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Appendix 1 

PARAMETERS OF THE TWO AREA POWER SYSTEM INVESTIGATED 

( M I Parameters of the thermal system 

Nominal frequency = 50 Hz 

Rated power of each area P , P = 2000 MW r ri' r 2 

f Nominal load of each area = 1000 MW 

Tie line synchronising coefficient T12 = 0.25 pu 

Equivalent load frequency droop R =2.0 Hz/puMW 

Steam governor-turbine data: 

Governor actuator time constant T_ = 0.1 s 

Turbine time constant T̂ , = 0.5 s 

(b) Parameters of the mixed hydro-thermal system 

Percentage of regulating hydro units = 20% 

Percentage of regulating thermal units = 80% 

Hydro governor-turbine data: 

Governor actuator time constants: _ .„ 
Ti = 40 s 
T 2 = 0.513 s 
T R = 5.0 s 

Penstock time constant T = 1.0 s 
w 

Rest of the data are as in (a) above 
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Appendix 2 

where, 

1 + ai q + +a q 
n 

-n 

1 -m and B = b o + b i q + + b q 
m 

The coefficients of A and B are the unknown parameters to be estim

ated. Equation (A2.1) can be expressed in difference equation form as: 

y(t) = -a i y(t-l) -a 2y(t-2) -a n y(t - n) 

+ b0u(t - k) + biu(t - k-l)+ +b uft - k - m) 
m 

where, (A2.2) 

y(t) , y(t - 1), y(t - n) , u(t - k), u(t - k - 1) u(t - k - m) 

are known output and input data. 

and a 1 } a 2, ... a^, bo, bi, ,b are unknown model parameters 

to be estimated. 

Let the number of unknown parameters to be N 

IDENTIFICATION OF THE PARAMETERS OF THE MODEL 
USING LEAST SQUARES ESTIMATION 

The least squares estimation for identification of model parameters 

will be discussed and a recursive least squares estimation for on line 

parameter estimation will be derived. 

A2.1 Least Squares Estimation 

Consider the system model given by equation (A2.1) 

y(t) = q"k I u(t) (A2.1) 
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r.<Miat.i.on (A2.2) can be written for N sampling instances to obtain 
t i f roilowing equations. 

v(t-N+l) = -ai y(t-N) - - a n y(t-N+l-n) + b 0 u(t-N+l-k) + 

+ b u(t-N+l-k-m) m 

y(t-l) •ai y(t-2) - a n y(t-l-n) + b 0 u (t-l-k) + 

(t) = -ai y(t-l) 

+ b u(t-l-k-m) m 

i - a n y(t-n) + b 0 u(t-k) + 

+ b u(t-k-m) m 
(A2.3) 

The set of equations (A2.3) represent a set of N simultaneous linear 

equations with N unknowns, which can be solved to find the N unknown 

model parameters provided the N equations are independent. 

Equation (A2.3) can be written in matrix form as: 

x e (A2.4) 

where Y is a vector consisting of the output data 

i.e. Y (yCt-N+1), y ( t-N+2), y ( t - l ) , y ( t ) ) (A2.5) 

6 is the unknown parameter vector given by 

_9 = ( -ai, -a2> .... -a , bo, bi, b )' 

= C e.!, e 2 , 

and X is a (N,N) matrix consisting of past input-output data values: 
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y(t-N) ,y(t-N+l-n) u(t-n+l-k) u(t-N+l-k-m) 

y C t - 2 ) 

y(t-l) 

y(t-l-n) u(t-l-k) 

y(t-n) u(tlk) 

u(t-l-k-m) 

u(t-k-m) 
(A2.6) 

N^w, defining estimated parameters vector 0 as: 

( - a i , - a 2 , 

C 6!, e 2 , 

A A 

-an, b 0, bi, 

where, 

.b ) 
m 

'i, 6 2, are the estimated values of 

0i and 0 2 respectively. 

