APPENDIX I

DIALYSIS OF COLLOIDAL PARTICLES

The tubing used for dialysis was of the type Gallenkamp DL/620 with an average pore diameter of 4.8 nm. The tubing allows low molecular weight compounds in the aqueous solution to diffuse whilst preventing the passage of higher molecular weight material.

Before use, the tubing was conditioned according to the following procedure recommended by the manufacturers.

- (i) Boiling in 0.5 per cent acetic acid for 30 min.
- (ii) Washing thoroughly in tap water and then in distilled water.
- (iii) BoilingUmiversiperocentorsadium, carbonate asolution for 30 min.
 (iv) Electronic Theses & Dissertations
 (iv) Mashing theroughly rine distilled water.
 - (v) Storage in a refrigerator, in distilled water.

One of the open ends of the tubing was first closed by tying the end into a knot. After transferring the colloidal suspension of cellulose particles the other end was sealed in a similar manner. The tubes were suspended in a tank of distilled water which was constantly replenished by a distilled water still. The syphoned outflow of water was controlled to maintain a regular water-level in the tank. A mechanical stirrir continuously agitated the water in the tank. All the equipment inside the tank (apart from the dialysis tubing), and the tank itself, was made of glass.

APPENDIX II

PREPARATION OF SPECIMEN SUPPORTING FILMS

Supporting films for mounting specimens, for subsequent examination in the electron microscope, should satisfy the following requirements.

- (i) Material The films should be made from materials of high transparency to electrons, i.e. substances of low atomic number (see section 4.1).
- (ii) Thickness In the 80 100 kV range of accelerating potential, the energy of the incident electrons involved require the use

of thin films (< 20 nm, cf. section 4.1). University of Moratuwa, Sri Lanka.

(iii)

wide wange of temperatures (cf. section 1.4) in order to

Strength lecthen it imseshould be self-supporting and stable to

withstand rapid temperature fluctuations.

Evaporated *carbon* films, satisfy the above general conditions and hence, were used in the present work.

A quick and efficient method for the production of supporting films on glass slides has been described by Johnson²⁰ and Dobb²⁷⁶. However, in the present investigation, thin sheets of freshly cleaved (i.e. atomically smoth) mica (approximately 2.5 x 7.5 cm²) were used instead of glass slides, to deposit the carbon films. The mica sheets were placed in an Edward's coating unit (model 12E6/716), and the chamber evacuated to less than 1.333×10^{-2} Pa. A current of 60A (at 10V) was passed for about 0.8s, through two carbon electrodes in (initial) pointcontact. Since the precision of the timing control on the coating unit was found inadequate for the production of suitably thin films, the following technique (developed in this laboratory) was adopted with success. A piece of white glazed porcelain (opal glass) was placed inside the chamber beside the target. The thickness of the carbon film was judged by the brown coloration of the indicator which was visible only on the area not covered with oil. When the light brown colour is just detectable, compared with the white appearance of the oil covered area, the thickness of the film has been found to be about 5 nm²⁷⁷. In the present work, films were obtained when the indicator showed a light chocolate coloured deposit corresponding to an approximate thickness of 10 nm²⁷⁷. Carbon films prepared in the above manner were found to be of adequate mechanical strength and suitable thickness.

The next stage of the operation, namely the transference of the thin carbon film deposited on the surface of the mica sheet on to the specimen supporting grids of was accomptished in the following manner. Electronic Theses & Dissertations Several grids are placed on a piece of copper gauze kept under distilled water in a special container²⁷⁷. The carbon film was carefully floated off on to the liquid surface and the water then gently drained off, thus depositing the film on the grids. After drying at room temperature the grids were ready to receive the specimens.

APPENDIX III

METAL SHADOW-CASTING

The shadow casting process, introduced by Williams and Wyckoff²⁷⁸ has long been recognized as a useful method for enhancing contrast in the Subsequently, Hall²⁷⁹ extended this method to measure electron microscope. the diameter of spherical and tubular shaped macromolecules. However, a series of technical difficulties have been encountered in attempts to exploit the potentialities of the technique. These include, granularity of the shadowing metal, problems encountered in stripping metallized deposits from the substrate in the case of replication, presence of contaminating deposits, and difficulties in finding sufficiently smooth and flat substrates. Some of the obstates have been overcome by such mentionents and improvements as Flootrostin These skip cleared and has been used as a discussed below. substrate, the surface of which is not only very smooth, but also highly hydrophilic which is an additional desirable property.

A fundamental requirement of the shadowing metal is that it should be a good electron scatterer. Metals such as gold, platinum, palladium, uranium and chromium have been used with varying degrees of success.

The granular size of the metal is obviously the limiting factor of the shadowing technique. The error involved in particle size measurements becomes worse with increasing shadow length to height ratio. Granularity can also enhance anomalous results related to phase effects in electron optics (cf. section 2.2).

When used for measurements of isolated single units, such as particles of cellulose, the shadowing technique suffers from further, serious disadvantages. The metal coating can, in many cases, obscure

- 140 -

the shape of such small particles, thus preventing reliable measurements. This difficulty has been studied extensively by Ohad, Danon and Hestrin^{81,82}. They have reported that when the thickness of the film is between 1.0 and 2.0 nm, and the height/shadow ratio is between 0.2 - 0.1, the added width will be between 5 and 20 nm, which can be a value considerably larger than the structure studied. Further, they worked out a method for the adjustment and conversion of measurements obtained from metal shadowed, isolated Colvin⁷⁹, however, has criticized some of these conclusions particles. and stated that metal shadowing as commonly practised need not necessarily lead to such erroneous results as suggested by Ohad et al. There is yet another difficulty, common to both shadowing and staining techniques, in that it is not always possible to obtain particles appropriately distributed on the surface of the supporting membrane, free of impurities and drying artifacts. Unissici aggregates of aparticles the shadowing method would, if the closely www lil packed constituents. Some of the above mentioned anomalies encountered in the shadowing technique, may well be responsible to some extent for the different values quoted for the dimensions of the "ultimate cellulose unit".

