Institutional-Repository, University of Moratuwa.  

Computational modelling of synaptic plasticity: a review of models, parameter estimation using deep learning, and stochasticity

Show simple item record

dc.contributor.author Kumarapathirana, KPSD
dc.contributor.author Kulasiri, D
dc.contributor.author Samarasinghe, S
dc.contributor.author Liang, J
dc.contributor.editor Ganegoda, GU
dc.contributor.editor Mahadewa, KT
dc.date.accessioned 2022-11-10T03:57:37Z
dc.date.available 2022-11-10T03:57:37Z
dc.date.issued 2021
dc.identifier.citation K. P. S. D. Kumarapathirana, D. Kulasiri, S. Samarasinghe and J. Liang, "Computational Modelling of Synaptic Plasticity: A review of models, parameter estimation using deep learning, and stochasticity," 2021 6th International Conference on Information Technology Research (ICITR), 2021, pp. 1-7, doi: 10.1109/ICITR54349.2021.9657166. en_US
dc.identifier.uri http://dl.lib.uom.lk/handle/123/19460
dc.description.abstract It is imperative to understand the human memory formation and impairment to treat dementia effectively. There is ample scientific evidence that memory formation is strongly correlated to synaptic connections. Synaptic plasticity reflects the strength of these connections and is strongly related to memory formation and impairment. The complexity in the signalling pathways and interactions among proteins demands a systemic approach to study synaptic plasticity. Hence systems biology approaches are used in computational neuroscience. In this paper, we review the key computational models related to synaptic plasticity, the use of deep learning in parameter estimation, and the incorporation of epistemic stochasticity in the models. en_US
dc.language.iso en en_US
dc.publisher Faculty of Information Technology, University of Moratuwa. en_US
dc.relation.uri https://ieeexplore.ieee.org/document/9657166 en_US
dc.subject Synaptic plasticity en_US
dc.subject Synaptic transmission en_US
dc.subject Memory formation en_US
dc.subject Computational modelling en_US
dc.subject Stochastic modelling en_US
dc.subject Parameter estimation en_US
dc.title Computational modelling of synaptic plasticity: a review of models, parameter estimation using deep learning, and stochasticity en_US
dc.type Conference-Full-text en_US
dc.identifier.faculty IT en_US
dc.identifier.department Information Technology Research Unit, Faculty of Information Technology, University of Moratuwa. en_US
dc.identifier.year 2021 en_US
dc.identifier.conference 6th International Conference in Information Technology Research 2021 en_US
dc.identifier.place Moratuwa, Sri Lanka en_US
dc.identifier.proceeding Proceedings of the 6th International Conference in Information Technology Research 2021 en_US
dc.identifier.doi 10.1109/ICITR54349.2021.9657166 en_US


Files in this item

This item appears in the following Collection(s)

  • ICITR - 2021 [39]
    International Conference on Information Technology Research (ICITR)

Show simple item record