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ABSTRACT: Prestressed concrete is one of the most difficult building
materials to design due to many reasons such as number of different solutions
available for the same problem and the time dependent changes that take place.
When used for continuous box girder bridges, there are added problems associated
with secondary moments. In this paper, a straight forward design method has been
presented that localises the iterations involved in the design process as much as
possible so that the calculations involved can be minimised. The guidelines to
determine the cross sectional dimensions has also been discussed. A complete
design example has been presented for a three span continuous bridge. A simple
method for modelling a box girder as a grillage of beams also has been presented.
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INTRODUCTION

Box girder bridges are often used in the span range of 30 to 200 m. They are quite
popular due to inherent torsional rigidity that gives very good load sharing characteristics.
The box girder consists of single or multiple cells with cantilever overhangs on either side
at the top flange. Since these structures are generally constructed as continuous over the
supports, the design process becomes a complicated task. This is especially true with
prestressed concrete box girders due to the. secondary moments induced due to
prestressing effects.

The secondary moments are induced because there is a tendency for the continuous
prestressed bridge to lift up at the supports which is prevented by the bearings. This
uplift and as a consequence, the secondary moments depend on the prestressing forces
applied and the tendon profile selected. In the normal design process for prestressed
concrete, the prestressing forces and the tendon profile is selected on the basis of the
bending moment envelope due to loads. However, for continuous bridges, the secondary
moments alter the bending moment envelope, but these secondary moments are not
known until the tendon profile and the prestressing forces are known. This leads to an
iterative process which could be quite cumbersome since the amount of calculations
involved is large.

A design method has been developed by Jayasinghe (1992) that minimises the amount of
iteration and also allows the designer full control of the structural design process. In this
method, the analysis was carried out by considering that the bridge can be modelled as a
continuous beam. In this paper, it is shown that the same method can be extended to the
grillage analysis thus allowing the designer to use grillage analysis for the structural
design process. The main advantages of this method include the ability of the design
engineer to select the secondary moments at the beginning of the design process and to
achieve exactly those assumed without going through an iterative process, ability of the
design engineer to optimise the section dimensions by altering the secondary moments
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appropriately, and the section of a prestressing force which is close to minimum
throughout the length of the bridge thus achieving savings in cost. The tendon profile and
the prestressing forces so selected can be further validated using a detailed design taking
all the effects into account.

SELECTION OF CROSS SECTIONAL DIMENSIONS

The cross section of a box girder can: be idealised as shown in Figure 1 for the
preliminary design. The important parameters can be selected as given below.

Overall Depth of the Section

This is determined by the design engineer in general. It may be specified in the client’s
brief or it may be governed by vertical alignment considerations. If it is not given, the
designer is free to select a reasonable value for the span/depth ratio; values between 14
and 25 are typical. It has been stated by Gee (1987) that it is economical to use larger
depths and a reduced prestress if it is allowable. Greater depths allow a reduction of the
bottom flange area, but carry the penalty of increased weight due to increased depth of
web, which may outweigh the benefit from the improved flexural behaviour. The most
economical solution can be obtained by using few alternative designs, that can easily be
achieved with the design method described in this paper.

The Width of the Top Flange

When the top flange is used for the roadway in highway structures, the width is controlled
by the number of traffic lanes, cycle lanes etc. Hence, the selection of top flange width
can be easily selected by the design engineer.

The Web Spacing

The web spacing is governed by local bending of the top slab. Increasing the web spacing
increases the thickness required for the top slab, but reduces the number of webs. Thus,
there is a trade-off between additional material in the top slab and in the webs. However,
extra material in the flanges contribute to global bending resistance and stiffness, whereas
the extra web material simply add to the weight. The practical maximum web spacing for
a reinforced concrete top slab is about 6.0 m and for a prestressed concrete top slab is
about 7.5 m.

The Cantilever Overhang
In box girder bridges, cantilever overhangs are used which is a convenient way of
minimising the number of webs while achieving the required width for the top flange.

