REFERENCES

- 1. Lawrence & Dharmagunawardana H.A (1981) The Ground Water Resources of the Vanathavillu Basin. Water Resources Board, Ground water division, Colombo. Sri Lanka.
- 2. Rushton K R & Redshaw S C (1978). Seepage and Ground Water Flow. Wiley Series in Geotechnical Engineering
- 3. Thomas R G (1973). Ground Water Models. Food And Agricultural Organisation of the United States. 1973 Report 21.
- 4. Verruijt A. (1970) Theory of Ground Water Flow.

 Macmillan and Co. Ltd. London.

 University of Moratuwa, Sri Lanka.
- 5. Russel H Brown et al. 1972. Ground Water Management.

 A S C E Manuals and Reports on Engineering Practice

 No 40
- 6. Walton William C. 1970. Ground Water Resource Evaluation.
 Mc Graw Hill Series in Water Resources and Enviorenmental
 . Engineering.
- 7. Ruston K R & Chen Y K (1961). Institution of Civil Engineers Proceedings Part II 1961. June. 281-296.

 A numerical model for pumping test analysis.

LIST OF TABLES

1•	from April 1930 to Feb.1931.	5 7
2.	Transmissivity details around test wells.	58
3.	Aquifer behaviour when the transmissivity is subjected to a variation of ± 10%.	59
4.	Results of single well tests as observed in the field.	60
5•	Results of single well tests as observed on the model.	61
6.	Results of distance drawdown test	62
	University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk	

LIST OF FIGURES

		Pag
1.	A part map of Sri Lanka indicating the study area.	62
2.	Generalised geological section across Vanathavillu basin.	63
3.	Ground contour map of Vanathavillu area.	64
4.	Location of test wells for piezometric heights.	65
5 (a)	Piezometric contours.	66
5(b)	.Piezometric contours given in the report by Lawrence and Dharmagunawardana.	67
6.	Location of test wells for establishing transmissivity contours.	68
7•	Transmissivity contours.	69
8.	Position of existing abstraction wells.	70
9•	Main recharge area of Vanathavillu basin. University of Moratuwa, Sri Lanka.	71
10.	Internodal resistorovalues for & the sterationial,	72
11.	Nodal potentials Worth that afret trial.	73
12.	Recharge and abstraction distribution in	74
	first trial.	: .
13.	Resistor value distribution for third trial.	75
14.	Abstraction distribution in third trial.	76
15.	Recharge distribution in third trial.	77
16.	Abstraction distribution for final trial.	78
17.	Resistor value distribution for final trial.	79
18.	Details of 1-D model test (first attempt).	80
19.	Details of 1-D model test (second attempt).	81
20.	Nodal potentials over the model.	82
21.	Recharge distribution over the model.	83
22.	Recharge distribution when transmissivity	84
	increased by 10%.	

23. Rec;

23. Abstraction distribution when transmis ivity increased by 10%.	85
24. Recharge distribution when transmissivity reduced by 10%.	86
25. Abstraction distribution when transmissivity reduced by 10%.	87
26(a).Location of well site for V1-1 test.	88
26(b).V1-1 well site.	89
27. V1-1 Test; Drawdown curve of pumping well.	90
28. V1-1 Test; Drawdown curve of observation well.	91
29. Step test at V1-1 well.	92
30(a).Position of well site for V1 test.	93
30(b).Exaggerated mesh with 100m nodal intervals.	94
31. Exaggerated mesh with 10m nodal intervals.	95
32. Position of test wells formsingle well Lests.	96
33. Distance drawdoomrourochese hese Disservations direction. www.lib.mrt.ac.lk	97
34. Distance drawdown curves in the N.E-s.W direction.	98
35. Potential drop around pumping well for a well discharge of 1728 m ³ /d.	99
36. Potential drop around pumping well for a well discharge of 1152 m ³ /d.	100
37. Potential distribution over the model when recharge reduced by 10%.	101
38. Potential distribution over the model when recharge reduced by 20%.	102
39. Potential distribution over the model when recharge is increased by 10%.	. 103
40. Nodal potential drops for increase of abstraction by 25%.	104
41. Nodal potential drops for increase of abstraction by 50%.	105