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Abstract 

 
The present paper deals with the experimental and computational study of collapse of the metallic 

shells having combined tube-frusta geometry subjected to axial compression between two parallel 

plates. Shells are having top one third lengths as tube and remaining bottom two third length as frusta. 

Shells were tested to identify their modes of collapse and associated energy absorption capacity. An 

axisymmetric Finite Element computational model of collapse process is presented and analysed, 

using a non-linear FE code FORGE2 [17]. Six noded triangular elements were used to descretize the 

domain. The material of the shells was idealized as rigid visco-plastic. Experimental and computed 

results of the deformed shapes and their corresponding load-compression and energy-compression 

curves were compared to validate the computational model. On the basis of the obtained results 

development of the axisymmetric mode of collapse has been presented, analysed and discussed. 
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1. INTRODUCTION 
 

Thin walled structural shell elements such as cylindrical shells, conical shells, and domes are 

commonly used as energy absorbing elements in crashworthiness applications. Study of their collapse 

behaviour has received considerable attention of the researchers in the last four decades. 

Experimental, analytical and computational studies on these structural elements have been carried out 

under both quasi-static and dynamic loadings in axial and lateral directions [1-16]. Among the 

different energy absorbing elements the thin walled conical shells commonly known as frusta are 

employed over a broad range of applications, especially in the applications of aerospace and 

armaments as the nose cones of missiles and aircraft.  
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Johnson and Reid [1] examined and there after reviewed the modes of collapse of and 

associated load–displacement variations for different thin-walled shells. Postlethwaite and Mills [2] 

performed the axial crushing tests on conical shells of semi-apical angles of 5–20 degree and studied 

their energy absorption capacity. Mamalis and Johnson [3] tested aluminum frustas under quasi-static 

axial compression between two parallel platens to study their crumbling. In experiments they 

identified two modes of collapse namely concertina and diamond modes and also proposed empirical 

relationships for both these modes of deformation. Mamalis et al. [4] extended their experimental 

study to include the effect of strain rate and found that the deformation modes of frusta could be 

classified as (a) concertina, (b) concertina-diamond, and (c) diamond. Mamalis and associates [5] 

modified and produced a refined model of Postlethwaite and Mills [2] and obtained a better prediction 

for the mean crushing load. In another paper, Mamalis and his team [6] modeled the progressive 

extensible collapse of frusta and presented a theoretical model that shows the changes in peaks and 

troughs of the experimental load-displacement curves. Their theoretical predictions were fairly 

comparable with their experimental counterparts.  

Others researchers Alghamdi [7], Aljawi and Alghamdi [8], Aljawi and Alghamdi [9], 

Alghamdi et al. [10,11], El-Sobky et al. [12], and Gupta and Venkatesh [13] have also reported 

experimental studies on the performance of compressed frusta subjected to quasi-static and dynamic 

axial loadings. Gupta and Gupta [14-16] also studied the collapse process of metallic shells subjected 

to axial compression between two flat platens with experiments and FE modeling.  

From the previous research results it can be concluded that on the basis of experimental 

investigations different analytical models have been proposed by different researchers [3-6, and 12]. 

But the complexity of deformation process often limits the general use of closed-form analytical 

solutions. Therefore, it is essential to use numerical methods to solve this class of problems in the 

present time, when computational facilities are enhancing day by day.  

The paper presents an experimental and computational analysis of the deformation behaviour 

of the metallic thin walled shells having combined tube-frusta geometry subjected to axial 

compression between two parallel plates. Shells are having top one third lengths as tube and 

remaining bottom two third length as frusta. Shells were tested to identify their modes of collapse and 

to study the associated energy absorption capacity. Wall thickness of shell was varied. A Finite 

Element computational model of development of the axisymmetric mode of collapse is presented and 

analysed, using a non-linear finite element code FORGE2. Experimental and computed results of the 

deformed shapes and their corresponding load-compression and energy-compression curves were 

presented and compared to validate the computational model. On the basis of the obtained results 

development of the axisymmetric mode of collapse has been presented, analysed and discussed. 