Y can be expressed as: 

X 0 + e (A2.7) 

where e = (ei, e 2, .... e ) is the estimation error vector 

and ei, e 2 e^ are the estimation errors of 

y(t-N+l), y(t-N+2), ....... y(t) respectively. 

The best estimate for 8 is obtained when the scalar product S given 
T 

by S = e_ e_ is minimum. 

Since e = Y - X 0 , S can be expressed as: 

S = • [Y - X 6 ] [ Y - X 0 ] 

ds 

(A2.8) 

The minimum of S is obtained when — is zero. 
d0 
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i.e. 

i-i = [Y - X 0_]T X - X T [Y - X 9J 
de 

2X T [Y - X e ] 

= 0 

Hence, the best 6 is given by 

Y - X0_ = 0 

i.e. X9_ = Y 

X T X9_ = X TY 

or 0 = [XT X ] " 1 X T Y (A2.9) 

Substitution of Y = X0 in equation (A2.9) gives: 

T - i T [X X] [X X] 

Therefore, 9 = 9 and correct estimates are obtained. 

Also since Y = X_9 

and Y = X 9 + e_ 

e is given by e = X9_-X9_ 

Hence, for 9_ = 9, e_ = 0. 

A2.2 Recursive least squares algorithm 

Consider the equations available at present time t when data 

samples have been collected over N+1 sample periods: 

* 
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y(t-N) = -ai y(t-N-l) -a iy(t-N-n) + b 0 u(t-N-k) + 
i ; 
>• + b u(t-N-k-m) 

1 m 

y(t-l) = -ai y (t-2) -a i y(t-l-n) + b 0 u(t-l-k) + 

+ b u(t-l-k-m) m 

y(t) •at y (t-1) -a , y(t-n) + bo u(t-k) + 

+ b u(t-k-m) m 

I., matrix form this can be expressed as: 

(A2.10) 

Equation (A2.10) can be written in partitioned form as: 

It Y x -t-1 
= 

t-i 

y(t) T 
it 

-t 

where Y t _ 1 = [y(t-N), y(t-2), y(t-l)] 

x t
T = [y(t-l), y(t-n), u(t-k), ...u(t-k-m)] 

According to equation (A2.9), the best estimate 9_ is given by: 

_ 1 

it - ' x t T V [ x t ] i t 

i ; -t x t-i 

T 

IXt-I 1 it 1 It-1 

y(t) 
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l 

T T IT 
1 + a [A A] a 

and letting 

pt-i=[*t-i v / ' t A 2 - 1 2 ) 

and d t _ j = 1 * P t . j x t CA2.13) 

Equation (A2 . l l ) s impl i f ies to: 
T 

6 t - [ P ^ - V L ; * L t ? t ' 1 ] t C i i t - i + ^ t y c o ] 
dt-i 

= P t_! C l It-1 +

V l £ t f dt - l ^ « " xj P t - 1 (Xt
T_x Y t _ i 

d t - l 
+ x t y ( t ) ) ] 

T P x 
Pt-1 Xt-1 It-1 + 1 - 1 - t [(1 + x J P t j £ t ) y(t) 

dt-l 

" x j P t_! (Xj, Y t_ 1 + x ty(t)) 

T Pt-1 —t T T = Pt-1 Xt-1 It-1 + ^ C t ) - x t P t - 1 X t_ x Y ^ ] 
dt-l 

(A2.14) 

According to equation (A2.9) §_ t_ 1
 1 S given by: 

T -.-1 T 
-t-1 = [Xt-l X t - 1 ] X t-1 It-1 

T 
Pt-1 Xt-1 It-1 

(A2.ll) 

Now, using the matrix identity given by: 

[A TA + a a T ] = [AT A] - [AT A] a a T [AT A] 

http://A2.ll
http://A2.ll
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"!' . .'.\ :c, equation (A2.14) can be expressed as: 
j ; 

^ A P x 
It = It-1 +

 t - 1 ~ l [y(t) - x j 9 t 1 ] (A2.15) 
dt-l 

A 

Since x.t 9_ is the predicted value of y(t) based on the old estimates 

6̂  j , the difference y(t) - _6_ ^ represents the prediction error 

at time t. 
P x 

G a t-1 -t . r ^ 
— = is a (n x 1) vector. 