In the present study, metal shadow casting was used on the particles of cellulose, in the preliminary stages but was later abandoned in preference of negative staining methods.

FIG. A1 DISTRIBUTION OF "NEGATIVE" STAINING MATERIAL

APPENDIX IV

NEGATIVE STAINING

In electron microscope studies of biological material, it is often necessary to use some type of non-specific staining procedure, in order to achieve adequate specimen contrast. The method has also been extended to measure the dimensions of macromolecules, but unless extreme caution is excercised in the interpretation it may lead to erroneous results as discussed below.

Negative staining involves the surrounding of a relatively "transparent" specimen by an electron "opaque" matrix. The resultant image need not necessarily be a true replica of the specimen; in fact it is a derivative structure which is a beserved is and shadowgraph of those parts of the precimen not penetrated by stain. However, penetration of the stain greatly complicates the interpretation of negatively stained specimens.

Negative staining assumes little or no adsorption of the electron opaque material by the object under examination. Silver nitrate, phosphotungstic acid (PTA), osmic acid, and uranyl acetate have been used However, Colvin⁷⁹ has reported that on in the past to stain cellulose. occasions (for unexplained reasons), PTA was found to be adsorbed strongly to native cellulose microfibrils. According to Preston⁹³, the cellulose microfibrils in plant cell walls possess a crystalline core surrounded by a "cortex" of paracrystalline material and therefore, it is conceivable that the stain would permeate the outer region of such a system and reveal unstained crystalline core. If Preston's proposition is correct, then negative staining will always yield an underestimate of the fibrillar dimensions of cellulose.

- 142 -

End view of parallel microfibrils (white circles) with the interstices filled by the negative stain, together with the intensity distribution when viewed from above.

(a)

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

(b) The intensity distribution when the system in (a) is tilted through 12.5° .

FIG. A-2 NEGATIVE STAINING AND DISTRIBUTION OF INTENSITY (ref. 93)

Another factor, which would lead to similar anomalous results, has been pointed out by Colvin⁷⁹ and is illustrated in FIG. A-1. Since the electron scattering material is used to outline the specimen, if the shape, size and distribution of the specimen permits encroachment of the stain, (not applicable for objects with square or rectangular cross-sections) the apparent width will depend on the relative thickness (t_x) of the layer of stain. Colvin⁷⁹ has suggested that such erroneous results may be avoided by comparison of the shape of a microdensitometer trace across the images of the objects with known morphology, but in practice the situation can be further complicated by other factors as discussed below.

Millward and Sikorski⁹⁴ highlighted one of the most significant causes leading to misinterpretation of high resolution electron micrographs of thin sections (transverse and longitudinal) of mammalian keratin. Using an idealized diagrams they were able to Schwardsarly one of the main Electronic Theses & Dissertations reasons for the variation of high resolution of a single unit in a regularly packed system of aggregates. Subsequently, Preston⁹³ has extended the same argument for the case of cellulose particles as shown in FIG. A2. If the particles are not regularly packed and are not uniformly straight and parallel (as in the real case) the smallest centre to centre distance would still be less than the real value. Thus, it would appear that the results from the use of "negative" stains in the case of *isolated* particles would not suffer from the above discrepancy.

In the present study, a 2 per cent aqueous solution of uranyl acetate was used for staining cellulose particles and the measurements were confined to isolated units (cf. section 2.3.3).

APPENDIX V

WIDE ANGLE X-RAY DIFFRACTION PROCEDURES AND ANALYSIS

(a) Specimen Preparation

Cotton fibres cleaned following standard procedure (cf. section 2.3.1) were parallelized as far as possible by careful combing and made into a thin compact cylindrical bundle of 1 - 1.5 nm diameter. The fibre bundle was consolidated by tying the ends with a sewing thread and clamped taut in a frame.

(b) X-ray Generator and Camera

A commercial "Hilger and Watts Y90" X-ray generator was used incorporating a PhilipsylkWey permanent V_{WS} ealed type with a copper anode, operating V_{V} is the top of top of the top of top of the top of top of

The flat-film camera was fitted with a glass-capillary collimator (D = 0.5 m), over which a nickel foil was fixed, in order to absorb most of the copper K_{β} and white radiation. The specimen was clamped over the end of the collimator, and the film held in a casette with a mask of aluminium foil. The specimen to film distance was kept at about 3 cm (see (d) below- calibration) and an exposure time of 3.5 hr.

(c) Recording of X-ray Diffraction Patterns.

The diffraction patterns were recorded on a "slow" film (Crystallex, Kodak Ltd.) in order to obtain clear patterns with a minimum of background darkening. The film was developed for 3 minutes at 24° C in 4:1 (V/V) aqueous DX-80 developer and, subsequently, washed and treated with 4:1 (V/V) aqueous FX-40 fixer.

(d) Calibration of Specimen to Film Distance

A silver foil²⁸⁰ placed in the middle of the fibre bundle was used to calibrate the specimen to film distance.

The relevant crystallographic data for silver obtained from American Society for Testing Materials²⁸¹ is as follows.

