Show simple item record

dc.contributor.author Eranjith, HMD
dc.contributor.author Fernando, ID
dc.contributor.author Fernando, GKS
dc.contributor.author Soysa, WCM
dc.contributor.author Jayasena, VSD
dc.contributor.editor Jayasekara, AGBP
dc.contributor.editor Bandara, HMND
dc.contributor.editor Amarasinghe, YWR
dc.date.accessioned 2022-09-08T07:56:50Z
dc.date.available 2022-09-08T07:56:50Z
dc.date.issued 2016-04
dc.identifier.citation H. M. D. Eranjith, I. D. Fernando, G. K. S. Fernando, W. C. M. Soysa and V. S. D. Jayasena, "A visualization and analysis platform for performance tuning," 2016 Moratuwa Engineering Research Conference (MERCon), 2016, pp. 72-77, doi: 10.1109/MERCon.2016.7480118. en_US
dc.identifier.uri http://dl.lib.uom.lk/handle/123/18985
dc.description.abstract With a framework like OpenTuner, one could build domain-specific multi-objective program auto-tuners and gain significant performance improvements. But explaining why and interpreting the results are often hard, mainly due to the large number of parameters and the inability to figure out how each parameter affects the performance improvement. We have a solution that can explain the performance improvements by identifying key parameters while providing better insights on the tuning process. Our tool uses machine learning techniques to identify parameters which account for a significant performance improvement. A user could utilize different methods provided in the tool to further experiment and verify the accuracy of such findings. Further, our tool uses multidimensional scaling to display all the configurations in a two dimensional graph. This interface allows users to analyze the search space closely and identify clusters of configurations with good or bad performance. It also provides real-time information of tuning process which would help users to optimize the tuning process. en_US
dc.language.iso en en_US
dc.publisher IEEE en_US
dc.relation.uri https://ieeexplore.ieee.org/document/7480118 en_US
dc.subject performance tuning en_US
dc.subject visualization en_US
dc.subject feature engineering en_US
dc.subject multidimensional scaling en_US
dc.title A visualization and analysis platform for performance tuning en_US
dc.type Conference-Full-text en_US
dc.identifier.faculty Engineering en_US
dc.identifier.department Engineering Research Unit, University of Moratuwa en_US
dc.identifier.year 2016 en_US
dc.identifier.conference 2016 Moratuwa Engineering Research Conference (MERCon) en_US
dc.identifier.place Moratuwa, Sri Lanka en_US
dc.identifier.pgnos pp. 72-77 en_US
dc.identifier.proceeding Proceedings of 2016 Moratuwa Engineering Research Conference (MERCon) en_US
dc.identifier.email danula.11@cse.mrt.ac.lk en_US
dc.identifier.email isuru.11@cse.mrt.ac.lk en_US
dc.identifier.email kasun.11@cse.mrt.ac.lk en_US
dc.identifier.email madawa.11@cse.mrt.ac.lk en_US
dc.identifier.email sanath@cse.mrt.ac.lk en_US
dc.identifier.doi 10.1109/MERCon.2016.7480118 en_US


Files in this item

This item appears in the following Collection(s)

Show simple item record