USE OF RICE HULL ASH IN

WATER TREATMENT

by

A thesis submitted to the University of New South Wales for the degree of

Doctor of Philosophy

1940

August, 1980

This thesis has not been previously presented in whole or part, to any University or Institution for a higher degree.

1R Mampituyaracheni

T. R. Mampitiyarachchi

August, 1980 University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

Dedicated to

MY PARENTS

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

ABSTRACT

Rice hulls, the largest milling byproduct of rice, constitute one fifth of the paddy by weight. The hulls which can be obtained at relatively low cost, are in abundant supply in most developing countries, particularly in the Asian region. Hull contains approximately 20% silica by weight and, on combustion, yields a porous ash having a silica content of approximately 90 percent. This thesis investigates the following two possible applications of rice hull ash in water treatment processes:

(i) the use of rice hull ash as a filter medium;

(ii) the use of rice hull ash as a coagulant aid.

RiceUnitersish of orprasing supressions silica was Flectropic Therefore Dissertations, using a specially produced constructed incinerator. Scanning electron microscopic studies were conducted to evaluate the microstructure of this ash as well as diatomaceous earth and filter sand. The laboratory filtration experiments were conducted at slow to semi-rapid filtration rates in order to investigate the effectiveness of rice hull ash medium in removing turbidity, bacteria and colour from water, and to compare its performance with a conventional sand filter. Synthetic water was made by adding suitable amounts of kaolin clay, Escherichia coli suspension, coffee/leaf extract, to laboratory tap water. Filtrate quality and head loss were considered as the major parameters in assessing the performance of these filters. Α number of thin layer filter experiments were conducted to obtain the variation of turbidity with depth in rice hull

i

ash filters, under selected operating conditions. Solubility studies of rice hull ash at various strengths of sodium hydroxide and for various steeping periods were made to evaluate the optimum conditions for silica solubilisation. A dilution procedure including partial neutralization and subsequent aging prior to further dilution was adopted to convert alkali soluble rice hull ash into activated silica. Coagulation of dilute clay suspensions (≤ 40 mg/L), using alum, activated silica and selected polyelectrolytes were conducted with the aid of a jar test apparatus.

The filtrate turbidity for approximately 750 mm depth of rice hull ash medium was equal to or less than that of a sand medium, at rates of filtration 0.25 to 2.0 m³/m²h and a turnidity range university of ri Lanka. The rate of head lectronic Theses & Disserta loss in the sandy medium was 12.5 to 5 times more than in an ash filter. The optimum rate of filtration for the ash filter occurred at 1.0 m^3/m^2h , with a rate of head loss of 52 mm/d. At filtration rates of 0.5 and 1.0 m^3/m^2h , for an influent Escherichia coli concentration of 100 - 2000 no/mL, approximately 70% to 90% reductions in bacterial numbers were achieved by 750 mm depths of rice hull ash media. Colour removal of at least 30% was achieved by shallow depths (≤ 320 mm) of ash media, at slow rates of filtration $(\leq 0.25 \text{ m}^3/\text{m}^2\text{h}).$

The results obtained from thin layer filtration experiments were analysed using a statistical filtration model known as the chi-square distribution analogy. This technique was successful in predicting the performance of

ii

rice hull ash filters at specific operating conditions.

The optimum removal of silica from rice hull ash occurred when ash was steeped in 5% NaOH solution for a period of 24 h. A procedure for the preparation of activated silica from rice hull ash was developed. The addition of 5 mg/L of activated silica as a coagulant aid during the coagulation of turbid water (40 mg/L of kaolin clay) with 50 mg/L of alum at pH value of 6, was sufficient to achieve a residual turbidity of 1.2 FTU. The coagulation of the same water with alum or alum-polyelectrolyte at similar conditions led to higher residual turbidity.

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

ACKNOWLEDGEMENTS

I wish to express my sincere appreciation to my supervisor, Dr. D. Barnes, for his support and guidance. He is a dedicated and considerate man who can be approached at any time.

The constructive criticism of parts of the thesis draught by Associate Professor B.W. Gould, who acted as co-supervisor for some time, is gratefully acknowledged, as was his continued help throughout this study.

I wish to record my sincere thanks for the assistance provided by the following:

Dr. V.N.E. Robinson, School of Textile Technology, for the deganizing office rectromany cost deates.