 

2. EXPERIMENTS 
 

Aluminium sheets of thicknesses  varying between 1 and 5 mm were commercially obtained, 

and the geometry of the shells required for the present experimental work were made from these 

sheets by the process of spinning. All the shells were annealed by soaking them at 3000 C in the 

furnace for 1 hour, and allowing them to cool in the furnace for 24 hours. A universal testing machine 

Instron of 250 T capacity was employed for experimentation. Specimens were centrally positioned on 

the bottom platen of the machine with tube diameter touching the top platen of the machine. The 

upper platen was moved at a constant downward velocity of 10 mm/min. The compression process 

was continued till the top diameter of tube and folded portion of the shell came in contact with top 



platen. The load-compression curves were recorded with the automatic recorder of the machine. The 

deformed shapes of the specimens at different stages of the compression process were recorded. It 

was found that in the beginning of the collapse process of all the shells an axisymmetric concertina 

ring develops at the junction of tube and cone towards the inner side of the cone. There after the tube 

portion of the shell moves into the remaining portion of the shell with continuous deformation of 

cone. This process gets continued till tube diameter top end and the concertina fold and deformed 

shell comes into the contact of the upper platen of the machine. Fig. 1 depicts the photographs of the 

development of the mode of collapse. It is very clear that the mode of collapse remains axisymmetic 

throughout its development process. The corresponding experimental load-compression and 

calculated energy-compression curves for these specimens are presented in Figs. 2(a) and 2(b) 

respectively. Energy-compression variations are obtained by integrating the load-compression curves. 
 

        
 

Fig. 1 Typical views of the undeformed and deformed shells. 

 

       

(a)        (b) 

Fig. 2 Comparison of typical (a) load–compression and (b) energy–compression curves for shells. 

 



       
(a)      (b) 

Fig. 3(a). Computational model for axisymmetric deformation, (b) Demarcation of zones in 

undeformed and a typically deformed shell 

 

 

 

3. Computational study 
 

3.1 Governing equations 

 

Finite element formulations for non-linear problems of plasticity are classified into solid 

formulations and flow formulations. In the flow formulation which is employed here, the elastic 

components of strain are neglected as small compared to their plastic counterparts. An updated 

Lagrangian reference system is employed wherein the velocities are considered as the basic unknowns 

and the incompressibility condition is incorporated using a penalty function. The overall deformation 

is analysed in terms of a large number of deformation steps. Linearised relationship between the stress 

and strain rate is assumed to exist during each step and a quasi-steady state is assumed for each 

incremental solution. The computational procedure is linked to a re-zoning procedure.  

Each deformation step is treated as a boundary value problem. At the beginning of a given 

step, the problem domain  (i. e. the volume occupied by the deforming tube), the state of 

inhomogenity and the values of material parameters are supposed to be given or determined already. 

The velocity vector v
~

 is prescribed on a part of surface Sv together with traction on the remainder of 

surface Sf. Solution to the incremental problem at any given time provides the velocity and stress 

distributions that satisfy the governing equations in the body as well as boundary conditions on the 

surface. The material is assumed as homogeneous, isotropic, incompressible and rigid visco-plastic. 

The constitutive relation for such a material is given by the Norton-Hoff law as follows  
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, K and  m  represents the components of the deviatoric stress tensor, strain rate tensor, 

material consistency and strain rate sensitivity index respectively. The vi is the component of velocity 

in the direction "i" at any point of the problem domain. The incompressibility condition is written as 

below 

 

div v
~

  = 0                         over the problem domain                                                        (2) 

where v
~

 is the velocity vector at any point of the domain. 

