Institutional-Repository, University of Moratuwa.  

Control of algal blooms in reservoirs with a curtain: A numerical analysis

Show simple item record

dc.contributor.author Asaeda, T
dc.contributor.author Pham, HS
dc.contributor.author Nimal Priyantha, DG
dc.contributor.author Manatunge, J
dc.contributor.author Hocking, GC
dc.date.accessioned 2023-02-13T05:42:56Z
dc.date.available 2023-02-13T05:42:56Z
dc.date.issued 2001
dc.identifier.citation Asaeda, T., Pham, H. S., Nimal Priyantha, D. G., Manatunge, J., & Hocking, G. C. (2001). Control of algal blooms in reservoirs with a curtain: A numerical analysis. Ecological Engineering, 16(3), 395–404. https://doi.org/10.1016/S0925-8574(00)00123-3 en_US
dc.identifier.issn 0925-8574 en_US
dc.identifier.uri http://dl.lib.uom.lk/handle/123/20456
dc.description.abstract Two vertical curtains, having depths to cover the epilimnion thickness, were installed across the Terauchi Dam Reservoir in the western island of Japan to curtail the nutrient supply from nutrient-rich inflows to the downstream epilimnion of the reservoir. The withdrawal level was also regulated to keep the downstream epilimnion away from the nutrient supply. This method markedly reduced algal blooming in the reservoir downstream of the curtains during spring and summer. The physical and biological processes in the reservoir ecosystem were analysed using the 2-D reservoir model DYRESM and chemical and biological submodels, to predict the water quality and algal species composition in the reservoir. The horizontal variability was maintained in the model by dividing the horizontal layer into parcels. Temperature, chlorophyll-a, soluble phosphorus, nitrate, ammonium, dissolved oxygen, biochemical oxygen demand, internal nitrogen, internal phosphorus were considered as state variables in the model. The simulated results revealed the mechanism of how algal blooming is reduced, during early spring high algal concentrations consume large amounts of nutrients, which reduces the nutrient supply to the downstream zone of the reservoir, whereas during late spring and summer, nutrient dispersion from the upstream epilimnion to the downstream epilimnion is curtailed by the curtains, markedly reducing algal blooming in the downstream zone. en_US
dc.publisher Elsevier en_US
dc.subject Algal bloom en_US
dc.subject Curtain en_US
dc.subject Entrainment en_US
dc.subject Epilimnion en_US
dc.subject Eutrophication en_US
dc.subject Reservoir en_US
dc.subject Riverine zone en_US
dc.title Control of algal blooms in reservoirs with a curtain: A numerical analysis en_US
dc.identifier.year 2001 en_US
dc.identifier.journal Ecological Engineering en_US
dc.identifier.issue 3 en_US
dc.identifier.volume 16 en_US
dc.identifier.database ScienceDirect en_US
dc.identifier.pgnos 395-404 en_US
dc.identifier.doi https://doi.org/10.1016/S0925-8574(00)00123-3 en_US


Files in this item

This item appears in the following Collection(s)

Show simple item record