Generally the length of the cantilever overhang is kept around 0.5 times the spacing
between the webs.
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The Thickness of the Webs

The primary purpose of the webs is to resist the shear stresses due to torsional moments
and shear forces. However, for constructable thicknesses of the webs, adequate shear
resistance can be obtained by adding shear reinforcement, except possibly near the
supports, when it becomes economic to increase the thickness of the webs locally. Thick
webs carry a double penalty (Gee, 1987), since they add not only to the dead weight
without resisting additional resistance, but also the area that has to be prestressed. Thus,
the most logical criterion for selecting web thicknesses becomes one of constructability.
The following guidelines have been suggested by Podolny & Muller (1982).

Table 1: Web Thicknesses Required Depending on the Type of Ducts

Type of ducts Web thickness (m)
No prestressing ducts in webs 0.200
Small ducts for vertical prestressing 0.250
Ducts for the prestressing cables 0.300
Anchors for the prestressing cables 0.350

The Thickness of the Top Flange

The top flange thickness is generally governed by local bending considerations and the
form of construction. The thicknesses for the top flange have been obtained from the
survey by Swann (1972), where the thickness depends on the clear spacing between webs.
Once these thicknesses are adopted, the top flange area would be large enough to meet the
area required by the global bending criteria. 5

Table 2: Minimum Thicknesses Required for the Top Flange

Clear spacing between webs Thickness for transversely Thickness for transversely
(m) reinforced web (m) prestressed web (m)
up to 3.00 0.250 0.200
3.00 - 4.50 0.300 0.225
4.50 - 6.00 0.350 0.275
6.00 - 7.50 - 0.300

The Width of the Bottom Flange

The designer turns out to have surprisingly little control over the bottom flange width. It
depends on the cantilever overhang, inclination and number of webs, the clear spacing
between webs and the thickness of webs. At this stage of the design process, the only
decision that the designer needs to make is the inclination of the webs, which may be
governed by the aesthetic considerations.
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The Thickness of the Bottom Flange

In prismatic box girder bridges, the bottom flange provides the compressive resistance
over the supports. Away from the supports, the function of the bottom flange is primarily
non structural such as supporting the services etc. Therefore, it is advantageous to
minimise the thickness of the bottom flange as much as possible. The minimum
constructable thickness of the bottom flange is 125 mm, but this minimum value is not
adopted due to difficulties of preventing cracks caused by horizontal shear. The
recommended minimum thickness is 175 mm. However, this must be checked with the
thickness required over the supports.

OPTIMISATION OF SECTION DIMENSIONS

In box girder bridges, it is useful to minimise the cross sectional area, thus minimising the
dead load moments. The top flange dimensions are generally governed by the flexural
behaviour in the transverse direction. These dimensions will generally be much larger
than the dimensions required for longitudinal flexural behaviour and hence minimum
should be selected by considering the transverse behaviour. The dimensions and number
of webs must be minimised, since the shear is critical only close to the supports.
However, the minimum thickness of webs is generally governed by the constructability
hence cannot be minimised beyond that can be constructed. The bottom flange width
depends on the inclination of webs, which may depend on aesthetics and ease of
construction.

The thickness of the bottom flange is governed by the flexural behaviour in the
longitudinal direction. In prismatic box girder bridges, the thickness of bottom flange
over the support is governed by the hogging moments induced there. It is possible to
change the magnitude of the hogging moments by using the secondary moments since
they are generally of sagging nature. The advantage is that it is possible to use the
minimum serviceable thickness of 175 mm by selecting an appropriate set of secondary
moments thus minimising the moment due to dead load.

USE OF SECONDARY MOMENTS TO MINIMISE THE BOTTOM FLANGE
THICKNESS

This can be achieved in the following manner:

1. Select the section dimensions using the guide lines given in Section 2.

2. Determine the dead load bending moment envelope. The dead load moments will
form an envelope due to this reason. In continuous bridges, it is not possible to carry
out the construction in one step. A large number of different construction techniques
such as span by span, incremental launching, segmental construction with balance
cantilever etc have often been used. Span by span construction is quite common for
medium scale bridges where the prismatic box girders are used. In this method, one
span and about 5 m length of the next span are constructed in one operation. The
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difference in moments between as built and monolithic construction are called the
trapped moments. Once the bridge is constructed this way, the creep and shrinkage of
concrete will gradually relieve the trapped moments thus a long time after the
construction, the magnitude of trapped moments can be reduced to about 20-25% of
the original trapped moments (Neville et al., 1983). This can be clearly seen with the
detailed analysis carried out for Kylesku bridge in Edinburgh, United Kingdom
(Nissen et al., 1985). When this effect is taken into account, there will be a bending
moment envelope for the dead loads as well.