dt-l 

Honce equation (A2.15) can be expressed as 

_0_t = ' 0_ + G . (Prediction error) (A2.16) 

*. 1 •' _ i 
Since P t = [X/ X t]' = [ X ^ X ^ + x t x / ] 

Pt = Pt-1 " Vl it ±t Pt-1 
dt-l 

i.e. P t = P t_ x - G . x / . P t_j (A2.17) 

Equations (A2.16) and (A2.17) provide a recursive algorithm for on line 

p^p^ter estimation. The matrix inversion involved in the definition 
- I 

P. . = [X ^, X ] is avoided as P is evaluated in a recursive 
u-l t — I t t 

manner using equation (A2.17). 
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Appendix 3 

Consider a model given by: 

y ( t ) = q~ k r u ( t ) + £ S CO (A3.1) 

and an auxiliary output (J) defined as: 

<Kt+k) A P y(t+k) + 0 u(t) - R w(t) (A3.2) 

where, P, Q, R are weighting polynomials in 

q 1 and w is the set point. 

The control objective is to minimise: 

I = E {(J>2 (t+k)} (A3.3) 

i.e. I = E { [ P y ( t + k ) + Q u(t) - R w(t)] 2} (A3.4) 

v(t+ki in equation (A3.4) can be expressed in terms of u(t) and £ (t+k) 

using equation (A3.1) and the cost function I can be rewritten as: 

PR pr ^ 
I = E {[ ( ̂  + Q) u ( t ) - R w(t) + K (t+k)] } (A3.5) 

Now, expressing PC/A in the form: 

X ' F + Q A 

PC 

the last term in equation (A3.5), i.e. — ^ (t+k), can be expressed in 

terms of future values, and present and past values of the random disturbance. 

Generalised Minimum Variance Control Law 

A suitable control u(t), which minimises a general cost function 

will be derived. 
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i . e . 

^ £ (t+k) = F £ (t+k) + | C (t) (A3.6) 

Since, F is of order k-1 the term F £ (t+k) involves only future values 

of the random disturbance. 

PC 
Now, substituting for K (t+k) in equation (A3.5): 

I = E {[ ( ™ + Q) u(t) - R w(t) + F£ (t+k) + | £ ft)]'} (A3.7) 

The present and past values of the random disturbance can be calculated 

from the knowledge of A, B, C, k and the present and past values of u and 

y using equation (A3.1) as follows: 

K (t) = £ y(t) - q~k I u(t) 
then, the cost function I in equation (A3.7) modifies to: 

I = E {[ ( ̂  +0) u(t) - R w(t) + F? (t) + j (£ y(t) - q"k | u(t))]'} 

R PC k r c ^ 
= E {[ ( £ ( ^ -q" K ^ ) + Q) u(t) + £ y(t) - R w(t) +F £ (t+k)] } 

1 2 

= E {[ i (H u(t) + G y(t) + E w(t)) + F E, (t+k)] } (A3.8) 

where, 

H = BF + QC (A3.9) 

and E = - RC - (A3.10) 

Expanding equation (A3.8) results in: 

I = E {[ ̂  (Hu(t) + G y(t) + E w(t))] 2 + ^ (Hu(t) + Gy(t) + 

Ew(t)) K (t+k) + [F£ (t+k)]'} 

(A3.11) 
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S.i 'ice the disturbance £ (t) is a random uncorrelated zero-mean sequence, 

the expected value of the middle term will be zero. This is because 

FC (t+k) only involves future values of £(t) which are uncorrelated with 

the present and past values of input, output and reference. 

Hence, 

I = E {[ ̂  (Hu(t) + G y(t) + E w(t))]' + [F £ (t+k)] } 

and for minimum I; 

91 

then. 

