0:0.05:40]*tf; %from 0 to 100000 seconds
Tl = [O.S*sin((time*0.1*pi)/tf)];
T1=Tl*rf%+2*rand(size(Tl));
T2 = [sin((time*0.1*pi/2)/tf)];
T2=T2*rf%+2*rand(size(T2));
Lndex=tb-1;
for z=1: (index-1)

prett(z)=time(z);
preFy(z)=O;
preFx(z)=O;

end
tor k=O:tb: (length(time)-tb)

if k>tb
for i=-tb:1:tb

end
else

if length(time)>(k+i)
fxd(i+tb+1)=T1(k+i);
fyd(i+tb+1)=T2(k+i);
tt(i+tb+1)=time(k+i);
end

for i=1:tb

end

if length(time)>(k+i)
fxd(i)=T1(k+i);
fyd(i)=T2 (k+i);
tt(i)=time(k+i);
end

end
polydeg=10;
py = polyfit(tt,fyd,polydeg);
px = polyfit(tt,fxd,polydeg);
:or i=l:tb
index=index+1;
if length(time)>index
prctt(index)=time(index);
prcFy(index)=polyval(py,prett(index));
preFx(index)=polyval(px,prett(index));
end

end
end

:igure(l)
plot(time,T1)

143

xlabel('Time I [S]');
ylabel ('Longitudinal Distance I [m] ');

figure (2)
plot(time,T2)
xlabel('Time I [S]');
ylabel ('Lateral Distance I [m] ') ;

figure(])
plot(Tl,T2)

xl abel ('Longitudinal Distance I [m] ') ;
ylabel ('Lateral Distance I [m] ');
title('Actual Path');

figure(4)

plot(Tl,T2, 'r',preFx,preFy, 'b')
xlabel('Longitudinal Distance I [m] ');
ylabel ('Lateral Distance I [m] ');
title('Actual and Predicted Path');

r=l:min(length(Tl),length(preFx));
efx(r)=preFx(r)-Tl(r);

s=l:min(length(T2),length(preFy));
efy(s)=preFy(s)-T2(s);

figure(S)
plot((efx+efy)l2, 'r')
xlabel('Time [S]');
y label ('Error [m] ') ;

~~%%%~%%%%%%%%%%%%%%%%EndOfProgramme%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

144

Appendix F

MatLab Program for Appling GRNN to Path Prediction

%%
%GRNN for path prediction
12/10/2008

%ForThesisNNErrorPlot.m

%%%%%%%%%%
%%%%%%%%%%
%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%~%%

clear
t f=2 0;
rf=250;
tb=50 % time block

time= [0:0.05:40]*tf; %from 0 to 800 seconds
T1 = [0.5*sin((time*0.1*pi)/tf)];
TA1=T1*rf;
T2 = [sin((time*0.1*pi/2)/tf)];
TA2=T2*rf;

T1 = [0.5*sin((time*0.1*pi)/tf)];
T1=T1*rf%+5*rand(size(T1));

T2 = [sin((time*0.1*pi/2)/tf)];
T2=T2*rf%+5*rand(size(T2));

index=tb-1;

for z=1: (index-1)
prett(z)=time(z);
preFy(z)=O;
preFx(z)=O;

end

for k=O:tb: (length(time)-tb)
if k>tb
for i=-tb:1:tb

end
else

if length(time)>(k+i)
fxd(i+tb+1)=T1(k+i);
fyd(i+tb+1)=T2(k+i);
tt(i+tb+1)=time(k+i);
end

for i=l:tb

end

if length(time)>(k+i)
fxd(i)=Tl(k+i);
fyd(i)=T2 (k+i);
tt(i)=time(k+i);
end

end
spread 1;
netY = newgrnn(tt,fyd,spread);
netX = newgrnn(tt,fxd,spread);

for i=1:tb
index=index+1;

145

end
end

if length(time)>index
prett(index)=time(index);
preFy(index)=sim(netY,prett(index));
preFx(index)=sim(netX,prett(index));

end

r=1:min(length(T1),length(preFx));
efx(r)=preFx(r)-T1(r);

s=1:min(length(T2),length(preFy));
efy(s)=preFy(s)-T2(s);