The material consistency K depends upon the thermo-mechanical condition of the material. For most 

metals, the behaviour of K can be approximated by means of the following multiplicative law; 

  T e a+1K =K o                                                                                                         (3) 

where K0  is a constant, a is the strain hardening parameter,  is the temperature sensitivity term and 

T is the absolute temperature. The values of the parameters K0, a ,   and m can be found by 

conducting uniaxial tensile tests at different strain rates and temperatures. By suitable choice of these 

parameters, equations (1) and (3) can approximate the mechanical behaviour of most of the metals at 

different temperatures and strain rate ranges. Using above equations the constitutive equation for 

uniaxial case gets the form as follows 

    a+1  = m 
otK

                                                                                                        (4) 

where    is the equivalent stress for uniaxial case and   
T
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The friction between the shell and the platens is modeled with a viscoplastic law 

 
1
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p

ffof vvK  
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where . indicates the norm of a vector, fv~
 is the sliding velocity between tube and platen,  is the 

friction factor and p is a  material parameter whose value is often taken equal to m. The remeshing of 

six nodded isoparametric triangular elements is achieved through a Declaunary-Voronoi type 

algorithm. Values of   at the nodes of the newly created mesh are found by interpolation of the 

corresponding values at the nodes of the older, distorted mesh. 

 

3.2 COMPUTATIONAL MODEL AND ITS FEATURES 

 

In the finite element model of the compression process the top platen was modeled to move 

on its axis with a downward velocity of 10 mm/minute while the bottom platen as stationary. The 

contact between the platen and shell surfaces has been assumed as sliding unilateral [17]. Friction 

factor  at the platen shell interface is assumed to be given [17]. Since the original and experimentally 

deformed shells were axisymmetric so an axisymmetric Finite Element model of the compression 

process is proposed and presented. Fig. 3(a) shows the computational model used for the present 

investigation. Six noded isoparametric triangular elements have been used to discretize the tube 

domain. The temperature is kept constant and equal to room temperature 310o K. Compression 

process of each tube specimen was simulated using FORGE2 code and analyzed. The total 

deformation of the specimen was carried out into small steps called as increments. The value of the 



incremental strain in each increment was taken equal to 2% of the current tube height. Number of 

elements used for discretization of the problem domain were varied between 900 to 1030. Number of 

remeshings required to finish the compression of different specimens were between forty five to fifty 

three. The computer memory required to store the results of these simulations varied from 18 to 20 

MB. 

The following constitutive relation models mechanical behaviour of the tube material  

 

   a+1 K = m
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where,  
T1+m
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,  and   is the effective stress, 0K
  is a constant, a is the 

strain hardening parameter, m is strain rate sensitivity index,  is the temperature sensitivity term and 

T is the absolute temperature. If the compression process is performed at a more or less constant 

temperature then the value of  Te
 remains same at all points of the deforming body. To determine 

the above material parameters namely Ko, a and m uniaxial tensile tests were conducted at three 

different strain rates. Special tensile test specimens were prepared by cutting the same shells in their 

axial direction as were used for carrying out the compression tests. Load-deformation curves were 

recorded. The true stress versus true strain curves were calculated from the recorded load-deformation 

curves to calculate the material parameters.  

To verify the proposed Finite Element model typical experimental and computed load-

compression and energy-compression curves as well as deformed shapes were compared. Fig. 4 

shows typical computed deformed profiles at various stages of compression of shell specimen. Figs. 

2(a) and (b) presents the comparison of typical experimental and computed load-compression and 

energy-compression curves. Comparison of experimental and computed deformed profiles at the end 

of the compression process is presented in Fig. 5. After seeing the Fig. 2 one can say that the 

computed load-compression and energy-compression variations have good agreement with the 

experimental ones. The computed and true deformed shapes are also match quite well (see Fig. 5).   

 

 

 

4. DISCUSSION ON TYPICAL COMPUTATIONAL RESULTS 
 

To discuss the compression process four zones of interest have also been demarcated within 

the shell cross-section. These can be described as, 

 

    

 

    = 7.4 mm,       = 31.30 mm,      = 47.74 mm,       = 91.0 mm 



 

Fig. 4 Typical computed deformed profiles at different values of compression (). 

 

 

Fig. 5 Comparison of deformed shapes of specimen F5 after compression. 

 

Zone I and IV:    Region of the shell adjoining to the top and bottom platens respectively 

where deformation does not occur. 