TABLE 30

CRYSTALLOGRAPHIC DATA FOR SILVER

d _{hkl} (nm)	I/I1
0.236	1.00

University 294 Moratuwa, SA Eanka. Electronic 74 eses & Dissertations www.lib.mrt.ac.lk 0.123 0.53 0.118 0.05

d _{hkl} silver	=	0.236 nm, for the most intense reflection.
sin 0	Ξ	$\frac{\lambda}{2d}$, Bragg's law (n=1)
λ	2	0.154 for Copper K_{α}
sin θ	=	0.154 2x0.236
	=	0.326
θ	=	19 [°] 3'
20	=	38 [°] 6'
tan 20	=	0.784

If the specimen to film distance = x and distance of the diffracted beam from the undeviated beam, measured along the film = r, then tan $2\theta = \frac{r}{x}$

Radius of silver ring measured on the film = r = 2.46 cm

:.
$$x = r \tan^{-1} 2\theta$$

= 3.14 cm

.

Regression Analysis of Crystallite Orientation and Some (e) Properties of Native Cotton Fibres.

A regression analysis of the following data was carried out using a built in programme for multiple linear regression analysis in the Leeds University ICL 1906A computer²⁸² (cf. § 3.4.3, and Table 23).

(Univer Electro	ATALYFOR	REGRESSION, A	val ysiska.	
TYPE OF COTTON	SEMI-AZYMUTHAD ANGLE OF 002 REFLECTION MEASURED AT HEIGHT			C.11k ELONGATION AT	TENSILE STRENGTH	NO. OF CONVOLUTIONS
	40%	50%	75%	DREAN 6	(9/ 2007)	
Acala	26.6	22.9	15.2	5.8	45.4	77
Lankart	36.5	33.7	26.5	8.2	33.8	80
Menoufi	27.2	22.0	18.7	5.7	51.9	53
Tanguis	31.0	27.7	20.0	6.5	40.9	70
Lambert	25.5	22.6	15.4	6.3	48.4	62
Uganda	29.4	26.5	20.6	5.6	41.3	75

TABLE 31

- 146 -

÷

University of Moratuwa, Sri Lanka. Electronics These Frences retations www.lib.mrt.ac.lk

REFERENCES

, l.	Warwicker, J.O., Jeffries, R., Colbran, R.L., and Robinson, R.N., Shirley Institute Pamphlet No. 93 (1966).
2.	Nickerson, R.F., <i>Mathews' Textile Fibres</i> , 5th ed. (edit. by Mauersberger, H.R.) (John Wiley and Son, N.Y., 1947).
3.	Watt, G., The Wild and Cultivated Cotton Plants of the World, 1st ed. (Longmans Green, London, 1907).
4.	Kassenbeck, P., Ciba Rev., 4, 14 (1962).
5.	Clegg, G.G., J. Text. Inst., 17, T 591 (1926).
6.	Pierce, F.T., and Lord E.J., J. Text. Inst., 30, 7173, (1939).
~ 7.	Honeyman, J., and Parsons, M.A., Recent Advances in the Chemistry of Cellulose and Starch (edit. by Honeyman, J). 49 (Heywood, Lond., 1959).
8.	Marx-Figini, M., and Schulz, G.V., Naturwissenschaften, 53, 466 (1966) versity of Moratuwa, Sri Lanka.
9.	Every Electronic Theses & Dissertations Acta. chem. scond. 3, 853 (1959).
10	Dolmetsch, H., Melliand TextBer., 26, 23 (1945).
11.	Kenner, J., Jones, D.W., and Sharples, A., Rep. Prog. appl. Chem. 37, 723 (1952).
12.	McDonald, T.R.R., and Beevers, C.A., Acta crystallogr., 5, 654 (1952).
13.	Beevers, C.A., and Cochran, W., Proc. R. Soc., 190A, 257 (1947).
14.	Beevers, C.A., McDonald, T.R.R., Robertson, J.H., and Stern, F., Acta crystallogr., 5, 689 (1952).
15.	Hough, L., Recent Advances in the Chemistry of Cellulose and Starch (edit. by Honeyman, J),1(Heywood, Lond., 1959).
16.	Hassel, O., and Ottar, B., Acta chem. scand., 1, 929 (1947).
17.	Hirst, E.L., Proc. R. Soc., 252A, 287 (1959).
18.	Meyer, K.H., and Misch, L., Helv. chim. Acta., 20, 232 (1937).

Pauling, L., and Hayward, R., The Architecture of Molecules 19. (W.H. Freeman and Co., Lond., 1964). 20. Johnson, D.J., M.Sc. Thesis, University of Leeds (1960). Hermans, P.H., de Booys, J., and Mann C., Koloidzeitschrift, 21. 102, 169 (1943). 22. Sunderalingam, M., Biopolymers, 6, 189 (1968). 23. Hermans, P.H., Physics and Chemistry of Cellulose Fibres (Elsevier N.Y., 1949). 24. Mann, J., and Marrinan, H.J., J. Polym. Sci., 32, 357 (1958). 25. Jacobson, R.A., Wünderlisch, J.A., and Lipscomb, W.N., Acta crystallogr. 14, 598 (1961). 26. Frey-Wyssling, A., Biochim. biophys. Acta, 18, 166 (1955). 27. Mühlethaler, K., A. Rev. Pl. Physiol., 18 (1967). 28. Liang, C.Y., and Marchessault, R.H., J. Polym. Sci., 37, 385 (1959). University of Moratuwa, Sri Lanka. 29. Jones, D. Electronic tymes Seine Dissertation (1958). Hermans, PVM.W. lie on thibuttions to the Physics of Cellulose Fibres 30. (Elsevier, Amst., 1946). Jones, D.W., J. Polym. Sci., 42, 173 (1960). 31. 32. Norman, N., Text. Res. J., 33, 711 (1963). Balls, W.L., and Hancock, H.A., Proc. R. Soc., 93B, 426 (1922). 33. 34. Viswanathan, A., and Shenouda, S.G., J. appl. Polym. Sci., 15, 519 (1971). 35. Brown, C.J., J. chem. Soc., A, 927 (1966). 36. Chu, S.C.S., and Jeffrey, G.A., Acta crystallogr., **24B**, 830 (1968).37. Vainshtein, B.K., Diffraction of X-rays by Chain Molecules, 48 (Elsevier, N.Y., 1966). 38. Frey-Wyssling, A., Progress in the Chemistry of Organic Natural Products, (edit. by Zechmenster, L.) (Springer-Verlag, N.Y., 1969). 39. Peirce, F.T., Trans. Faraday Soc., 42, 545 (1946).