%%%

index=tb-1;

for z=1: (index-1)
prett(z)=time(z);
preFy2 (z)=O;
preFx2(z)=O;

end

for k=O:tb: (length(time)-tb)
if k>tb
for i=-tb:1:tb

end
else

if length(time)>(k+i)
fxd(i+tb+1)=T1(k+i);
fyd(i+tb+1)=T2(k+i);
tt(i+tb+1)=time(k+i);
end

for i=1:tb
if length(time)>(k+i)
fxd(i)=T1(k+i);
fyd(i)=T2(k+i);
tt(i)=time(k+i);
end

end
end

spread = 5;
netY = newgrnn(tt,fyd,spread);
netX = newgrnn(tt,fxd,sprGad);

end

for i=1:tb
index=index+1;

end

if length(time)>index
prett(index)=time(index);
preFy2(indcx)=sim(netY,prett(index));
preFx2(index)=sim(netX,prett(index));
end

r=1:min(length(T1),length(preFx2));
efx2(r)=preFx2(r)-T1(r);

s=1:min(length(T2),length(preFy2));
efy2(s)=preFy2(s)-T2(s);

146

%~%%

index=tb-1;
for z=1:(index-1)

prett(z)=tirne(z);
preFy3(z)=O;
preFx3(z)=O;

end
for k=O:tb: (length(tirne)-tb)

if k>tb
for i=-tb:1:tb

if length(tirne)>(k+i)
fxd(i+tb+1)=T1(k+i);
fyd(i+tb+1)=T2(k+i);
tt(i+tb+1)=tirne(k+i);
end

end
else

for i=1:tb

end

if length(tirne)>(k+i)
fxd(i)=T1(k+i);
fyd(i)=T2(k+i);
tt(i)=tirne(k+i);
end

end
spread 10;
netY = newgrnn(tt,fyd,spread);
netX = newgrnn(tt,fxd,spread);

for i=1:tb
index=index+1;
if length(tirne)>index
prett(index)=tirne(index);
preFy3(index)=sirn(netY,prett(index));
preFx3(index)=sim(netX,prett(index));

end
end

end
r=l:rnin(length(T1),length(preFx3));
efx3(r)=preFx3(r)-T1(r);
s=1:rnin(length(T2),length(preFy3));
efy3(s)=preFy3(s)-T2(s);

'~t%%

figure(1)
plot(tirne,T1)
xlabel('Tirne I [S]');
ylabel('Longitudinal Distance I [m] ');

figure(2)
plot(tirne,T2)
xlabel('Time I [S]');
ylabel ('Lateral Distance I [m] ');

:igure(3)
ot(T1,T2)

xlabel('Longitudinal Distance I [m] ');
ylabel ('Lateral Distance I [m] ');
title('Actual Path');

~,.

f ..
'

147

figure (4)
plot (TAl 1 TA2 1 'k' I preFx 1 preFy 1 'g' 1 preFx2 1 preFy2 1 'b' 1 pre fx3 1 preFy3 1 'r')
xJabel('Longitudinal Distance I [m] ');
ylabel ('Lateral Distance I [m] ');
title('Actual and Predicted Paths');

figure(6)
plot (efxl2 1 'g')
xlabel ('Time [S] ');
ylabel('Longitudinal Error [m] ');
hold on

figure(7)
plot (efyl2 1 'g')
xlabel ('Time [S] ');
ylabel('Lateral Error [m] ');
hold on

figure(6)
plot(efx3l2 1 'r')
xlabel ('Time [S] ');
ylabel('Longitudinal Error [m] ');
hold on

figure(7)
plot(efy3l2 1 'r')
xlabel ('Time [S] ');
ylabel ('Lateral Error [m] ');
hold on

figure(6)
plot (efx212 1 'b')
xlabel ('Time [S] ');
ylabel('Longitudinal Error [m] ');
r,old off

figure(7)
plot (efy2l2 1 'b')
xlabel('Time [S]');
ylabel('Lateral Error [m] ');
hold off

%%%%%%%%%%%%%%%%%%%End0£Programme%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

148

Appendix G

MatLab Program to Compare Velocity Obstacle Method with Novel Method for

Area Prediction of Dynamic Obstacles

%%%
~Comparing VOM with Novel method

12/10/2008 %%%%%%%%%%

%CompareAreaPre.m %%%%%%%%%%
%%%%%%%%%%

~%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%~%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

clear
tf=20;
rf=250;
tb=SO % time block
N=O % For noise
s=0.6% Sea condition
time= [0:0.05:40]*tf; % from 0 to 800 seconds

Tl = [O.S*sin((time*O.l*pi)/tf)];
TJ=Tl*rf+S*rand(size(Tl));
RVl= rf*[O.S*O.l*pi*cos((time*O.l*pi)/tf)]/tf;
RVfl=l.2+(0.l*RVl/2);