(Electronic Theses & Dissertations

- Dr. Triber School of Biotechnology, for his valuable suggestions regarding the conducting of bacteriological studies and for providing laboratory facilities for the preliminary studies.
- Associate Professor W.R. McManus, School of Wool and Pastoral Sciences, for providing the facilities to obtain rice hulls.
- Dr. R.T. Southin, School of Metallurgy, for organizing laboratory facilities to conduct the burning of rice hulls.
- Mr. R.J. Finlayson, School of Chemistry, for analysing samples of rice hull ash.
- The co-operation given by Rice Growers' Co-operative Mills Stores in Rozelle, who supplied rice hulls for the experimental study.

iv

I wish to thank the technical staff at the School of Civil Engineering for the assistance given and all others who helped in numerous ways to enable the completion of this thesis.

I am deeply indebted to my employer, University of Moratuwa, Sri Lanka, for granting my leave of absence; and to the Australian Government for awarding the financial assistance under the Commonwealth Scholarship and fellowship programme. Thanks are also due to the Australian Development Bureau for its continued interest throughout the term of scholarship.

Finally, and perhaps most importantly, my husband Kanaka must be Unhansed of Motaturea, Snubaskencouragement and paper. Electronic Theses & Dissertations www.lib.mrt.ac.lk

TABLE OF CONTENTS

			Page
ABST	RACT		i
ACKN	OWLEDGE	MENTS	iv
TABL	E OF CO	NTENTS	vi
LIST	OF FIG	URES	xiii
LIST	OF PLA	TES	xix
LIST	OF TAB	LES	xxi
NOTA	TION		xxiv
CHAP	TER l.	INTRODUCTION	1
1.1	WATER	SUPPLY IN DEVELOPING COUNTRIES	2
1.2	SCOPE	OF THIS RESEARCH	7
1.3	ALTERN	ATTVE TREATMENT SYSTEMS	10
1.4	WARER	University of Moratuwa, Sri Lanka.	14
	1.4	HistorylibfilwaterkFiltration	14
	1.4.2	Characteristics of Filter Media	± 4 2 2
	1.4.3	Removal Mechanisms in Filtration	22
		1.4.3.1 Transport Mechanisms	25
		1.4.3.2 Attachment Mechanisms	20
		1.4.3.3 Purification Mechanisms	34
	1.4.4	Comparison of slow sand and rapid sand	
		filtration processes	35
		_	35
CHAP	TER 2.	RICE HULLS	38
2.1	GENERA	L	38
2.2	PROPER	TIES OF RICE HULLS AND ASH	40
2.3	COMPOS	ITION OF RICE HULLS AND ASH	41
	2.3.1	Nature of Silicon in Rice Hulls and	
		Rice Hull Ash	43

				Page
2.4	UTILIZ	ATION OF	RICE HULLS AND RICE HULL ASH	44
	2.4.1	Hull Uti	lization	47
	2.4.2	Ash Util	ization	51
2.5	USE OF	RICE HUL	LS AND ASH IN WATER PURIFICATION	53
2.6	ALKALI	TREATMEN	T OF RICE HULLS	58
СНАР	TER 3.	FILTRATI	ON EXPERIMENTS	- 61
3.1	FILTER	COLUMNS	AND THEIR ACCESSORIES	63
	3.1.1	Feeding	System	66
	3.1.2	Manomete	r Board and Its Connections	66
	3.1.3	Outflow	Collecting System	68
	3.1.4	Filter M	edia	69
		3.1.4.1	Filter Sand	69
		Universi Blectron	ty of Moratuwa, Sri Lanka.	70
		3www.Hb	Characteristics of Rice Hull Ash	72
÷		3.1.4.4	Method of Filling Rice Hull	
			Ash in to Columns	80
		3.1.4.5	Under Drainage System	82
	· ``	3.1.4.6	Diatomaceous Earth Filter Aid	82
3.2	MEASUR	EMENT OF	TURBIDITY	86
3.3	EXPERI	MENTS REL	ATED TO TURBIDITY REMOVAL	88
	3.3.1	Source o	f Turbid Water	88
	3.3.2	Comparis	on Studies	90
		3.3.2.1	Filter Runs 1 and 2	95
	•	3.3.2.2	Filter Runs 3 and 4	95
		3.3.2.3	Filter Runs 5 to 8	98
		3.3.2.4	Filter Runs 9 to 12	104
		3.3.2.5	Summary of Results of Filter	
			Runs 1 to 12	109