3u(t) 

3 T ? H 

| ^ r y E { -f (H u(t) + G y(t) + E w(t))} 

i.e., the control law which minimises the variance of <f>(t+k) is given 

by: 

H u(t) + G y(t) + E w(t) = 0 

a 
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Appendix 4 

AN ALGORITHM TO SOLVE AH + q"1 BG = CT 

The solution algorithm is (considered in the following three steps: 

. 1 
1) Transform the equation AH + q BG = CT into the form 

My = _v by equating the coefficients of the equal powers 
_ l 

of q ; 
i 

2) Perform row operations to diagonalise the matrix M ; 

?) Compute y by solving the equations obtained from (2) above, 

Step 1 : form M and v 

Let the orders of the polynomials A, B, C and T to be n^, n^, n̂ , 

and n̂ , respectively. 

Then, from equation (4.63) the orders of the polynomials G and H, 

i.e. n„ and n„, are given by: b n 

n G = "A " 1 

n H = n B 

! (ho is fixed to unity) 

Hence, the total number of unknowns is equal to n„ + n„ + 1 ; i.e, 
G H 

the total number of equations n ^ is given by: 

nEQ = n G + n H + 1 

From equation (4.64) the matrix M is given by: 
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bo 

bi bo 

! . bi b 0 

i " 

M nB 
n B 

1 

bo 

n , 

ai 

a 2 

M is formed as follows: 

(a) set all the elements of M to zero. 

nr.. = 0 , for j = 1, n ^ and i = 1, n £ Q (A4.1) 

(b) form the first columns, 

i ^ column is given by: 

mi +j-l,i = bj-l ' ^ = l > n B + 1 (A4-2^ 

(c) form the rest of the columns. 

In n^ + i ^ column, the first i-1 elements are zero, 

element is 1.0 and i+1 th to i+n elements are 

ai, a 2 a respectively. 

Thus, n^+ 1 th. column is given by: 

m. . = 1.0. (A4.3) l, i+n A 

ai 1 
a 2 ai 

a 2 
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m_ 

m 

m 

(c) Row operations to set the elements below the diagonal 

of the columns n. + 1 to n„_ to zero. 
A EO 

number of elements below the diagonal elements m. . is 
i» 1 

given by: I = n C A - i 

let R, = m. . . / m. . k i+k,j I , I (A4.9) 

th .th Now, R, time i row is subtracted from the k+i row, 

for k = 1, I and for i = n A + 1, n ^ - 1 

Thus, 

m., . = m., . - m . . R, l+k, j l+k, j i,j k (A4.10) 

V i + k = v i+k V. R. for k=l, I ; l k ' ' 

j = 1, n E Q ; i = n k + l , n E Q-l (A4.ll) 

Step 3: Computation of G and H parameters 

Compute y. for j = n ^ , - 1, , 1 

t 

http://A4.ll
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m. . = -a., for j = 1, n. (A4.4) 
i+j, l+n J A 

ncd as follows: 

i t b element of v is given by: 

n c 
v. = - a . + c. + t + I c k t k (A4.5) 

k=l 

with t. , = 0 for i-k > n T and for i - k < 0 
1 - K 1 

t. , = 1 for i-k = 0 i-k 

a. = 0 for i > n. ; c. = 0 for i > n l A I c 

Step 2: Diagonalise the matrix M 

(a) Compute the ratio 6^ from: 

6i = bi / bi-l ' for i = 1, n B (A4.6) 

(b) Row operations to set the elements below the diagonal 

of the first n. columns to zero. 
A 

th th subtract 6, times i row from j row for i = 1. n, and k J ' A 

j = i+l, i+n^-l. where, k=i-j 

thus, 

m. 

Now the equation takes the form: 
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(a) for j = n EO 

v. = v./m. . 
3 i 3 3 

(A4.12) 

(b) for n. < j < n EQ 

"EQ" 1 

k=l 
m. . . y. . ] / m. . (A4.13) 3, l+k MJ+k J j,j 

(c) .for j < n 

EQ 
y. = [v. - Z m. . . . y. . ] / m.. (A4.14) 
3 3 k-n -i 3 » J + k J + k 13 

A 