T2 = [sin((time*O.l*pi/2)/tf)];
T2=T2*rf+S*rand(size(T2));
RV2 = rf*[O.l*pi/2*cos((time*O.l*pi/2)/tf)/tf];
RVf2=1.2+(0.l*RVl/2);

index=tb;

for z=l: (index-1)
prett(z)=time(z);
preFy(z)=O;
ApreAFyl(z)=O;
Jl"preAFy2 (z) =0;
preFx(z)=O;
ApreAFxl (z) =0;
ApreAFx2(z)=O;

r~nd

for k=O:tb: (length(time)-tb)

if k>tb

for i=-tb:l:tb

end

else

if length(time)>(k+i)
fxd(i+tb+l)=Tl(k+i);
fyd(i+tb+l)=T2(k+i);
tt(i+tb+l)=time(k+i);
end

for i=l:tb
if length(time)>(k+i)

149

end

end

fxd(i)=Tl (k+i);
fyd(i)=T2(k+i);
tt(i)=time(k+i);
end

spread = 7;
netY newgrnn(tt,fyd,spread);
netX = newgrnn(tt,fxd,spread};

for i=l:tb
index=index+l;
if (length(time)+l)>index

prett(index)=time(index);
preFy(index)=sim(netY,prett(index));
preFx(index)=sim(netX,prett(index));
ApreAFyl(index)=sim(netY,prett(index))+(N+s*(index-k-l)ARVf2(index))

ApreAFy2(index)=sim(netY,prett(index))-(N+s*(index-k-l)ARVf2(index))

ApreAFxl(index)=sim(netX,prett(index))+(N+s*(index-k-l)ARVfl(index))

ApreAFx2(index)=sim(netX,prett(index))-(N+s*(index-k-l)ARVfl(index))

end
end

end

r=l:min(length(Tl),length(preFx));

AwidthFx(r)=ApreAFxl(r)-ApreAFx2(r);
AwidthFx(r)=((AwidthFx(r) .A2) .A(0.5));

AdisFxl(r)=Tl(r)-ApreAFxl(r);
~.disFxl (r)=((AdisFxl (r) .A2) .A (0.5));

AdisFx2(r)=Tl(r)-ApreAFx2(r);
T~.ciisfx2 (r)=((Adisfx2 (r) .A2) .A (0.5));

?lvJat=size (r);

for e=l:RMat(1,2)
l\erfx(e)=O;

l?nd

if AdisFxl(e)>AdisFx2(e)
Aerfx(e)=AdisFxl(e)-AwidthFx(e);
if AwidthFx(e)>=AdisFxl(e)

Aerfx(e)=O;
end

else
Aerfx(e)=AdisFx2(e)-AwidthFx(e);
if AwidthFx(e)>=AdisFx2(e)

Aerfx(e)=O;
end

end

150

s=l:min(length(T2),length(preFy));

AwidthFy(s)=ApreAFyl(s)-ApreAFy2(s);
AwidthFy(s)=((AwidthFy(s) .A2) .A(0.5));

AdisFyl(s)=T2(s)-ApreAFyl(s);
A.disFyl (s) = ((AdisFyl (s). A2). A (0. 5));

AdisFy2(s)=T2(s)-ApreAFy2(s);
AdisFy2 (s) = ((AdisFy2 (s) . A2) . A (0. 5));

RMat=size(s);

for e=l:RMat(1,2)
Aerfy(e)=O;

end

if AdisFyl(e)>AdisFy2(e)
Aerfy(e)=AdisFyl(e)-AwidthFy(e);
if AwidthFy(e)>=AdisFyl(e)

Aerfy(e)=O;
end

else
Aerfy(e)=AdisFy2(e)-AwidthFy(e);
if AwidthFy(e)>=AdisFy2(e)

Aerfy(e)=O;
end

end

t%%%%%%%%%t%%%
index=tb;

for z=l: (index-1)
prett(z)=time(z);
preFy(z)=O;
BpreAFyl(z)=O;
BpreAFy2(z)=O;
preFx(z)=O;
BpreAFxl(z)=O;
BpreAFx2(z)=O;

end

for k=O:tb: (length(time)-tb)

if k>tb
for i=-tb:l:tb

end

else

if length(time)>(k+i)
fxd(i+tb+l)=Tl(k+i);
fyd(i+tb+l)=T2(k+i);
tt(i+tb+l)=time(k+i);
end

for i=l:tb
if length(time)>(k+i)
fxd(i)=Tl(k+i);
fyd(i)=T2 (k+i);
tt(i)=time(k+i);