			Page
	3.3.3	Effect of Depth of Medium on	
		Filtrate Quality	114
	3.3.4	Compaction Studies	119
3.4	BACTER	IAL REMOVAL	125
• •	3.4.1	Enumeration of Bacteria in Coliform	
		Group	126
		3.4.1.1 The Plate Count of Viable Bacteria	127
	3.4.2	Growth Characteristics of Escherichia coli	128
	3.4.3	Experimental Filters	130
		3.4.3.1 Source of Influent Water	131
		3.4.3.2 Details of Filter Runs and	
		Their Results	133
3.5	COLOUR	REMOVAErsity of Moratuwa, Sri Lanka.	137
	3.5	Measurement Theses & Dissertations	138
	3.5.2	Source of Coloured Water	138
	3.5.3	Filter Unit	140
	3.5.4	Description of Filter Runs	142
3.6	SERIES	FILTRATION - FILTER RUN 31	145
СНАР	FFA	PREDICTION OF FILTER PERFORMANCE	150
	זמספיזאד		150
4 2	IMINOD	L'S PROPOSITION	151
7.02	4.2.1	Modified Filter Coefficient Theories	153
	4.2.2	Models Based on Basic Removal Mechanisms	160
	4.2.3	Head Loss Through the Filter Medium	163
4.3	MODELS	BASED ON ACCUMULATION AND SCOUR THEORY	165
	4.3.1	Accumulation and Scour Theory Based	200
		on Mintz (1966)	165

viii

				Page
		4.3.2	Adin and Rebhun (1974)	166
	4.4	EMPIRI	CAL RELATIONSHIPS	169
	4.5	THIN L	AYER FILTER EXPERIMENTS	172
		4.5.1	Determination of Suspended Solids	
			Concentration of Water Samples	173
		4.5.2	Description of Filter Runs	173
			4.5.2.1 Experiments in Group II	184
	4.6	ANALYS	IS OF THIN LAYER FILTER RESULTS	190
		4.6.1	Analysis Using Ives Type Filtration	
			Model	190
			4.6.1.1 Head Loss Prediction	197
		4.6.2	Analysis Using chi-Square Distribution	
		Ó	And Hogersity of Moratuwa, Sri Lanka. 4. Electronic Theses & Dissertationsses Using www.lib.mrt.ac.lk chi- Square Distribution Analogy	199 209
	4.7	SUMMAR	Y OF EXPERIMENTAL RESULTS AND THEIR ANALYSIS	213
		4.7.1	Statistical Method of Prediction	214
		_		
	СНАР	TER 5.	USE OF RICE HULLS AS A SOURCE OF	
			ACTIVATED SILICA (COAGULANT AID)	216
·	5.1	INTROD	UCTION	216
	5.2	COAGUL	ATION AND FLOCCULATION	218
	5.3	FLOCCU	LATION (COAGULANT) AIDS	219
		5.3.1	Weighting Agents	219
		5.3.2	Activated Silica	220
•			5.3.2.1 Production of Activated Silica	220
			5.3.2.2 Mode of Action of Activated Silica	223
		5.3.3	Polyelectrolytes	225
			5.3.3.1 Mode of Action of Polyelectrolytes	226

				Page
		5.3.4	Comparison of Activated Silica	
			and Polyelectrolytes	227
5	5.4	PRODUC	TION OF ACTIVATED SILICA FROM RICE HULLS	229
		5.4.1	Optimum Ratio of Weight of Ash	
			to Volume of Alkali	230
		5.4.2	Effect of Steeping Time and the Strength	
			of Alkali Solution on the Solubility of	
			Rice Hull Ash	231
		5.4.3	Preparation of Activated Silica from	
			Rice Hull Ash	234
5	5.5	COAGUL	ATION EXPERIMENTS WITH RICE HULL ASH	
		ACTIVA	TED SILICA	235
		5.5	Effected fty of Moratuwa, StrEanka. Silica	
			onEbotranic Ebeson & Dissertations	237
		5.5.2	WWW.11b.mrt.ac.lk Effect of Activated Silica on the	
			Settling Rate of Floc	237
		5.5.3	Effect of pH of Water on Dose of	
			Activated Silica	239
		5.5.4	Comparison of the Performance of	
			Activated Silica with Selected	
			Polyelectrolytes	240
	רע א די	MPD 6	DICOUCETON OF DECUING CONSTRUCTONS	
•	СПАР	TER O.	AND DECOMMENDATIONS	240
	с 1	DICE U	AND RECOMMENDATIONS	242
(0.I		Bern of Silice in Asl	245
		0.1.1	form of Sillca in Asn	247
		0.1.2	Structure of Rice Hull Ash	248
		6.1.3	Properties Related to the Use of Rice Hull	• • -
			Ash as a Filter Medium	249