3. Determine the bending moments due to imposed and other loads and produce the
bending moment envelope.

4. Select a suitable magnitude for the secondary moment at each support and alter the
origin of the bending moment envelope. The magnitude of the secondary moments
can be any value between 0% and about 70% of the as built dead load bending
moment values since secondary moments are generally used to counteract the
permanent loads.

5. Draw Magnel diagrams at each support section and check whether the feasible region
is sufficient to have the tendons installed. If insufficient, increase the secondary
moments further. If this cannot give a suitable feasible region, the bottom flange
thickness selected may be too thin, thus would have to be increased.

The dimensions used for a prismatic prestressed concrete box girders can be optimised
using this simple technique.

SELECTION OF THE CABLE PROFILE

Once the secondary moments are selected over the supports, the design engineer has to
select a cable profile that will generate exactly the same as those assumed. This is not a
trivial task and usually the design engineer may resort to iterative process. A design
technique is presented that will almost eliminate the need for iterations. This is a
combination of two design techniques available for the design of continuous bridges.

Line of Thrust Design

In line of thrust design, the secondary moments are treated as prestressing effects. This
means that the secondary moments are unknown until the cable forces and profile are
found. Therefore, secondary moments are not directly considered in the design. There
are a number of stress conditions which need to be satisfied by the cable forces and
eccentricities. If the horizontal component of the cable force is P, the area of concrete is
A., the section modulus is Z, the permissible stress of concrete is compression is fc, and
the permissible stress of concrete in tension is f,, then the stress conditions can all be
presented in the following form using the bounds on the line of thrust, ep.

f. <-P/IA.-Pey/Z+M/Z <f,
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This equation can be rearranged to give the bounds of e,. Since there are two bounds at
each cross section, it can form a line of thrust zone when the full length of the beam is
considered. The designer has to find a profile which not only fits within the bounds of
the line of thrust zone throughout the length of the beam, but is also concordant, which
means that this profile does not generate any secondary moments. Then, this profile can
be linearly transformed to fit within the bounds imposed by the concrete cover required
for prestressing cables. The designer may have to resort to trial and error process if he
finds that linearly transformed profile does not satisfy the physical bounds imposed by the
concrete cover at all locations along the beam.

Actual Cable Profile Design

In actual cable profile design, the secondary moments (M) are assumed initially and
treated as loads. Therefore, they appear in the eccentricity equation, which is now written
in the terms of the actual cable profile.

“ZIA; - fc ZIP + M+M)/P 2 &5 2 -Z/A, - f; Z/P + (M+M,)/P

Since there are two bounds at each cross section, this will result in a cable profile zone.
A cable profile has to be found which not only satisfies the limits set on e, but also
causes the assumed values of the secondary moments. In this method too, the designer
has to resort to iteration when he finds that the cable profile selected does not generate the
assumed secondary moments.

Proposed Design Method

The design method proposed to find the cable profile combines both these methods. The
steps involved are as follows:

1. Find the cable profile zone using the Magnel diagram so that there is sufficient space
to fit the prestressing cables at the critical sections, primarily over the supports and at
the mid span sections. For this purpose, a set of prestressing forces also have to be
selected, which can be done as explained in Section 5.4. Generally at critical
sections, the bounds on the cable profile will not be governed by e, but by the
physical limits imposed by the cover requirements.

2. Transform this cable profile with the actual limits (either e; or physical limits due to
cover) using the relationship which exist between the cable profile and the line of
thrust, which is given by es - ep = My/P. Since the secondary moments and
prestressing forces have already been selected to determine the cross section, this
transformation is possible.

3. Fit a concordant profile into the line of thrust zone, which means this profile does not
generate any secondary moments. For the existence of a concordant profile, certain
conditions should be satisfied by the upper and lower bounds of the line of thrust zone
as explained in Section 5.4. The concordant profile can easily be found by fitting a
bending moment diagram that correspond to some notional loads applied to the box
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girder beam, since any bending moment diagram representing zero deflections at
supports can be scaled down to form a concordant profile.