40.	French, A.D., J. appl. Polym. Sci., 16, 1579 (1972).
41.	Wellard, H.J., J. Polym. Sci., 13, 471 (1954).
42.	Hosemann, R. and Bagchi, S.N., Direct Analysis of Diffraction by Matter, 280 (North Holland Publishing Co., Amst., 1962).
43.	Hindeleh, A.M., and Johnson, D.J., Polymer, 13, 27 (1972).
44.	Bunn, C.W., Chemical Crystallography, (Oxf. Univ. Press, 1946).
45.	Mickhailov, N.V., J. Polym. Sci., 30, 257 (1958).
46.	Kargin, V.A. and Kozolov, P.V., <i>Kino-foto-khim</i> . Prom. 4, 40 (1940).
47.	Honjo, G., and Watanabe, M., Nature, 181, 326 (1958).
48.	Preston, R.D., and Ripley, G.W., Nature, 174, 76 (1954).
49.	Fisher, D.G., and Mann, J., J. Polym. Sci., 42, 189 (1960).
50.	Dobb, M.G., Proc. 5th European Congr. Electron Microscopy, Manchester, 564 (Inst. Phys. Lond., 1972).
51.	Kinsinger University of Moratuwa, Study angrage. Chem., 40, 1711
52.	Konkin, AVAW, Wahle Serkov, ILA.T., Vysokomolek. Soedin., 3, 1610 (1961).
53.	Lipatov, S., Vysokomolek. Soedin., 3, 1608 (1961).
54.	Ellis, K.C., and Warwicker, J.O., J. Polym. Sci., 56, 339 (1962).
55.	Muggli, R., Cellulose chem. Technology, 2, 549 (1968).
56.	Sarko, A., and Marchessault, R.H., J. Polym. Sci., 28C, 317 (1969).
57.	Saksena, B.D., Agarwal, K.C., and Jauhri, G.S., J. Polym. Sci., 62, 347 (1962).
58.	Sen, M.K., and Roy, S.C., Nature, 174, 135 (1954).
59.	Ellis, K.C., and Warwicker, J.O., Nature, 181, 1614 (1958).
60.	Sponsler, O.L., and Dorē, W.H., J. Am. chem. Soc., 50, 1940 (1928).
61.	Preston, R.D., <i>Polymer</i> , 3, 511 (1962).
62.	Nieduszynski, I., and Preston, R.D., Nature, 225, 273 (1970).

.

- 63. Woods, H.J., Nature, 174, 136 (1954).
- 64. Warwicker, J.O., *Nature*, 174, 135 (1954).
- 65. Wellard, H.J., Nature, 174, 135 (1954).
- 66. Legrand, C., Bonnemayre, A., Guinier, A., and Antzenberger, P., Nature, 175, 1045, (1955).
- 67. Dobb, M.G., Private communication.
- Herbert, J.J. Carra, J.H., Esposito, C.R., and Rollins, M.L., Text. Res. J. 43, 260 (1973).
- 69. Balashov, V.S., and Preston, R.D., *Nature*, 176, 64 (1955).
- 70. Wührmann, K., Heuberger, A., and Mühlethaler, K., Experientia,
 2, 105 (1946).
- 71. Frey-Wyssling, A., Protoplasma, 25, 261 (1936); 26, 45 (1936).
- Frey-Wyssling, A., Mühlethaler, K., and Wyekoff, R.W.G.,
 Experientia, 4, 475 (1948).
- 73. Mühlethaler, K., Biochim. biophys. Acta, 3, 15 (1949). University of Moratuwa, Sri Lanka.
- 74. Electrolife Fieses, & endssertaded Millard, A., Nature, 162, 665w(+948)mrt.ac.lk
- 75. Rănby, B.G., and Ribi, E., *Experientia*, 6, 12 (1950).
- 76. Frey-Wyssling, A., Science, 119, 80 (1954).
- Cronshaw, J., Meyers, A., and Preston, R.D., Biochim. biophys.
 Acta, 27, 89 (1958).
- 78. Frei, E., and Preston, R.D., Proc. R. Soc., 154B, 70 (1961).
- 79. Colvin, J.R., J. Cell Biol. 17, 105 (1963).
- 80. Frey-Wyssling, A., and Mühlethaler, K., Makromolek. Chem., 62, 25 (1963).
- 81. Ohad, I., and Danon, D., J. biophys. biochem. Cytol., 22C, 302 (1963).
- Ohad, I., Danon, D., and Hestrin, S., J. biophys. biochem. Cytol., 17C, 321 (1963).
- 83. Heyn, A.N.H., J. Cell Biol., 29, 2 (1966).
- Bobb, M.G., Fraser, R.D., and Macrae, T.P., J. Cell Biol.,
 32 (2), 289 (1967).

