Abstract:
The rapid urban migration and the infrequency of spaces in megacities have become a challenge for all most all countries. To fulfill the housing requirements of the ever-growing population with the scarcity of valuable lands, the best solution is to come up with high-rise or medium-rise apartment buildings. Even though there are different structural forms that can be incorporated into high-rise apartment structures, most of the time structural designers select based on their experience and approach which are not effective all the time. The structural design for a given structure should be optimum in terms of structural performance and associated costs. Since wind and seismic forces govern the design of high-rise structures, those lateral forces are significant to be studied. So, this analytical study was carried out to evaluate the effectiveness of six different structural systems of 20-story RC (Reinforced Concrete) structures under the effect of wind and seismic loadings including a moment-resisting frame as the base model, four wall frame structures and a frame-tube structure. Models are compared based on the parameters such as maximum top storey displacement, inter-storey drift ratios, member forces and moments utilization, seismic induced base shear and human perception levels of lateral acceleration.
Citation:
S. Wijekoon, T. Jayasinghe, S. Herath and A. Herath, "A comparative study to evaluate the effectiveness of different structural forms for medium-rise apartment buildings," 2022 Moratuwa Engineering Research Conference (MERCon), 2022, doi: 10.1109/MERCon55799.2022.9906243.