4. Transform the concordant profile back to the cable profile zone by using the assumed
secondary moments and the prestressing forces selected. The resulting cable profile
will generate secondary moments which are exactly the same as those assumed, thus
eliminating the need for any iterations.

Selection of Cable Forces

The selection of the cable forces for a determinate prestressed concrete beam is straight
forward task because the cable forces can be found directly from the Magnel diagram.
However, this is not the case with continuous beams due to the existence of secondary
moments. The cable force is additionally constrained because it has to ensure that the
assumed secondary moment distribution is obtainable.

When the cable forces are selected, it is possible to obtain the bounds of cable profile
zone and then transform those linearly to obtain the bounds of line of thrust zone. There
is a unique criterion for the existence of a concordant profile within the line of thrust zone
(Burgoyne, 1987 a). That is if a cable is fitted along the upper boundaries of the line of
thrust zone, it should generate hogging secondary moments. If a cable is fitted along the
lower boundaries of the line of thrust zone, it should generate sagging secondary
moments. Then only a profile can exist that will generate zero secondary moments, thus
concordant. Therefore, the designer can determine whether the magnitude of prestressing
forces selected are sufficient by determining the magnitude of secondary moments with
profiles fitted along the upper and lower boundaries of the line of thrust zone before
trying to fit a scaled down bending moment diagram. If a concordant profile is not
available, the designer will never fit a bending moment diagram within the line of thrust
zone.

The condition for the existence of a line of thrust (a concordant profile) can be presented
as follows. When a cable profile and the prestressing forces are known, it is possible to
find the secondary moments by using the generalised Clark Maxwell’s theorem or
principle of virtual work (Burgoyne, 1987a). The main advantage is that the analysis can
be performed symbolically. The associated equations are given in Appendix A. If the
cable is concordant, the reactant moment at each support is zero. It is both a necessary
and sufficient condition for this that the terms in the right hand side of Eq. A.3 are all
separately zero. Thus a cable profile is concordant if:

Iﬁ—'lz—fﬂ =0 for all i.

It is shown by Jayasinghe (1992) that it is more effective to increase the prestressing
forces over the support regions than increasing them in the span regions for the existence
of a concordant profile when different cable forces are used over the supports and span
regions. This is because, the function B is close to 1.0 over the supports whereas it is a
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much lower value in the span regions. Therefore, the following strategy can be adopted
for the selection of prestressing forces.

1. Select a minimum prestressing force in the span regions so that there is sufficient
feasible region to fit the prestressing cable. For this purpose, the Magnel diagram
should be drawn using the moments resulting from loading and secondary moments,
thus M + M,.

2. Select a suitable force over the support regions, but this can be larger than the
minimum required. Select the relevant cable profile and then transform it to form the
line of thrust zone. Check whether a concordant profile exist within this zone by
calculating the secondary moments over the supports with the cable fitted at upper
and lower boundaries of the line of thrust zone. This is further explained in the
design example. If not, increase the prestressing force over the support further. This
check will ensure if there is any iteration in the design process, it is only localized.

3. Select a concordant profile using a set of notional loads. Even this can be automated
as described by Burgoyne (1987b) and Jayasinghe (1992).

USE OF GRILLAGE METHOD FOR ANALYSIS OF BOX GIRDERS
Grillage analogy is extensively used for the analysis of bridges due to reasons such as:

a. the grillage analogy can be used even in cases where the bridge exhibits complicated
features like heavy skew, edge stiffening, deep haunches over supports, etc.

b. the representation of a bridge as a grillage ideally suited to carryout the necessary
calculations associated with analysis and design on a digital computer,

c. the grillage representation is conducive to give the designer a feel for the structural
behaviour of the bridge and the manner in which bridge loading is distributed and
eventually taken to the supports.

In cellular bridges, longitudinal grillage beams are usually placed coincident with webs of
the actual structure. The transverse medium, which consists of both the top and bottom
flanges, is represented by equally spaced transverse grillage beams. The properties of the
longitudinal beams are calculated by considering I sections as shown in Figure 2.

The structural action of the transverse medium of a cellular structure can be explained
using Figure 3a, which shows the transverse slice of the structure being subjected to a
vertical load at one end and an equlibrating moment at the other. If the plane sections
remain plane thus there is negligible shear deformation, the transverse slice will deform
as shown in Figure 3.b. However in cellular structures without frequent transverse
diaphragms, the flanges and webs do flex significantly about their individual axes and
this causes the cross section to distort as shown in Figure 3.c. Plane sections do not
remain plane and the flexibility of the slices increases. The increase in flexibility cannot
be accounted for by reducing the flexural rigidity of the equivalent beam because the
additional deflections of the slice respond to shear in the slice rather than moments.
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In the grillage analogy, this deformations of the cells in transverse direction can be taken
into account by assigning an equivalent shear area for the transverse beams. The
equivalent area can be found by using the Equation 1 (Jaeger & Bakht, 1982).

e L 5. X[ BOE Y EEL Y ELE) } Eq. 1

P, G, "|4PLL, +4PLL, +12H’LL, + P'I;
The following notations have been used:

Lx = distance between transverse grillage members

Py = distance between webs

I; = second moment of area of top flange per unit length in longitudinal direction

I, = second moment of area of bottom flange per unit length in longitudinal direction
I3 = second moment of area of a web per unit length in longitudinal direction

H = height of the section as shown in Figure 4.

The second moment of area of the transverse members, Iy, can be found by using
Equation 2 where the notations are as given in Figure 4.

1, = Lt +1,k}) Eq.2

The torsional inertia in the longitudinal direction, Jy, can be found by using Equation 3
where the notations are given in Figure 5.a.

Al
d
b§n—;

The torsional inertia in the transverse direction, Jy, can be found by using Equation 4
where the notations are given in Figure 5.b.

I=L Eq.3

2 2
J, =L, A;s Eq. 4
nt
DESIGN EXAMPLE

In order to illustrate the design method a complete design example has been presented.
The box girder bridge consist of three spans of 30m, 40 m and 30 m. This bridge will
carry a two lane highway of lane width 3.0 m, also having two cycle paths of width 1.5 m
each on either side and two walkways of width 1.0 m on either side. Thus the total top
flange width is 11.0 m. The webs are selected at a spacing of 5.5 m, thus the overhang is
2.75 m. The thickness of the top flange selected is 0.35 m in average. The thickness of
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the webs selected is 0.35 m. The depth of the bridge is selected as 2.0 m thus giving a
rather shallow bridge with span/depth ratio of 20 for the mid span. The average thickness
of the bottom flange is selected as 0.175 m. It is also assumed that the large diameter
cable used will necessitate the centroid of the cable to be at least 150 mm away from the
top and bottom fibres. A cross section of the selected section is given in Figure 6.

This bridge is analysed for HA loading and 30 units of HB loading as given in BS 5400/2
using the grillage analogy. The grillage consists of two longitudinal beams, each
representing a web and the two flanges connected to it. The transverse beams are
arranged at 5.0 m spacing. The diaphragms over the supports are ignored since those are
likely to have large openings for service runs and inspection purposes. The section
properties used for each grillage member for the analysis are given in Table 3.

Table 2: Section Properties Used for the Analysis

Longitudinal transvers
Area (m’) 2.922 0.0052
Second moment of area (m®) 1.41 1.754
Torsional inertia (m*) 0.741 0.508

The concrete used for the analysis is grade 40 with elastic modulus of 30 kN/mm?. The
Poisson’s ratio, v, is considered as 0.15. The allowable compressive stress is taken as -14
N/mm? and the allowable tensile stress is taken as -2N/mm?. The reasons for these values
can be explained as follows. If the structure is designed as a class 1 structure, the
allowable working stress is -16N/mm? for grade 40 concrete and the allowable tensile
stress is 0.0 (BS 5400/4). Since there can be temperature induced stresses and other
secondary stresses of magnitude of about 2 N/mm?, the above values have been used so
that once the final stresses are checked, no adjustment will be required for the
prestressing forces or cable locations.

Table 4a: Moments Used for Structural Design

Chainage 0 5 10 15 20 25 30 35 40 45 50

Mas-built | 0 | 3069 | 4455 | 4085 1961 -1919 -7552 -757 3739 6718 | 7942
M, 0 503 1006 | 1509 | 2012 2515 3020 2879 2738 2597 | 2456
Muin 0 | 3317 | 3827 | 2932 -787 -6854 -17006 -5467 793 4447 | 5751
an 0 | 7116 | 10734 | 10783 | 6537 -1275 -12656 -1625 7109 12630 | 14702

Table 4b: Moments Used for Structural Design.

Chainage S5 60 65 70 75 80 85 90 95 100

M as-built 7411 5125 1084 -4713 460 3878 5541 5449 3602 0
M, 2315 2174 2033 1885 1570 1256 942 628 314 0
Mupin 4704 1307 -4512 | -15398 | -6378 -403 3223 4499 3424 0
MmL 13323 8495 573 -6846 1150 8070 11415 | 11186 7380 0
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Bridge is considered as constructed with span by span construction technique with 5.0 m
cantilevering to the next span. The dead load bending moment envelope is obtained by
considering that 80% of the trapped moments will be relieved by the creep of concrete.
The superimposed dead load is calculated for an asphalt concrete filling of 150 mm
thickness. The imposed load envelope calculated consisted of a sagging and a hogging
bending moment at each section. The bending moment envelope used for the design is
given in Tables 4a & 4b. The secondary moments are assumed as 40% of the as built
bending moments at the supports. For clarity, the as-built bending moments are also
given. The bending moment envelope for the determination of cable profile zone can be
calculated by adding the secondary moments to the bending moments due to dead and
live loads.

Since the design calculations are of repetitive nature, those are carried out using a spread
sheet program as given in Data sheet 1. In this example, a constant prestressing force of
38,000 kN has been used. The prestressing force effective after losses is 0.7 x 38,000.
The prestressing force has been adjusted until the secondary moments due to a cable
placed at the upper boundary of the line of thrust zone will produce hogging secondary
moments at each support. At the same time, the cable placed at the lower boundary of the
line of thrust zone should produce sagging secondary moments. The secondary moments
obtained for a cable force 0.7 x 38000 kN are given in Table 5.

Table 5: Secondary Moments When the Cable is at Upper and Lower Bounds of
Line of Thrust

Location M, at first internal support | M, at second internal support
Cable at upper bound of line of thrust -3779 -1356
Cable at lower bound of line of thrust 3315 1236

These secondary moments are calculated as given in Appendix A. The right hand side of
Equation A.3 is obtained by using the Simpson rule. The calculations performed are
given in Data sheet 1. The secondary moments produced by the actual cable profile
selected is also calculated as a check. Those are given in Table 6.

Table 6: Secondary Moments Assumed and Those Actually Occur

Location first internal support Second internal support
Assumed secondary moment (kNm) 3020 1885
Actual secondary moment (kNm) 3032 1897

The concordant profile that fits within the line of thrust zone is calculated in the
following manner. First the boundaries of the line of thrust zone has been converted to a
force-eccentricity zone where the eccentricity has been multiplied by the prestressing
force selected. A set of notional loads have been selected that produces a bending
moment diagram that fits within the force-eccentricity zone. The notional loads
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considered consist of uniformly distributed element loads of the magnitudes given in
Table 7. Negative sign indicates that the loads are acting downwards.

Table 7: Notional Loads Applied to the Beam to Obtain the Line of Thrust.

Chainage 0-5 5-10 | 10-15 | 15-20 | 20-25 | 25-30 | 30-35 | 35-40 | 40-45 | 45-50 | 50-55
Notional -120 | -120 | -120 | -120 | -120 220 220 -135 | -135 | -135 | -105
load (kN/m)

Chainage 55-60 | 60-65 | 65-70 | 70-75 | 75-80 | 80-85 | 85-90 | 90-95 | 95-100
Notional -105 -105 170 170 . -105 -105 -95 -95 -95

load (kN/m)

The concordant profile is obtained by dividing the bending moments due to notional
loads by the prestressing force of 0.7 x 38000. This concordant profile is transferred back
to the cable profile zone by using the relationship, e; = e, + My/(R.P), where R.P is the
effective prestressing force. The actual stresses resulting from the cable profile selected
also can be calculated. In this case, the stresses will satisfy the stress limits since the
cable is within the boundaries of the cable profile.

CONCLUSIONS

A design method, that guides the designer as a logically evolving process has been
presented. The main advantage of this design method is that the designer has the
opportunity to select the section dimensions of the box section by considering the
governing criterion for each component such as top flange, webs and bottom flange. It is
shown that the secondary moments can be used to minimise the thickness of the bottom
flange to minimum constructable thickness. This helps the designer to achieve the
minimum cross section for the prestressed concrete section, thus allowing him to develop
a solution quite close to the optimum that can be achieved. It should be noted that with
this technique, the secondary moments have already been assumed at the end of the
selection of section dimensions.

It is shown that there is a unique criterion to satisfy the existence of a concordant profile
within the line of thrust zone. This condition can be used by the designer to check the
existence of a concordant profile within the line of thrust zone that is obtained
corresponding to the prestressing forces selected. This helps the designer to eliminate any
iterations involved by carrying out this simple check and to alter the prestressing force if
the need arises. The application of this technique is illustrated using a design example.

Since the secondary moments have already been assumed, it is necessary to ensure that

the cable profile selected will generate those assumed moments. The steps that should be
followed to fulfil this objective is also presented.
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With this straight forward design technique, the design process has been considerably
simplified and also it offers an engineer without much experience in the design of
continuous bridges to obtain a close to optimum solution.
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Appendix A:
It is possible to determine the secondary moments in a beam once the cable profile and

the cable forces are known by using the generalised Clark Maxwell’s theorem which
states that when two force systems act on a linear elastic structure, the work done by the

6l



forces of first system on the displacements of second system is equal to the work done by
the forces of the second system on the displacements of the first system (EP;A; = ZP;iA)).

The first system consist of a set of fictitious moment system and associated reactions as
shown in Figure A.1 with one system at each internal support. The reactions R’;; are
unknown, but need not be determined since they do not appear in the equations. The
second system consist of the cable forces, corresponding secondary moments and
associated reactions at the internal supports. Due to cable forces and secondary moments,
there is a curvature at each section given by (Z(BM,); - RPe)/EL. The support reactions
resulting from cable forces are Rjx, but those need not be calculated since they appear at
the supports where the displacements are zero in the first system. The application of the
generalised Clark Maxwell’s theorem results in Equation A.l1from which (M’,); can be
cancelled from the equation without loosing the generality, thus resulting in Equation
A2.

J’ﬁ,.(M;),.(Zﬁi(Mz)j—Pe)%dx=0 fori =2, 3, n-l Eq. A.1
B.B; B,Pe B,Pe )
;(Mz)jj—l—sl—’-dx=j L —ds = j dx fori=2, 3., nl Eq. A2

The equations form a set of linear equations consisting of unknown secondary moments
(M2);. The cable profile, e, appears on the right hand side of the equations, and the
coefficients of the (My); terms are integrals of products of the B functions, many of which
are zero since B; is non zero only on either side of the support under consideration. The
integration [B; B; dx results in simple expressions as indicated in the left hand side of the
matrix notation given in equation A.3. The integral IB, RP.e.dx/EI can be determined
using numerical integration, preferably using the Simpson’s rule, since the cable profile is
known as a set of eccentricities with parabolic segments in between. In Data sheet 1, the
values of B factors and the Simpson’s rule coefficients (s) have been indicated. For each
of the B coefficients, a row of B.RP e.s, have been prepared and then summed to give the
totals shown at the end of the row. These values should be multiplied by h/3 as generally
done in Simpson’s rule summations where h is the interval considered for the cable
eccentricities. The matrix can now be inverted to obtain the unknown secondary
moments.

jﬁzRPe
2(L+L,) i 0 = [ (M),

(IS S S ST M,), j”sR”"
6 0 L  HL+L) M,), Iﬁ‘RPe

Eq. A3
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Figure 1: Idealization of a box girder for design
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Figure 2: Box girder divided into I-girders
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QQ: Figure 4: Partial cross-section of a cellular structure
(c) h

Figure 3: Transverse deformation of a cellular structure
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