151

end

end
end

polydeg=l;
py = polyfit(tt,fyd,polydeg);
px = polyfit(tt,fxd,polydeg);

for i=l:tb

index=index+l;

if (length(time)+l)>index
prett(index)=time(index);
preFy(index)=polyval(py,prett(index));
preFx(index)=polyval(px,prett(index));
BpreAFyl(index)=polyval(py,prett(index))+(N+s*(index-k-l)Arv)
BpreAFy2(index)=polyval(py,prett(index))-(N+s*(index-k-l)Arv)
BpreAFxl(index)=polyval(px,prett(index))+(N+s*(index-k-l)Arv)
BpreAFx2(index)=polyval(px,prett(index))-(N+s*(index-k-l)Arv)

end
end

end

r=l:min(length(Tl),length(preFx));

BwidthFx(r)=BpreAFxl(r)-BpreAFx2(r);
BwidthFx(r)~((BwidthFx(r) .A2) .A(0.5));

BdisFxl(r)=Tl(r)-BpreAFxl(r);
BdisFxl (r)=((BdisFxl (r) .A2) .A (0.5));

BdisFx2(r)=Tl(r)-BpreAFx2(r);
BdisFx2(r)=((BdisFx2(r) .A2) .A(0.5));

PMat=size(r);

for e=l:RMat(1,2)
Berfx(e)=O;

end

if BdisFxl(e)>BdisFx2(e)
Berfx(e)=BdisFxl(e)-BwidthFx(e);
if BwidthFx(e)>=BdisFxl(e)

Berfx(e)=O;
end

else
Berfx(e)=BdisFx2(e)-BwidthFx(e);
if BwidthFx(e)>=BdisFx2(e)

Berfx(e)=O;
end

end

s=l:min(length(T2),length(preFy));

BwidthFy(s)=BpreAFyl(s)-BpreAFy2(s);
EvJidthFy(s)=((BwidthFy(s) .A2) .A (0.5));

BdisFyl(s)=T2(s)-BpreAFyl(s);
BdisFyl (s) = ((BdisFyl (s) . A2) . A (0. 5));

152

I

BdisFy2(s)=T2(s)-BpreAFy2(s);
Bdi s Fy2 (s) = ((Bdi s Fy2 (s) . A 2) . A (0. 5)) ;
RMat=size(s);
for e=l:RMat(l,2)

Berfy(e)=O;
if BdisFyl(e)>BdisFy2(e)
Berfy(e)=BdisFyl(e)-BwidthFy(e);
if BwidthFy(e)>=BdisFyl(e)

Berfy(e)=O;
end

else

Berfy(e)=BdisFy2(e)-BwidthFy(e);
if BwidthFy(e)>=BdisFy2(e)

Berfy(e)=O;
end

end
end

figure(l)

plot (time, Tl, 'k', time, ApreAFxl, 'r', time, ApreAFx2, 'r',
time,BpreAFxl, 'b',time,BpreAFx2, 'b')
xlabel ('Time [S] ');
ylabel('Longitudinal Distance [m] ');

figure(2)

plot (time, T2, 'k', time, ApreAFyl, 'r', time, ApreAFy2, 'r',
time,BpreAFyl, 'b',time,BpreAFy2, 'b')
xlabel('Time [S] ');
ylabel ('Lateral Distance [m] ');

figure (3)

plot (time, Aerfx, 'r', time, Berfx, 'b')
xlabel('Time [S]');
ylabel ('Error [m] ');

figure(4)

plot (time, Aerfy, 'r', time, Berfy, 'b')
xlabel ('Time [S] ');
yl abel ('Error [m] ') ;

figure(6)

plot(time,AwidthFx, 'r',time,BwidthFx, 'b')
xlabel('Time [S]');
ylabel('Boundary Width [m] ');

figure(7)

plot(time,AwidthFy, 'r',time,BwidthFy, 'b')
xlabel('Time [S]');
ylabel('Boundary Width [m] ');

figure(8)
plot(time,RwidthFy, 'r')
xlabel ('Time [S] ');
ylabel('Reduced Width [m] ');

._~,

·L

%% ~%%%~%%%%%%%%EndOfProgramme%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

153

i
>t.:"' .,

	93025
	93025_Pre-text
	93025_1
	93025_2
	93025(2 ch 9-27)
	93025(2 ch 28-35)
	93025(2 ch (36)

	93025_3
	93025(3 ch 37-41)
	93025(3 ch 42-45)

	93025_4
	93025_5
	93025_6
	93025(6 ch 74-96)
	93025(6 ch 97-112)

	93025_7
	93025_Post-text