- Manley, R. St. J., Nature, 204, 1155 (1964). 85.
- 86. Grew, N., The Anatomy of Plants (Johnson Reprint Corp., N.Y. 1965).
- Ranby, B.G., Encyclopedia of Plant Physiology, 87. (edit. by Ruhland, W.) 268 (Springer, 1958).
- Preston, R.D., The Interpretation of Ultrastructure, 88. (Symp. Soc. Cell Biol.) 325 (Academic Press, 1962).
- Ellefsen, ϕ , Kringstad, K., and Tonnesen, B.A., Encyclopedia 89. of X-rays and Gamma rays (edit. by Clark, G.L.) 22 (Reinhold, N.Y., 1963).
- 90. Dennis, D.T., and Preston, R.D., Nature, 191, 667 (1961).
- 91. Mühlethaler, K., Cellular Ultrastructure of Woody Plants, (edit. by Côte, W.) 191 (Syracuse U.P., 1964).
- 92. Mühlethaler, K., Abst. tenth int. Botany Congress, (Edin., 1965).
- 93. Preston, Rinversity Middleropyva, S31 Izanig71). ses & Dissertations Fourth European Conf. on 94.
 - Electron Microscopy, (Rome, 1968).
- 95. Hanna, R.B., J. Polym. Sc. 36C, 409 (1971).
- 96. Hess, K., Melliand TextBer., 24, 333 (1943).
- Mühlethaler, K., Makromolek. Chem., 2, 143 (1948). 97.
- 98. Frey-Wyssling, A., and Mühlethaler, K., Text. Res. J., 17, 32 (1947).
- 99. Ranby, B.G., Dissertation, Uppsala (1952), quoted in ref. 1.
- 100. Frey-Wyssling, A., Nature, 179, 941 (1957).
- 101. Krässig, H., and Käppner, H., Makromolek. Chem. 44, 1 (1961).
- Mühlethaler, K., Papier, Darmstadt, 17, 546 (1963). 102.
- 103. Heyn, A.N.H., Text. Res. J., 19, 163 (1949).
- 104. Heyn, A.N.H., J. Am. chem. Soc., 70, 3138 (1948).
- 105. Bonart, R., Hosemann, R., Motzkus, F., and Ruck, H., Norelco Reptr., 7, 81 (1960).
- Ruck, H., Kolloidzeitschrift, 170, 63 (1960). 106.

- 107. Ruck, H., Norelco Reptr., 7, 75 (1960).
- 108. Ruck, H., Papier, Darmstadt, 14, 495 (1960).
- 109. Ruck, H., *ibid.*, 16, 703 (1962).
- 110. Ruck, H., Faserforsch. TextTech., 14, 146 (1963).
- 111. Ruck, H., *ibid.*, 14, 171 (1963).
- 112. Ruck, H., *ibid.*, 14, 233 (1963).
- 113. Yurugi, T., J. chem. Soc. Japan., Ind. Chem. Sect., 58, 27 (1955).
- 114. Kratky, 0., Kolloidzeitschrift, 120, 24 (1951).
- 115. Ramanathan, N., J. scient. ind. Res., 16B, 436 (1957).
- 116. Tripp, V.W., Moore, A.T., de Gruy, I.V., and Rollins, M.L., *Text. Res. J.*, 30, 140 (1960).
- 117. Usmanov, Kh.U., Bull. Inst. Politechnic Iasi, 6, 151 (1960).
- 118. Morehead, F.F., Cellulose and Cellulose Derivatives, (edit. by Bikalasvensky, oand/Segaluva, Sri5L 2014a(Wiley-Interscience, ().Electronic Theses & Dissertations
- 119. Nageli, C., Die Starke Korner (F. Schuttub, Zurich, 1858).
- 120 Kratky, O., Kolloidzeitschrift, 64, 213 (1933).
- 121. Kratky, 0., *ibid*., 84, 149 (1938).
- 122. Kratky, 0., *ibid.*, 96, 301 (1941).
- 123. Baule, B., Kratky, O., and Treer, A., Z. phys. Chem., 50B, 255 (1941).
- 124. Farr, W.K., J. phys. Chem., 53, 260 (1949).
- 125. Anderson, D.B., and Kerr, T., Ind. Engng Chem., 30, 48 (1938).
- 126. Sisson, W.A., Chem. Rev., 26, 187 (1941).
- 127. Frey-Wyssling, A., Kolloidzeitschrift, 85, 148 (1938).
- 128. Hearle, J.W.S., J. Polym. Sci., 28, 432 (1958).
- 129. Frey-Wyssling, A., Die Pflanzliche Zellwand, (Springer-Verlang, Berlin, 1959).
- 130. Rănby, B.G., Makromolek. Chem., 13, 40 (1954).
- 131. Hess, K., Mahl, H., and Gütter, E., Kolloidzeitschrift, 155, 1 (1957).

132.	Hess, K., and Kiessig, H., Naturwissenschaftern, 31, 171 (1943).
133.	Bonart, R., and Hosemann, R., Kolloidzeischrift, 186, 16 (1962).
134.	Cloizeaux, J.D., J. Polym. Sci., 8A, 1773 (1970).
135.	Meyer, K.H., and van der Wyk, A.J.A., Z. Elektrochem., 47, 353 (1941).
136.	Stöckmann, V.E., Biopolymers, 11, 251 (1972).
137.	Mühlethaler, K., J. Polym. Sci., 28C, 305 (1969).
138.	Statton, W.O., J. Polym. Sci., 18C, 33 (1967).
139.	Tønnesen, R.S., and Ellefsen, φ., <i>Norsk. Skogind.</i> , 14, 266 (1960).
140.	Bittiger, H., Husemann, E., and Kuppel, A., J. Polym. Sci., 28C, 45 (1969).
141.	Rees, D.A., and Skerrett, R.J., J. chem. Soc., B, 189 (1970).
142.	Chang, M., J. Polym. Sci., 36C, 343 (1971).
143.	Murphey, WikiwersAgroft Avendtudva, Srl J. altaa. (1963).
144.	Jener, Electronic Theses & Dissertations
145.	Dismore, P.F., and Statton, W.O., J. Polym. Sci., 13C, 133 (1966).
146.	Mark, R.E., Cell Wall Mechanics of Tracheids, (Yale U.P., New Haven 1967).
147.	Mark, R.E., Kaloni, P.N., Tang, R.C., and Gillis, P.P., <i>Text.</i> <i>Res. J.</i> , 39 , 203 (1969).
• 148.	Manley, R.St.J., J. Polym. Sci., 9A, 1025 (1971).
149.	Lindenmeyer, P.H., S.P.E. Trans., 4, 157 (1964).
150.	Lindenmeyer, P.H., Science, 147, 1256 (1965).
151.	Muggli, R., Elias, H.G., and Mühlethaler, K., Makromolek. Chem., 121, 290 (1969).
152.	Colvin, J.R., and Beer, M., Can. J. Microbiol., 6, 631 (1960).
153.	Millman, B., and Colvin, J.R., Can. J. Microbiol., 7, 383 (1961).
154.	Sarko, A., Muggli, R., and Zugenmaier, P., <i>Abstr. 161st Am. chem. Soc. Natn. Meet.</i> , Pap.41, Div. of Cellulose, Wood and Fibre Chem. (1971).

ļ

- 153 -

٢,

- 155. Pimental, G.C., and McClellan, A.L., The Hydrogen Bond, 6(Freeman, S.Francisco, 1960).
- 156. Bernal, J.D., Hydrogen Bonding (edit. by Hadzi, D., and Thompson, H.W.) 7 (Pergamon Press, N.Y., 1959).
- 157. Jones, D.W., Cellulose and Cellulose Derivatives, (edit. by Bikales, N.M., and Segal, L.), 5, 117 (Wiley. Interscience, N.Y., 1971).
- 158. Kreger, D.R., Nature, 180, 914 (1957).
- 159. Carlstrom, D., J. biophys. biochem. Cytol., 3, 669 (1957).
- 160. Viswanathan, A., and Shenouda, S.G., J. appl. Polym. Sci., 15, 2597 (1971).
- 161. Nissan, A.H., Surfaces and Coatings Related to Paper and Wood, (edit. by Marchessault, R.H., and Staar, C.) 221 (Syracuse U.P., N.Y. 1967).
- 162. Kallmes, O., and Corte, H., *Tappi*, 43, 737 (1960).
- 163. Corte, H. University Materialsa, Stedianty, Holliday, L.)
- 164. Luner, P. WKarnab, ADEL O.C., Mand Donoforio, C.P., Tappi, 44, 409 (1961).
- 165. Sternstein, S.S., and Nissan, A.H., The Formation and Structure of Paper, (edit. by Bolam, F.) (Trans. Symp. Oxf. 1961, Tech. Sect. Br. Paper and Board Makers Ass., Kenley, England, 1962).
- 166. Nissan, A.H., and Sternstein, S.S., Pure appl. Chem., 5, 131 (1962); Tappi, 47, 1 (1964).
- 167. Page, D.H., Tappi, 46, 750 (1963).
- 168. Balls, W.L., The Development and Properties of Raw Cotton, (A and C Black, Lond., 1915).
- 169. Balls, W.L., Proc. R. Soc., 90B, 542 (1919).
- 170. Balls, W.L., Proc. R. Soc., 95B, 72 (1923).
- 171. Balls, W.L., and Hancock, H.A., Proc. R. Soc., 93B, 426 (1922).
- 172. Balls, W.L., Studies in Quality Cotton, (McMillan, Lond., 1928).
- 173. Farr, W.K., Contr. Boyce Thomson Inst. Pl. Res., 6, 471 (1934).

- 174. Farr, W.K., Contr. Boyce Thomson Inst. Pl. Res., 10, 71 (1938).
- 175. Farr, W.K., *Nature*, 146, 153 (1940).
- 176. Kerr, T., Protoplasma, 27, 229 (1936).
- 177. Kerr, T., Text. Res. J., 16, 249 (1946).
- 178. Anderson, D.B., and Kerr, T., *Pl. Physiol.*, 18, 261 (1943).
- 179. Flint, E.A., Biol. Rev. Camb. Phil. Soc., 25, 414 (1950).
- 180. Roelofson, P.A., The Plant Cell Wall, 3, Pt. 4, (Gebrüder Borntraeger, Berlin-Nikolassee, 1959).
- 181. Heiba, A.S., Science, 107, 650 (1948).
- 182. Kassenbeck, P., Annls. scient. text. belg., 4, 176 (1956).
- 183. Clegg, G.G., and Harland, S.C., J. Text. Inst., 14T, 15 (1924).
- 184. Hock, C.W., J. Polym. Sci., 8, 425 (1952).
- 185. Wakeham, H.R.R., and Spicer, N., Text. Res. J., 21, 187 (1951).
- 186. Betrabet, S.M., Pillay, K.P.R, and Iyengar, R.L.N., Text. Res. Juniversity of Moratuwa, Sri Lanka. Electronic Theses & Dissertations
- 187. Osbarne, G. G. W. Lil Texte Resk J., 5, 307 (1935).
- 188. Rollins, M.L., American Cotton Handbook, 3rd ed. (edit. by Hamby, D.S.) (Interscience, N.Y., 1965).
- 189. Dolmetsch, Hans, H., and Dolmetsch, H., Text. Res. J., 39, 568 (1969).
- 190. Bailey, I.W., and Kerr, T., J. Arnold Arbor., 15, 327 (1934).
- 191. Bailey, I.W., Ind. Engng. Chem., 30, 40 (1938).
- 192. Preston, R.D., Molecular Architecture of Plant Cell Walls, (Chapman and Hall, Lond. 1952).
- 193. Hock, C.W., and Harris, M., J. Res. natn. Bur. Stand., 24, 743 (1940).
- 194. Kling, W., and Mahl, H., *Melliand TextBer.*, 32, 131 (1951).
- 195. Rollins, M.L., and Tripp, V.W., Text. Res. J., 24, 345 (1954).
- 196. Tripp, V.W., Moore, A.T., and Rollins, M.L., Text. Res. J., 24, 956 (1954).
- 197. Karrer, E., and Bailey, T.L.W., Jr., Text. Res. J. 8, 381 (1938).