			Page
6.2	FILTRA	TION EXPERIMENTS	251
	6.2.1	Turbidity Removal	251
	6.2.2	Effectiveness of Rice Hull Ash Medium in	
		Removing Escherichia coli	262
	6.2.3	Removal of Colour	263
	6.2.4	Compaction of Rice Hull Ash Medium	264
	6.2.5	General Conclusions from the Filtration	
		Results	266
6.3	PREDIC	TION MODELS	268
	6.3.1	Prediction of Filtrate Quality of	
		Rice Hull Ash Filters	270
	6.3.2	Head Loss Prediction	278
6.4	ALK 6.4	TREATMENTITY of Moratuwa, Sri Lanka. Electronic Theses & Dissertations Gelation Time of Rice Hull Ash	281
		Activated Silica	283
	6.4.2	Coagulation Experiments with Rice Hull	
		Ash Activated Silica	284
	6.4.3	Recommended Procedure for the Preparation	
		of Activated Silica from Rice Hull Ash	286
6.5	CONCLU	SIONS	288
6.6	RECOMM	ENDATIONS	294
APPE	NDICES		297
APPENDIX 1		Photographs	298
APPE	NDIX 2	Determination of Relative Density	300
APPE	NDIX 3	Tubular Data (For Filter Runs 1 to 27 and	
		31 - 39)	302
APPE	NDIX 4	Chemical Analysis of Rice Hull Ash	386

		Page
APPENDIX 5	Calibration Curves	388
	5.1 Rotameter calibration curve	389
	5.2 Absorptiometer calibration curve	391
	5.3 Spectrophotometer calibration curve	393
APPENDIX 6	Preparation of Culture Media for	
	Bacteriological Studies	394
APPENDIX 7	Results of Jar Tests	395
APPENDIX 8	Scanning Electron Microscopic Studies	401
APPENDIX 9	Analysis of Results Using chi-square	
• •	Distribution Analogy	403
APPENDIX 10	Computer Program	407
LIST OF	RECORPORATION OF MORATUWA, Sri Lanka.	410

Electronic Theses & Dissertations www.lib.mrt.ac.lk

LIST OF FIGURES

		Page
1.1	Relation of typhoid fever death rate to percentage	2
	of population without public water supplies in the	2
	state of Massachusetts, U.S.A.	2
1.2	Developing countries of the world	4
1.3	Rural water supply situation in developing	
	countries	5
1.4	Urban water supply situation in developing	
	countries	6
1.5	Schematic of media configurations	16
1.6	Typical size gradation curve	22
1.7	Diagram of a small pore opening between filter	
1.8	grains University of Moratuwa, Sritzpical particles filectropic fFbases & Dissertations www.lib.mrt.ac.lk Schematic diagram of particle transport	24
	mechanisms	27
1.9	Filter efficiency depending on particle size	31
2.1	Major paddy cultivating areas of the world.	39
2.2	Performance of rice hull ash and sand filters at	
	a filtration rate of 0.25 m^3/m^2h	55
2.3	Treatment alternatives for tropical surface	
	waters	57
2.4	The reduction of silica content of whole rice	
	hulls after treatment with different levels of	
	alkali	59
3.1	Details of filter column	62
3.2	Filter joint	65

