Institutional-Repository, University of Moratuwa.  

An Advisor-Based Architecture for a Sample-Efficient Training of Autonomous Navigation Agents with Reinforcement Learning

Show simple item record

dc.contributor.author Wijesinghe, R. D.
dc.contributor.author Tissera, D.
dc.contributor.author Vithanage, M. K.
dc.contributor.author Xavier, A.
dc.contributor.author Fernando, S
dc.contributor.author Samarawickrama, J.
dc.date.accessioned 2023-12-01T05:37:46Z
dc.date.available 2023-12-01T05:37:46Z
dc.date.issued 2023
dc.identifier.citation Wijesinghe, R. D., Tissera, D., Vithanage, M. K., Xavier, A., Fernando, S., & Samarawickrama, J. (2023). An Advisor-Based Architecture for a Sample-Efficient Training of Autonomous Navigation Agents with Reinforcement Learning. Robotics, 12(5), Article 5. https://doi.org/10.3390/robotics12050133 en_US
dc.identifier.issn 2218-6581 en_US
dc.identifier.uri http://dl.lib.uom.lk/handle/123/21862
dc.description.abstract Recent advancements in artificial intelligence have enabled reinforcement learning (RL) agents to exceed human-level performance in various gaming tasks. However, despite the state-of-the-art performance demonstrated by model-free RL algorithms, they suffer from high sample complexity. Hence, it is uncommon to find their applications in robotics, autonomous navigation, and self-driving, as gathering many samples is impractical in real-world hardware systems. Therefore, developing sample-efficient learning algorithms for RL agents is crucial in deploying them in real-world tasks without sacrificing performance. This paper presents an advisor-based learning algorithm, incorporating prior knowledge into the training by modifying the deep deterministic policy gradient algorithm to reduce the sample complexity. Also, we propose an effective method of employing an advisor in data collection to train autonomous navigation agents to maneuver physical platforms, minimizing the risk of collision. We analyze the performance of our methods with the support of simulation and physical experimental setups. Experiments reveal that incorporating an advisor into the training phase significantly reduces the sample complexity without compromising the agent’s performance compared to various benchmark approaches. Also, they show that the advisor’s constant involvement in the data collection process diminishes the agent’s performance, while the limited involvement makes training more effective. en_US
dc.language.iso en en_US
dc.subject advisor-based architecture en_US
dc.subject autonomous agents en_US
dc.subject reinforcement learning en_US
dc.title An Advisor-Based Architecture for a Sample-Efficient Training of Autonomous Navigation Agents with Reinforcement Learning en_US
dc.type Article-Full-text en_US
dc.identifier.year 2023 en_US
dc.identifier.journal Robotics en_US
dc.identifier.issue 5 en_US
dc.identifier.volume 12 en_US
dc.identifier.database MDPI en_US
dc.identifier.pgnos 1-27 en_US
dc.identifier.doi https://doi.org/10.3390/robotics12050133 en_US


Files in this item

This item appears in the following Collection(s)

Show simple item record