Institutional-Repository, University of Moratuwa.  

Distribution of the scaled condition number of single-spiked complex wishart matrices

Show simple item record

dc.contributor.author Dissanayake, P
dc.contributor.author Dharmawansa, P
dc.contributor.author Chen, Y
dc.date.accessioned 2023-06-14T08:17:38Z
dc.date.available 2023-06-14T08:17:38Z
dc.date.issued 2022
dc.identifier.citation Dissanayake, P., & Dharmawansa, P. (n.d.). Distribution of the scaled condition number of single-spiked complex wishart matrices. IEEE Transactions on Information Theory, 68(10), 6716–6737. https://doi.org/10.1109/TIT.2022.3180286 en_US
dc.identifier.issn 0018-9448 en_US
dc.identifier.uri http://dl.lib.uom.lk/handle/123/21104
dc.description.abstract Let X 2 Cn m (m n) be a random matrix with independent columns each distributed as complex multivariate Gaussian with zero mean and single-spiked covariance matrix In + uu , where In is the n n identity matrix, u 2 Cn 1 is an arbitrary vector with unit Euclidean norm, 0 is a nonrandom parameter, and ( ) represents the conjugate-transpose. This paper investigates the distribution of the random quantity 2 SC(X) = Pn k=1 k= 1, where 0 1 2 : : : n < 1 are the ordered eigenvalues of XX (i.e., single-spiked Wishart matrix). This random quantity is intimately related to the so called scaled condition number or the Demmel condition number (i.e., SC(X)) and the minimum eigenvalue of the fixed trace Wishart-Laguerre ensemble (i.e., 􀀀2 SC (X)). In particular, we use an orthogonal polynomial approach to derive an exact expression for the probability density function of 2 SC(X) which is amenable to asymptotic analysis as matrix dimensions grow large. Our asymptotic results reveal that, as m; n ! 1 such that m 􀀀 n is fixed and when scales on the order of 1=n, 2 SC(X) scales on the order of n3. In this respect we establish simple closed-form expressions for the limiting distributions. It turns out that, as m; n ! 1 such that n=m ! c 2 (0; 1), properly centered 2 SC(X) fluctuates on the scale m 1 3 . en_US
dc.language.iso en en_US
dc.publisher Institute of Electrical and Electronics Engineers en_US
dc.subject Condition number en_US
dc.subject cumulative distribution function (c.d.f.) en_US
dc.subject eigenvalues en_US
dc.subject hypergeometric function of two matrix arguments en_US
dc.subject moment generating function (m.g.f.) en_US
dc.subject orthogonal polynomials en_US
dc.subject probability density function (p.d.f.) en_US
dc.subject single-spiked covariance en_US
dc.subject Wishart matrix en_US
dc.title Distribution of the scaled condition number of single-spiked complex wishart matrices en_US
dc.type Article-Full-text en_US
dc.identifier.year 2022 en_US
dc.identifier.journal IEEE Transactions on Information Theory en_US
dc.identifier.issue 10 en_US
dc.identifier.volume 68 en_US
dc.identifier.database IEEE Xplore en_US
dc.identifier.pgnos 6716 - 6737 en_US
dc.identifier.doi 10.1109/TIT.2022.3180286 en_US


Files in this item

This item appears in the following Collection(s)

Show simple item record