Abstract:
Robotic exoskeleton systems are one of the highly active areas in recent robotic research. These systems have been developed significantly to be used for the human power augmentation, robotic rehabilitation, human power assist, and haptic interaction in virtual reality. Unlike the robots used in industry, the robotic exoskeleton systems should be designed with special consideration since they directly interact with human user. In the mechanical design of these systems, movable ranges, safety, comfort wearing, low inertia, and adaptability should be especially considered. Controllability,
responsiveness, flexible and smooth motion generation, and safety should especially be considered in the controllers of exoskeleton systems. Furthermore, the controller should generate the motions in accordance with the human motion intention. This paper briefly reviews the upper extremity robotic exoskeleton systems. In the short review, it is focused to identify the brief history, basic concept, challenges, and future
development of the robotic exoskeleton systems. Furthermore, key technologies of upper extremity exoskeleton systems are reviewed by taking state-of-the-art robot as examples.