- 198. Guthrie, J.D., Chemistry and Chemical Technology of Cotton, (edit. by Ward, K., Jr.) 1 (Interscience, N.Y., 1955).
- 199. Conrad, C.M., *ibid.*, p. 15.
- 200. Berkley, E.E., Text. Res. J., 9, 355 (1938/39).
- 201. Roelofson, P.A., Biochim. biophys. Acta, 3, 15 (1949).
- 202. Tripp, V.W., Moore, A.T., and Rollins, M.L., *Text. Res. J.*, 24, 956 (1954).
- 203. O'Kelly, J.C., Pl. Physiol., 28, 281 (1953).
- 204. Frey-Wyssling, A., and Stecher, H., Experientia, 7, 420 (1951).
- 205. Roelofson, P.A., Biochim. biophys. Acta., 13, 155 (1954).
- 206. Usmanov, Kh.U., J. Polym. Sci., 23, 831 (1957).
- 207. Ono, Y., J. Soc. Text. Cellul. Ind. Japan, 13, 513 (1957).
- 208. Grant, J.N., de Gruy, I.V., Egle, C.J., Jr., and Hassenbochler, C.B., Jr., Proc. Sixth Cott. Utilization Conf., A.R.S.,

23 (New Orleans, 1966). University of Moratuwa, Sri Lanka.

- 209. Nelson, Melectro Rie Theight & Ottsettilization Res. Conf., (New Orleans Haac 1968).
- 210. Grant, J.N., Egle, C.J., Jr., Mitcham, D., and Powell, R.D., *Text. Res. J.*, 40, 740 (1970).
- 211. Hock, C.W., Ramsey, R.C., and Harris, M., J. Res. natn. Bur. Stand., 26, 93 (1941).
- 212. Meredith, R., J. Text. Inst., 37, T205 (1946).
- 213. Wakeham, H., and Spicer, N., Text. Res. J., 21, 187 (1951).
- 214. El-Hosseiny, F.M., Ph.D. Thesis, Leeds University (1969).
- 215. Pillay, K.P.R., and Shankaranarayana, K.S., *Text. Res. J.*,
 31, 515 (1961).
- Warwicker, J.O., Simmens, S.C., and Hallam, P., Text. Res. J.,
 40, 1051 (1970).
- 217. Meredith, R., Br. J. appl. Phys., 4, 369 (1953).
- 218. Orr, R.S., Burgis, A.W., DeLuca, L.B., and Grant, J.N., Text. Res. J., 31, 302 (1961).
- 219. Frey-Wyssling, A., and Mühlethaler, K., Ultrastructural Plant Cytology, 296 (Elsevier, Amst., 1965).

220. Denham, H.J., J. Text. Inst., 13, T99 (1922). Farr, W.K., and Clark, G.L., Contr. Boyce Thomson Inst. Pl. Res., 221. 4, 273 (1932). 222. Mangenot, G., and Raison, M., Revue Cytol. Cytophysiol. veg., 6, Part 1 (1942). 223. Berkley, E.E., Text. Res. J., 18, 71 (1948). 224. Catlett, M.S., Giuffria, R., Moore, A.T., and Rollins, M.L., Text. Res. J., 21, 880 (1951). 225. Mahl, H., in Studies of Fibrous Structures - Sikorski, J., Fourth Int. Conf. on Electron Microscopy, Berlin, 1958 (Springer Verlag, 1960) Vol. 1, p. 703. 226. Kassenbeck, P., and Hagége, R., *Text. Res. J.*, **38**, 196 (1968). 227. Hagége, R., Kassenbeck, P., Meimoun, D., and Parisot, A., Text.Res. J., 39 1015 (1969). 228. Kassenbeck, P., Text. Res. J., 40, 330 (1970). Millet, MANY Most of Moratuvsaeman Lanka. 229. Ind. Engng. Chem. Electronic Theses & Dissertations www.lib.mrt.ac.lk 230. Nickerson, R.F., and Habrle, J.A., Ind. Eng. Chem. **39**, 1507 (1947).231. Philipp, H.J., Nelson, M.L., and Ziifle, H.M., Text. Res. J., 17, 585 (1947). 232. Meller, A., J. Polym. Sci., 10, 213 (1953). 233. Daruwalla, E.H., Shet, R.T., Text. Res. J., 32, 942 (1962). Morehead, F.F., Text. Res. J., 20, 549 (1950). 234. 235. Nickerson, R.F., and Habrle, J.A., Ind. Eng. Chem., 33, 1022 (1941); 34, 85 (1942); 34, 1480 (1942). Mukherjee, S.M., Sikorski, J., and Woods, H.J., Nature, 236. 167. 821 (1951). 237. Sharples, A., Trans. Faraday Soc., 53, 1003 (1957). 238. Orr, R.S. DeLuca, L.B., Burgis, A.W., and Grant, J.N., Text. *Res. J.*, 29, 144 (1959). 239. Michie, R.I.C., Sharples, A., Walter, A.A., J. Polym. Sci., 51, 85 (1961).