Page Schematic diagram of filtration apparatus 3.3 67 3.4 Size gradation curve for filter sand 69 3.5 Size gradation curve for rice hull ash 75 Histogram of particle sizes 75 3.6 79 3.7 X-ray diffraction pattern for rice hull ash 3.8 Size gradation curve for diatomaceous earth 83 filter aid 3.9 X-ray diffraction pattern for diatomaceous 84 earth filter aid 89 3.10 Size gradation curve for kaolin clay 3.11 Performances of rice hull ash and sand filters at a filtration rate of $1.0 \text{ m}^3/\text{m}^2\text{h}$ 93 1054118252121 BULY Bratewar Stillanka 1 94 3.12 Theses & Dissertations 94 3.13 for filter run 2 Performance of rice hull ash and sand filters 3.14 at a filtration rate of 0.75 m^3/m^2h 96 97 Head loss distribution for filter run 3 3.15 Head loss distribution for filter run 4 97 3.16 Performances of rice hull ash and sand filters 3.17 at a filtration rate of 0.5 m^3/m^2h 100 Performances of rice hull ash and sand filters 3.18 at a filtration rate of 0.25 m^3/m^2h 101 102 Head loss distribution for filter run 5 3.19 Performances of rice hull ash and sand filters 3.20 at a filtration rate of 2.0 m^3/m^2h 105 106 Head loss distribution for filter run 9 3.21 106 3.22 Head loss distribution for filter run 10 Performances of rice hull ash and sand filters 3.23

	at a filtration rate of 4.0 m^3/m^2h	<u>Page</u> 107
3.24	Head loss distribution for filter run ll	108
3.25	Performances of filter runs 13, 14 and 15	117
3.26	Performances of filter runs 16, 17 and 18	118
3.27	Variation of depth of medium with time for	
	filter run 19	120
3.28	Variation of depth of medium with time for	
	filter run 20	120
3.29	Variation of depth of medium with time for	
	filter run 21	120
3.30	Variation of depth of media with time for	
	filter runs 13 and 16	122
3.31	Variation of depth of media with time for	
	functions 14, and 17 Electronic Theses & Dissertations	122
3.32	variationwofligeprenacfikmedia with time for	
	filter runs 15 and 18	122
3.33	Variation of head loss and compaction of mediu	m
	with time for filter run 22	124
3.34	Variation of depth of medium with time for	
	filter run 23	124
3.35	Stability of diluted Escherichia coli suspensi	ons
	at 25°C	131
3.36	Schematic diagram of filtration apparatus	132
3.37	Performance of filter run 23	135
3.38	Performance of filter run 24	135
3.39	Performance of filter run 25	136
3.40	Performance of filter run 26	136
3.41	Schematic diagram of filter apparatus	141

xv

	Ī	Page
3.42	Performances of primary and secondary filters	147
3.43	Variation of depth of media with time	149
4.1	Variation of filter coefficient λ with specific	
	deposit σ	156
4.2	Variation of influent and filtrate suspended	
	solids concentration with time for filter runs	
	32A and 32B	175
4.3	Variation of suspended solids concentration with	
	time for filter runs 33A and 33B	176
4.4	Variation of suspended solids concentration with	
	time for filter runs 34A and 34B	176
4.5	Variation of suspended solids concentration with	,
	to Eléctoric Theses & Dosser Pations	177
4.6	Variation Worlike Mith time for selected	
	filter runs	178
4.7	Variation of head loss with time for filter runs	
	32 B, 33 B, 34 B and 35 B	179
4.8	Variation of head loss with time for filter runs	
	35A to 35D	183
4.9	Variation of suspended solids concentration with	
	time for filter runs 36A to 36C	186
4.10	Variation of head loss with time for filter runs	
	36A to 36C	187
4.11	Variation of suspended solids concentration with	
	time for filter runs 38A to 38C	188
4.12	Variation of head loss with time for filter runs	
	38A to 38C	189

xvii

		Page
4.13	Variation of filter coefficient λ with	
. ·	specific deposit o	196
4.14	chi-square distribution	201
4.15	Plots of variate U and filtration time t for	
	various filter depths	206
4.16	Equi U plots of L and t	206
4.17	Plots of variate U and head loss (H_T-H_O) for	•
	various filter depths	210
4.18	Equi U plots of L and $(H_T - H_O)$	210
5.1	Comparison of a natural and synthetic	
	polyelectrolyte	225
5.2	Solubility of rice hull ash in alkaline solution University of Moratuwa, Sri Lanka.	233
5.3	variation Will Mabily kof silica (as soluble	
	ash) with the strength of alkaline solution	233
5.4	Variation of residual turbidity with alum dose	236
5.5	Variation of residual turbidity with activated	
	silica dose	236
5.6	Variation of residual turbidity with settling	
	time	238
5.7	Effect of adding activated silica at controlled	
	рН	238
5.8	Relative performances of various coagulant aids	241
6.1	Variation of filtrate turbidity with time in	
	rice hull ash filters	252
6.2	Variation of filtrate turbidity with time in	
	sand filters	252

