Show simple item record

dc.contributor.author Pathirana, P
dc.contributor.author Senarath, S
dc.contributor.author Meedeniya, D
dc.contributor.author Jayarathna, S
dc.date.accessioned 2023-06-22T05:09:53Z
dc.date.available 2023-06-22T05:09:53Z
dc.date.issued 2022
dc.identifier.citation Pathirana, P., Senarath, S., Meedeniya, D., & Jayarathna, S. (2022). Eye gaze estimation: A survey on deep learning-based approaches. Expert Systems with Applications: An International Journal, 199(C). [29p.]. https://doi.org/10.1016/j.eswa.2022.116894 en_US
dc.identifier.issn 0957-4174 en_US
dc.identifier.uri http://dl.lib.uom.lk/handle/123/21145
dc.description.abstract Human gaze estimation plays a major role in many applications in human-computer interaction and computer vision by identifying the users’ point-of-interest. The revolutionary developments of deep learning have captured significant attention in the gaze estimation literature. Gaze estimation techniques have progressed from single-user constrained environments to multiuser unconstrained environments with the applicability of deep learning techniques in complex unconstrained environments with extensive variations. This paper presents a comprehensive survey of the single-user and multi-user gaze estimation approaches with deep learning. The state-of-the-art approaches are analyzed based on deep learning model architectures, coordinate systems, environmental constraints, datasets and performance evaluation metrics.Akey outcome from this survey realizes the limitations, challenges, and future directions of multi-user gaze estimation techniques. Furthermore, this paper serves as a reference point and a guideline for future multi-user gaze estimation research. en_US
dc.language.iso en en_US
dc.publisher Elsevier en_US
dc.title Eye gaze estimation: A survey on deep learning-based approaches en_US
dc.type Article-Full-text en_US
dc.identifier.year 2022 en_US
dc.identifier.journal Expert Systems with Applications en_US
dc.identifier.issue C en_US
dc.identifier.volume 199 en_US
dc.identifier.database ScienceDirect en_US
dc.identifier.pgnos [29p.] en_US
dc.identifier.email 1c7a@sc-seem.amirlt en_US
dc.identifier.email japce.glk en_US
dc.identifier.email shashimalsenarath.17@cse.mrt.ac.lk en_US
dc.identifier.email dulanim@cse.mrt.ac.lk en_US
dc.identifier.email sampath@cs.odu.edu en_US
dc.identifier.doi https://doi.org/10.1016/j.eswa.2022.116894 en_US


Files in this item

This item appears in the following Collection(s)

Show simple item record