- 240. Nelson, M.L., and Tripp, V.W., J. Polym. Sci., 10, 577 (1953).
- 241. Rănby, B.G., Fine Structure of Cellulose Fibrils, Symp. Fundamental Aspects of Fibres and their Treatment for Papermaking, (Camb. 1957).
- 242. Rowland, S.P., and Roberts, E.J., J. Polym. Sci., 10A, 2447 (1972).
- 243. Mukherjee, S.M., and Woods, H.J., Biochim. biophys. Acta, 10, 499 (1953).
- 244. Mukherjee, S.M., Ph.D. Thesis, University of Leeds (1951).
- 245. Challice, C.E., and Sikorski, J., Br. J. appl. Phys., 8, 1 (1957).
- 246. Johnson, D.J., Fourth European Regional Conf. Electron Microscopy,
 2, 101 (Rome, 1968).
- 247. Heidenreich, R.D., Fundamentals of Transmission Electron Microscopy, 139 (Wiley-Interscience, N.Y., 1964).
- 248. Bayer, E. University of Moratuwa, Sri Lanka. A Statistical Manual for Chemists (Academic Press, Electronic Theses & Dissertations 1971), www.lib.mrt.ac.lk
- 249. Woods, H.J., Recent Advances in the Chemistry of Cellulose and Starch, (edt. by Honeyman, J) (Heywood and Co. Ltd., Lond., 1959).
- 250. Franklin, R., Acta crystallogr., 3, 107 (1950).
- 251. Polanyi, M., Naturwissenschaften, 9, 288 (1921).
- 252. Caulfield, D.F., Text. Res. J., 41, 267 (1971).
- 253. Buchanan, D.R., and Miller, R.L., J. appl. Phys., 37, 4003 (1966).
- 254. Clark, G.L., Ind. Engng. Chem., 22, 474 (1930).
- 255. Sisson, W.A., and Clark, G.L., *ibid.*, analyt. Edn., 5, 296 (1933).
- 256. Warwicker, J.O., J. Polym. Sci., 5A, 2579 (1967).
- 257. Alexander, L.E., X-ray Diffraction Methods in Polymer Science, 264 (Wiley-Interscience, N.Y., 1969).
- 258. DeLuca, L.B., and Orr, R.S., J. Polym. Sci., 54, 457 (1961); 54, 471 (1961).

- 259. Viswanathan, A., and Venkatakrishnan, V., J. appl. Polym. Sci.,
 13, 785 (1969).
- 260. Sen, M.K., and Woods, H.J., *Biochim. biophys. Acta*, 3, 510 (1949).
- 261. de Boer, J.J., Investigation into the Optimal Fibre Properties, Report No. 543046-07E, (Vezelinstituut T.N.O., Delft, 1972).
- 262. Davisson, C., Germer, L.H., *Phys. Rev.*, 30, 705 (1927).
- 263. Thomson, G.P., and Reid, A., Nature, 119, 890 (1927).
- 264. de Broglie, L., *Phil. Mag.*, 47, 446 (1924).
- 265. Andrews, K.W., Dyson, D.J., and Keown, S.R., Interpretation of Electron Diffraction Patterns (Adam Hilger, Ltd., Lond., 1971).
- 266. Vainshtein, B.K., Structure Analysis by Electron Diffraction, (Translated and edit. by Feigl, E., and Spink, J.A.) (Pergamon Press, Lond., 1964).
- 267. Burton, E.F., Sennett, R.S., and Ellis, E.G., Nature, 160, 565 (1947)University of Moratuwa, Sri Lanka.
- 268. (Lond., 1956). mrt.ac.lk
- 269. Susaki, N., Weda, R., and Arai, N., Proc. 4th Int. Conf. Electron Microscopy, 1, 100 (Berlin, 1958).
- 270. Kobayashi, K., Sakaoku, K., Lab. Invest., 14, 1097 (1965).
- 271. Seigel, G., Proc. 7th Int. Congr. Electron Microscopy, 2, 221 (Grenoble, 1970).
- 272. Kiho, H., and Ingram, P., Makromolek, Chem., 118, 45 (1968).
- 273. von Orth, H., and Fischer, E.W., *ibid.*, 88, 188 (1965).
- 274. Dobb, M.G., Unpublished work.
- 275. Heide, H.G., Proc. 5th Int. Congr. Electron Microscopy, 1, A4 (Philadelphia, 1962).
- 276. Dobb, M.G., Ph.D. Thesis, University of Leeds (1963).
- 277. Bradley, D.E., *Techniques for Electron Microscopy* (edit. by Kay, D.H.) (Blackwell Scientific Publications, Oxf., 1965).
- 278. Williams, R.C., and Wyckoff, R.W.G., J. appl. Phys., 15, 712 (1944).

- 279. Hall, C.E., J. biophys. biochem. Cytol., 2, 625 (1956); 7, 613 (1960).
- 280. Walton, C.J., Ph.D. Thesis, University of Leeds, 62 (1972).
- 281. American Society for Testing Materials, Card File No. 3022.
- 282. University of Leeds, ICL 1906A Computer, Prog. Algol OLSDW, PTFM.

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