		raye
6.3	Variation of head loss with time (in the	
	bottom 400 mm layer) for primary and	
	secondary filters	261
6.4	Comparison of observed and predicted values	
	of filtrate concentration	272
6.5	Variation of filtrate concentration with	
	time at a filtration rate of 1.0 m ³ /m ² h	273
6.6	Comparison of observed and predicted	
	concentration ratios for 685 mm depths of rice	
	hull ash media	276
6.7	Comparison of observed and predicted values	
6.8	of concentration ratio $\frac{c}{c}$ for 260 mm depth of University of Moratuwa, Sri Lanka. hull ash media Electronic Theses & Dissertations Pless of watebofint addkloss a, versus depth	276
•	of media	280
6.9	Comparison of predicted and observed head	
	loss values	280

LIST OF PLATES

Plate	Page
3.1	Scanning electron micrograph of filter sand 70
3.2	Incinerator 71
3.3	Scanning electron micrograph of rice hull ash 73
3.4	Scanning electron micrograph of rice hull ash 73
3.5	Scanning electron micrograph showing the
	internal aspect of rice hull ash particles 74
3.6	Comparison of rice hull ash, sand and rice hulls 76
3.7	Scanning electron micrograph of diatomaceous
	earth filter aid 85
3.8	Scanning electron micrograph of diatomaceous
	earth particle 85
3.9	University of Moratuwa, Sri Lanka. Kker, Absorpticmeter, Electronic Theses & Dissertations 87
3.10	Accumudationbofrdagdaited matter in rice
•	hull ash filter medium 99
3.11	Scanning electron micrograph showing the
	general appearance of the surface layer in
	a rice hull ash filter 111
3.12	Scanning electron micrograph showing the
	general appearance of a layer 100 mm below the
	surface of rice hull ash filter medium 111
3.13	Scanning electron micrograph showing the
	general appearance of a deep layer of a rice
	hull ash filter 111
3.14	Scanning electron micrograph showing the
	pattern of matter deposition on a rice hull
	ash particle at the surface of the filter
	medium 112

112

		Page
3.15	Scanning electron micrograph showing the	
	pattern of matter deposition in a rice hull	
	ash particle in a layer 100 mm below	
	the surface	112
3.16	Scanning electron micrograph showing the	
	pattern of matter deposition in a rice hull	
	ash particle in a deep layer	112
3.17	Scanning electron micrograph of rice hull	
	ash particles at the surface of a filter	
	medium	113
3.18	Scanning electron micrograph of rice hull	
· .	ash particles at a layer 100 mm below the	
3.19	Electronic Theses & Dissertations www.lib.mrt.ac.lk	113
	ash particle at a deep tayer of a fice null	

ash filter

113

LIST OF TABLES

Table		Page
1.1	Water supply situation in developing	
	countries in 1975	3
1.2	Properties of some of the commercially	
·	available diatomaceous earth filter aids	20
1.3	The comparison of slow sand and rapid sand	,
	filters	37
2.1	Ash yield and silica content of cereal hulls	
	and straws	40
2.2	Composition of rice hulls	42
2.3	Composition of rice hull ash	43
2.4	Rice hull utilization	46
2.5	ible eutilizations & Dissertations hulls	
	thewsownlibsnwhatekor ground hulls	48
2.6	Rice hull ash utilization	50
3.1	Chemical analysis of rice hull ash	77
3.2	Properties of rice hull ash	78
3.3	Analysis of water soluble fraction of	
	rice hull ash	80
3.4	Details of filter runs 1 to 12	92
3.5	Summary of filter runs 1 to 12	110
3.6	Details of filter runs 13 to 18	116
3.7	Growth of Escherichia coli at various	
	nutrient levels	129
3.8	Stability of diluted Escherichia coli	
	suspensions in dechlorinated tap water	130
3.9	Details of filter runs 24 to 27	134