Zone II:  Region of the shell locked between zone I and zone III. During the compression 

process its area continuously increases.  

Zone III: Region of the shell adjoining to the zone II and originated from zone IV  

 

The proposed simulation model was used to obtain detailed computational results of 

compression of each specimen, however computational results of a typical specimen are presented 

below. Input data for this typical case is: 

 

Ko = 109.3 MPa, m = p =0.0147, a = 0.125, friction factor at top interface (Top) = 0.45, 

friction factor at bottom interface (bottom) = 0.45. The problem domain was discretized into 975 

elements. Strain increment in each step of compression was 2%. The total displacement of 91 mm of 

top platen was completed in 117 steps (increments).  

 

5. DEVELOPMENT OF AXISYMMETRIC MODE OF COLLAPSE 

 
To understand the pattern of deformation occurring during axial compression of shell and 

development of axisymmetric mode of collapse, the compression process is divided into two stages, 

referred to as the initial and final.  

Initially the shell is having contacts over its whole periphery with the top and bottom platens 

on both the ends. Therefore, in the beginning of the compression process uniform compression of the 

shell occurs and the load in the load-compression curve reaches to its peak value. Very soon the local 

buckling triggered at the junction of tube and cone of the shell and concertina folding begins at that 

location on the inner side of shell. This is designated as first stage of compression. This stage of 



compression is characterized by localized deformation in a region which is identified as region II 

(marked in Fig. 3(b)). The so-called concertina fold forms there. With increase of compression, the 

folding progresses and the tube bends more and more. The folding continues at decreasing load 

because the rate of increase of resistive moment due to strain hardening in region II is less as 

compared to the increase in the eccentricity (distance between the point of action of load point and the 

concertina fold in region II). With progress of compression the load continues to decrease but at a 

lower rate. This is because per unit of compression, the influence of eccentricity increase tends to 

progressively decrease relative to that of the increase of resistive moment at the concertina fold. The 

upper arm of the fold remains inclined with the horizontal and in this condition the contact occurs 

between two outer boundaries of the shell. This is the end of formation of concertina fold. After this 

stage with further compression the load starts increasing once again and reaches to the second peak 

value. This may be ascribed to end of the localized bending around the concertina fold and further 

deformation is mainly confined in this region (concertina fold location) only. During this stage the 

portion of shell around the concertina fold rotates in such a way that the folded portion gets a 

particular angle. After this rotation, concertina fold moves radially inward. After this stage with 

progress of compression, site of dominant deformation expands to the new virgin shell called as zone 

III and originated from zone IV. As this happens, zone II starts expanding and zone I and zone IV 

starts reducing. This marks the beginning of the second stage of compression, and spread of the 

plastic hinge. However the required load is lower as compared to that in initial stage. The plastic 

hinge continuously moves radially inward with leaving a plastified region (zone II) behind it. At this 

juncture to expand the plastic region in the virgin shell from zone IV and of larger periphery load 

required is of lower value due to the increase in lever arm by movement of some portion of tube of 

zone I inner side. Therefore, the magnitude of compression load decreases in the remaining 

compression process and development of axisymmetric mode proceeds further.   

 

6. CONCLUSIONS 

 
An experimental and computational study of quasi-static axial compression of metallic thin 

walled shells having combined tube-frusta geometry between two parallel plates is presented. Shells 

are having top one third lengths as tube and remaining bottom two third length as frusta. It was found 

that all these shells were deformed in axisymmetric mode of collapse. A Finite Element computational 

model of the development of the axisymmetric mode of collapse is also presented. Experimental and 

computed results of the deformed shapes and their corresponding load-compression and energy-

compression curves are compared and found in good agreement. On the basis of the study the 

mechanics of the mode of collapse has been studied and discussed. 

The mode of collapse forms by the development of one concertina fold followed by the 

plastic zone designated here as zone II. The concertina fold develops fully while plastic zone develops 

continuously till the end of compression process. During the development of mode of collapse some 

portions of the shell move radially inward and some radially outward.  
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