xxi

xxii

Table		Page
3.10	Colour produced by diluted coffee samples	139
3.11	Results of filter runs 24 to 27	144
3.12	Results of filter run 30	144
4.1	Details of experiments in group I	174
4.2a	Summary of results Filter runs 32A and 32B	180
4.2b	Summary of results Filter runs 33A, 33B,	
	34A and 34B	181
4.2c	Summary of results Filter runs 35A to 35D	182
4.3	Details of experiment filter runs in group II	185
4.4	Values of filter coefficient λ and specific	
	deposit o	193
4.5	Electronic Theses & Dissertations	194
4.6	Values of filter coefficient λ and specific	
	deposit σ	195
4.7	Values of a_0 and a_1 for selected filter runs	198
4.8	Values of percentage removal and variate U	203
4.9	Values of percentage removal and variate U	205
4.10	Values of percentage removal and variate U	207
4.11	Comparison of observed and predicted values of	
	concentration ratio for a depth of 685 mm at	
	a filtration rate of 0.5 m^3/m^2h	208
4.12	Comparison of observed and predicted values	
	of filtrate suspended solids concentration	
	to influent solids concentration at filtration	
	rates of 1.0 m^3/m^2h to 0.75 m^3/m^2h	209

xxiii

Table		Page
4.13	Values of variate U and head loss $(H_{T}^{-}H_{O}^{-})$	
	for selected filtration times for filter runs	
	35A to 35C	211
4.14	Comparison of observed and predicted head	
	loss values	212
5.1	The effect of activated silica on the	
	clarification of clay suspensions with	
	aluminium sulphate	222
5.2	Effect of weight of ash to volume of alkali	
	on the percentage solubility of rice hull	
	ash	231
5.3	The southverstry of Moratuhual Sastanka.	232
6.1	Umewofwfiilteredc.weter/unit filter area	
	at various rates of filtration	258
6.2	Effect of volume of alkali to weight of ash	
	ratio on the solubility of ash	282

NOTATION

A	Filter constant
Ao	Area of the filter
В	Filter constant
Bı	Constant
с	Concentration of suspension
c _o	Concentration of suspension at the inlet
Cg	Concentration of suspension mass/unit volume
C1(T)	Concentration of suspension entering the layer
	at filtration time T
C2(T)	Concentration of suspension leaving the layer
	at filtration time T
ā(т)	Average swapping of boridu way San tranking in layer AL
F	Electronic Theses & Dissertations
^н о	Head loss in the clean filter medium
н _L	Total head loss
H _T	Head loss
J	Hydraulic conductivity
Jo	Hydraulic conductivity of clean medium
L	Depth measured from the surface
L _{min}	Minimum depth
Pc	Cumulative probability
Pe	Peclet number
Q(T)	Amount of material collected in the layer ΔL
	up to time T
т	Filtration time
T ₁	Absolute temperature

T₂ Temperature

U Variate

V Volume

- a Constant
- a₁ Constant
- b Filter constant
- d_f Fibre diameter

dg Collector or grain diameter

d_p Particle diameter

f Porosity of the clean filter medium

g_o gravitational acceleration

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations

i Hydraulic gradient of the clean filter medium

- k Filter constant
- kı Filter constant
- k₂ Filter constant
- k₃ Boltzmann's constant
- k₄ Constant

hĸ

i

k₅ Accumulation coefficient

k₆ Detachment coefficient

m Constant

r Constant

s Specific area of the filter pores at t = 0

t Filtration time

t_H Time

3

u	Interstitial velocity
u _c	Interstitial velocity at which no deposition
	would take place in an initially clean medium
uo	Initial interstitial velocity
v	Rate of filtration
×ך	
У	exponents
z	
	Colf newspite of Jenerited meterial
α	Self porosity of deposited material
°ο	Collision efficiency
α1	Scour coefficient
β	Bulking factor
η	Single Unitersity of Attainance, Sri Lanka.
η _D	www.lib.mrt.ac.lk
η _G	Collector efficiency for gravitational settling
η _I	Collector efficiency for interception
$\mathfrak{n}_{\mathbf{T}}$	Overall efficiency
λ	Filter coefficient
λ _o	Initial filter coefficient (clean filter)
λ _T	Filter coefficient
μ	Coefficient of viscosity
ν	Degrees of freedom
ρ	Density of fluid
ρ _p	Density of particles
ρ _s	Density of deposited material
σ	Volume of deposited particles/until filter volume
σg	Specific deposit mass/unit volume
σ _T	Specific deposit at time T

xxvi

σ_u Maximum specific deposit (saturation or ultimate specific deposit)

φ Filter constant

FTU Formazin turbidity units

J.T.U. Jackson turbidity units

R.H.A. Rice hull ash

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk